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Supplementary 
Supplementary Results 

Independence of NTN5 
 

One of the novel loci (NTN5) was within 2.7Mb of the APOE locus. As the signal of 
the APOE region is so strong, variants in low linkage disequilibrium (LD) with the region are 
likely to show a statistically significant signal even if there is no actual effect. To determine 
whether the NTN5 locus is novel and independent of APOE, we used GCTA-COJO1 to 
identify independent associated SNPs within the APOE locus (see Online Methods). The 
lead variant (rs2452170, GRCh37: 19:49213504) in the NTN5 region showed no change in 
significance after conditioning on the associated APOE variants (P=1.72x10-8, 
Pconditioned=1.60x10-8). The lead variant in the NTN5 region is in very low LD (R2 < 0.007) with 
any of the independent associated SNPs in the APOE locus and in even lower LD 
(R2=0.001) with the actual APOE variants (rs429358 and rs7412) in the European 1000 
Genomes reference (1KG) population2. We thus conclude that the novel NTN5 locus is 
independent from the APOE signal. 

 
Proxy vs case-control LOAD 
 

The genetic correlation between the proxy LOAD GWAS results and the case-control 
LOAD results was 0.83 (SE=0.21, P=6.61x10-5) which is on par with the genetic correlation 
between proxy and case-control LOAD in our previous studies3. The high correlation 
suggests that the proxy design is a good estimate for LOAD status when the genotyped 
individual is too young to present the phenotype. However, there are differences between 
the results when specifying the phenotypes differently. Supplementary Figure 1 shows that 
the novel regions identified in the full meta-analysis do not have much significance in the 
proxy data alone. The TMEM106B, GRN, and NTN5 regions did not have any variants with a 
P-value <0.0005 so none of the variants in that region were included in the Manhattan plot. 
Interestingly, TMEM106B and GRN are genes previously associated with frontotemporal 
dementia4 and one would expect the LOAD proxy results to be driving this association due to 
the potential inclusion of dementia patients as cases but the association signal appears to 
be absent in proxy results. Supplementary Figure 2 shows that these genes do have 
relatively strong, albeit non-significant, signals in the results from the case-control data. 
Further exploration of the novel regions in an independent sample will be valuable in 
determining the role of these genes in LOAD. 
 

Genomic risk loci enrichment 
 
Active chromatin enrichment 
 

The genomic risk loci (excluding the HLA-DRB1 (MHC) region) contained 45,479 
variants in total. An insight into the functional annotation of these variants may highlight 
potential routes from variant to phenotype. All the variants in the genome were annotated as 
being in active or inactive chromatin across 127 cell types based on the ROADMAP Core 
15-state model5 In all 127 cell types, the genomic risk loci variants were significantly 
enriched in variants within active chromatin compared to all variants included in the meta-
analysis (Supplementary Table 12). The odds ratio (OR) of enrichment ranged from 4.34 to 
1.71, with the top 5 cell types consisting of immune related cell types (Supplementary 
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Figure 6). The least enriched cell types were also significantly enriched compared to the 
rest of the genome, this is likely due to the genomic risk loci being located in gene dense 
regions which are likely to be more active in all cell types compared to the whole genome. 
The pattern of enrichment and proportion of active chromatin across the cell types again 
prioritizes immune cells as cell types of interest. 

  
Functional consequence enrichment 
 

The variants within and outside the genomic risk loci were also compared based on 
their functional consequence determined by ANNOVAR6 (Supplementary Figure 7; 
Supplementary Table 13). The majority of the variants within the genomic risk loci are 
intronic and intergenic (prop=0.49, prop=0.36). The intergenic and ncRNA intronic variants 
were the only variant types to be significantly depleted in the genomic risk loci (OR=0.72, 
Pbonferroni=<1x10-323; OR=0.76, Pbonferroni=1.20x10-39), all other annotations, except ncRNA 
splicing variants, were significantly enriched. Splicing variants were the most enriched 
(OR=4.16, Pbonferroni=0.0098). These results suggest that the genomic risk loci are regions 
rich in genes, and that splicing may be an important mechanism through which effects of 
these genes on LOAD are regulated. 

 

Novel Loci 
 

Locus 8 contains 71 variants in LD where the lead variant is rs6891966 (P=7.91x10-

10). This variant is located in an intron of HAVCR2 (Supplementary Figure 8). HAVCR1 and 
TIMD4 also map to this region based on brain eQTLs (PsychENCODE). SusieR fine-
mapping did not highlight any high posterior probability variants. FINEMAP identified 7 
variants which have PIP>0.99, all 7 of these variants are HAVCR2 intron variants. HAVCR2 
is preferentially expressed in aged microglia7. HAVCR2 was included as one of the top 100 
enriched transcripts in brain and microglia and was included in a cluster of transcripts which 
are involved in sensing endogenous ligands and microbes8. Havcr2 has been suggested to 
bind to phosphatidylserine on cell surfaces to mediate apoptosis9. Another study found 
Havcr2 to significantly interact with amyloid precursor protein10. HAVCR2 expressed in 
microglia could mediate binding with cells to initiate apoptosis or binding to amyloid beta 
plaque. TIMD4 is another gene in this region which shows similar function to HAVCR2, it 
binds to phosphatidylserine on cell surfaces to mediate apoptosis and microglia lacking 
TIMD4 receptors have reduced apoptotic clearance11. 
 

Locus 12 and locus 28 have both been previously associated with dementia4. The 
lead variant in locus 12 was rs5011436, an intron variant in TMEM106B with P-value of 
2.7x10-9 (Supplementary Figure 9). Neither fine-mapping tools identified any variants with 
high PIP. However, a nearby variant (rs3173615) is an exonic variant with a CADD score of 
21.2. This variant has been discussed as the association signal driving variant in 
frontotemporal dementia (FTD) by causing decreased TMEM106B protein abundance 
through increasing protein degradation12. The lead variant in locus 28 was rs708382, a 
downstream variant of RPL7L1P5 with a P-value of 1.98x10-9(Supplementary Figure 10). 
Close to the lead variant is an exonic variant (rs5911) in ITGA2B with a CADD score of 19.8. 
This variant, and the gene it exists within (ITGA2B), appears to impact platelets and 
cardiovascular disease. In this region, eQTLs for GRN in blood and brain colocalized with 
the GWAS signal. GRN is a known FTD gene13. 

 
Locus 34 contains 71 variants in LD, with a lead variant (rs2452170) between FUT2 

and MAMSTR with a P-value of 1.72x10-8 (Supplementary Figure 11). This region maps to 
16 genes, two of which include exonic variants with high CADD scores. FUT2 contains 
rs601338, a variant with a CADD score of 52 which introduces a stop codon. FUT2 also 
contains another stop codon-introducing variant (rs602662), which has a CADD score of 
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22.5. The former variant has been previously associated with gastroenteritis and Crohn’s 
disease, and the latter was associated with B12 blood levels14. A Mendelian randomisation 
study of B12 levels and LOAD used rs602662 and other variants to determine that, opposed 
to observational analyses, B12 levels does not mediate LOAD pathology15. However, they 
used this variant under the assumption that it is not associated with LOAD and rs602662 
was suggestively associated with LOAD in this meta-analysis (P-value=5.12x10-6). The other 
exonic variant (rs2287922) with a high CADD score (26.2) is located in RASIP1. RASIP1 
appears to be involved with maintenance of the blood brain barrier16. Blood brain barrier 
malfunction has been observed in AD17. In a recent unpublished study, MAMSR was 
identified as a gene which is differentially methylated in LOAD brains18. NTN5 was 
implicated through colocalization of the GWAS signal with an eQTL in brain tissue. NTN5 is 
highly expressed in neurogenic regions of the brain and is known to be involved in adult 
neurogenesis19. This locus is a difficult locus to interpret due to the range of genes and 
spread of association signal, however NTN5 and RASIP1 appear to have the most evidence 
to support their association with LOAD.  

 
Inconclusive Loci 
 

The first inconclusive region identified in this study (locus 1) was identified due to a 
rare (MAF=0.0041) variant (rs113020870). This variant is a synonymous exon variant within 
AGRN (Supplementary Figure 12). This locus was categorised as inconclusive because 
the lead variant is only supported by 2 other variants in LD (R2>0.1). The variant is present 
in 3 datasets (23andMe, Finngen, and UKB). The effect direction in all 3 is the same and the 
P-values in the UKB and 23andMe datasets are below 5x10-4 (Supplementary Figure 13). 
The gene AGRN codes for agrin, a protein which influences the functioning of excitatory 
synapse and the blood brain barrier and has been previously suggested to be important to 
neurological diseases like LOAD20. Another study identified that AGRN expression 
influenced amyloid-beta homeostasis in mouse models of LOAD21. Amyloid plaques have 
been found to consist of significant amounts of heparan sulfate proteoglycans (HSPGs), a 
family of proteins which contain agrin22. The same study suggested that microglia expressed 
complement receptor 3 receptors bind to HSPGs and amyloid in plaques in the LOAD brain. 
Together, the previous literature and this GWAS result highlights the possibility that agrin 
makes up a proportion of amyloid plaques and rare mutations within AGRN could affect the 
binding efficacy and clearance of these plaques by microglia. 
 

The second inconclusive region (locus 3) consists of two variants in LD 
(Supplementary Figure 14); rs115186657 is the only significant variant (P=1.33x10-8; 
MAF=0.0035). This locus is categorised as inconclusive because it contains only 2 variants 
in LD (R2>0.1). This variant is included in 2 datasets (23andMe and UKB); the variant has 
the same effect direction in both datasets and has a P-value <1x10-4 in both datasets 
(Supplementary Figure 15). This region contains no prospective genes, nor do any genes 
map to the region based on eQTL data. The closest gene to the non-significant variant is 
FHL2, there is some evidence that this protein interacts with the protein of a LOAD 
associated gene (PSEN2)23. The fine-mapping results of this locus identified 2 variants, 
rs115186657 (PIP=0.88) and rs143254526 (PIP=0.04), the former is the lead variant and the 
latter is located in NCK2. A recent unpublished study of AD24 identified a novel significant 
variant (rs143080277) in NCK2, this variant is ~130Kb away from the end of the genomic 
risk locus identified in this study. It is likely that the region identified in our study is separate 
to the NCK2 region but due to the large fine-mapped region there is some signal from the 
NCK2 being included in this locus. The variant identified as significant in Schwartzentruber 
et al. (2020)24 has a P-value of 4.11x10-7 in this study, which could explain why it has been 
included in the credible causal set but with a low PIP. 
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The third inconclusive region (locus 7) contains a single significant variant (rs871269, 
P=1.37x10-9) with a MAF of 0.34 (Supplementary Figure 16). This locus is inconclusive 
because the lead variant is not supported by any other variants in LD (R2>0.1). The lead 
variant is included in all but one dataset and 13 out of 17 datasets have the same effect 
direction (Supplementary Figure 17). The P-value is fairly modest in all datasets with the 
lowest P-value of 0.00034 in the UKB data. This variant is located in an intron of TNIP1 and 
maps to GPX3, TNIP1, and SLC36A1 based on eQTLs within blood tissue. The fine-
mapping results from FINEMAP and SusieR both highlighted the lead variant as the only 
variant with high posterior probability of inclusion (PIP>0.99 in both). TNIP1 contributes to 
hyperinflammation and has been previously identified in autoimmune GWAS25. TNIP1 was 
included in a transcription module regulated by BCL3 in mouse microglia26. This module was 
implicated in prolonged exposure to inflammation and aging of microglia. BCL3 is a gene 
significantly associated with LOAD after conditioning for APOE27 and was observed as 
upregulated in the LOAD brain28. 

 

Brain Regional Gene Expression 
 

The regional brain expression of the genes implicated by eQTL mapping was 
examined using GAMBA29 (Supplementary Figure 18). The mean gene expression of the 
329 mapped genes were compared to a random selection of 329 significantly brain 
expressed genes which resulted in 27 regions which differed significantly (Supplementary 
Table 14). The significantly different regions with the highest mean were the left thalamus 
proper, caudal anterior cingulate, insula, pallidum, and postcentral gyrus. These regions 
have a range of functions including somatosensory function, emotion, and memory30–34. 
However, when the regional mean gene expressions of the mapped genes were compared 
to a random selection of genes (not just brain expressed genes) there were no significant 
differences between the mean gene expression of any region (Supplementary Table 14). 
This result may reflect the lack of brain specificity of the mapped genes which supports the 
finding in this study that LOAD risk is mediated through immune related cells (microglia) and 
highlights the importance of narrowing down associated regions to individual causal genes. 
 

Supplementary Figures 
 
Supplementary Figure 1: Manhattan plot of the UKB proxy LOAD data indicates low 
association of the novel regions (green) identified in the full meta-analysis. Only variants with 
a P< 0.0005 are displayed so novel regions with P-values larger than this are not 
observable. The APOE region cannot be fully observed because the y-axis is limited to the 
top variant in the second most significant locus, -log10(1x10-60), in order to display the less 
significant variants. The red line represents genome wide significance (5x10-8) 
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Supplementary Figure 2: Manhattan plot of the meta-analysis results of the LOAD case-
control data indicates some association of identified in the full meta-analysis. Only variants 
with a P< 0.0005 are displayed. The APOE region cannot be fully observed because the y-
axis is limited to the top variant in the second most significant locus, -log10(1x10-60), in order 
to display the less significant variants. The red line represents genome wide significance 
(5x10-8) 
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Supplementary Figure 3: MAGMA tissue specificity analysis identified spleen as a GTEx 
tissue with similar expression profiles to the LOAD gene association profile. The dotted line 
represents the significance threshold based on 30 tests. Significantly associated tissue is 
highlighted in dark blue. The full results and names of each tissue are available in 
Supplementary Table 3. 
 

 
 
Supplementary Figure 4: Independent cell type associations based on within-dataset 
conditional analyses identifies microglia as the only cell type of interest. The cell specific 
expression profiles of microglia in 6 datasets are significantly associated (P<5.39x10-5) with 
the LOAD association reflected in the MAGMA gene analysis. Microglia were significantly 
enriched in human lateral geniculate nucleus (P=1.11x10-7), human middle temporal gyrus 
(P=6.41x10-7), adult human brain (P=8.72x10-6), mouse hippocampus (P=1.15x10-5), human 
prefrontal cortex (P=1.28x10-5), and brain macrophage (microglia) mouse brain (P=8.11x10-

6). 
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Supplementary Figure 5: The top 5 and bottom 5 cell types enriched for active chromatin in 
the credible causal variants compared to the mapping region highlights an induced 
pluripotent stem cell, brain tissue, and immune cells. The y-axis represents the proportion of 
variants within the credible causal variants which are in active chromatin for a given cell 
type. All cell types are significant after Bonferroni correction for 127 cell types. iPS_DF= 
induced pluripotent cells derived from fibroblasts (IPS DF 19.11). All OR were significantly 
different from 1.  
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Supplementary Figure 6: The top 5 and bottom 5 cell types where active chromatin is most 
enriched in genomic risk loci compared to the rest of the genome highlights immune cells as 
enriched for active chromatin in LOAD regions of interest. The y-axis represents the 
proportion of the genomic risk locus that is in active chromatin in that cell type. The colour of 
the bars represents the odds ratio (OR) from a Fisher’s exact test comparing counts of 
variants in active chromatin in the genomic risk loci vs counts of variants in active chromatin 
in the rest of the genome. All OR were significantly different from 1.  
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Supplementary Figure 7: ANNOVAR enrichment analyses identifies 10 significant 
differences between the number of annotations in the genomic risk loci compared to the rest 
of the genome. The y-axis represents the proportion of the genomic risk loci which falls into 
each annotation. The colour of the bars represents the odds ratio (OR) from a Fisher’s exact 
test comparing counts of annotations in the genomic risk loci vs counts of annotations in the 
rest of the genome. The asterisks (*) represent OR which are significantly different from 1. 
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Supplementary Figure 8: Regional plot highlighting the lead variant of locus 8 and the genes 
of interest. The eQTLs and the genes which they map to are included below the regional 
Manhattan plot.  
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Supplementary Figure 9: Regional plot highlighting the lead variant of locus 12 and the gene 
of interest (TMEM106B). The CADD score of the included variants are included below the 
regional Manhattan plot. 

 
 
Supplementary Figure 10: Regional plot highlighting the lead variant of locus 28 and the 
genes of interest. 
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Supplementary Figure 11: Regional plot highlighting the lead variant of locus 34 and the 
genes of interest. The CADD score of the included variants are included below the regional 
Manhattan plot. 

 
 
Supplementary Figure 12: Regional plot of locus 1 (inconclusive) indicating the lead variant 
and the two variants in LD in this 
region. 
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Supplementary Figure 13: Forest plot of rs113020870 highlighting the effect estimate 
(BETA), standard error (SE) and P-value of this variant in each dataset. The error bars 
represent 95% confidence intervals. 

 
 
 
Supplementary Figure 14: Regional plot of locus 3 (inconclusive) highlighting the associated 
variant in the region and nearby genes. 

 
 
Supplementary Figure 15: Forest plot of rs115186657 highlighting the effect estimate 
(BETA), standard error (SE) and P-value of this variant in each dataset. The error bars 
represent 95% confidence intervals. 
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Supplementary Figure 16: Regional plot highlighting the lead variant of locus 7 
(inconclusive) and the genes of interest. The eQTLs and the genes which they map to are 
included below the regional Manhattan plot.  
 

 



 19 

Supplementary Figure 17: Forest plot of rs871269 highlighting the effect estimate (BETA), 
standard error (SE) and P-value of this variant in each dataset. The error bars represent 
95% confidence intervals. 

 
 

Supplementary Figure 18: The mean gene expression of 329 genes linked to risk loci 
through eQTL mapping across 64 brain regions highlights the top 10 regions with the highest 
expression. Gene expression values are obtained from the Allen Human Brain Atlas.   

 

 
 
 
 
 
 
  



 20 

Supplementary Methods 

Datasets 
 
deCODE 
 

Data from the deCODE study included 7,002 Alzheimer's patients (5,098 of whom 
were chip-typed) and 181,573 controls (88,739 of whom were chip-typed). In 15% of 
patients, the diagnosis of Alzheimer's disease was established at the Memory Clinic of the 
University Hospital according to the criteria for definite, probable, or possible Alzheimer's 
disease of the National Institute of Neurological and Communicative Disorders and Stroke 
and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA). In 80% 
of patients, the diagnosis has been registered according to the criteria for code 331.0 in ICD-
9, or for F00 and G30 in ICD-10 in health records. Five percent of the patients were 
identified in the Directorate of Health medication database as having been prescribed 
Donepezil (Aricept). The controls were drawn from various research projects at deCODE 
Genetics. The study was approved by the National Bioethics Committee and the Icelandic 
Data Protection Authority. Written informed consent was obtained from all participants or 
their guardians before blood samples were drawn. All sample identifiers were encrypted in 
accordance with the regulations of the Icelandic Data Protection Authority. 
 

Chip-typing and long-range phasing of 155,250 individuals was carried out as 
described previously35. Imputation of the variants found in 28,075 whole-genome sequenced 
individuals into the chip-typed individuals and 285,664 close relatives was performed as 
detailed earlier35. Association analysis in the deCODE sample was carried out using logistic 
regression with AD status as the response and genotype counts and a set of nuisance 
variables, including sex, county of birth, and current age, as predictors36. Correction for 
inflation of test statistics due to relatedness and population stratification in this Icelandic 
cohort was performed using the intercept estimate (1.30) from LD score regression37. 
 
UK Biobank 

The UK Biobank (UKB; www.ukbiobank.ac.uk)38 summary statistics for 46,613 cases 
and 318,246 controls were obtained from Jansen et al. (2019)3. In short, a proxy phenotype 
for Alzheimer’s disease case-control status was generated from a self-report questionnaire 
which asked participants to report whether their biological mother or father ever suffered 
from Alzheimer’s disease/dementia, and to report each parent’s current age (or age at 
death, if applicable). The phenotype was constructed as a count of the number of affected 
parents ranging from 0 to 2. The contribution for each unaffected parent to the phenotype 
was weighted by the parent’s age/age at death. This was calculated as the ratio of parent’s 
age to age 100 (weight=(100-age)/100). The weight for an unaffected parent was capped at 
0.32, corresponding to a risk equivalent to that of the maximum population prevalence of 
AD.  Participants with a diagnosis of “Alzheimer’s disease” (code G30) or “Dementia in 
Alzheimer’s disease” (code F00) were given the maximum possible score of 2. Standard QC 
procedures were applied to the genotype data which was then imputed to the HRC39, 1KG2, 
and UK10K reference panels40. Further information on the quality control is available in 
Jansen et al. (2019)3. The imputed data was analyzed using linear regression with 12 
ancestry principal components, age, sex, genotyping array, and assessment centre included 
as covariates. All participants provided written informed consent; the UKB received ethical 
approval from the National Research Ethics Service Committee North West-Haydock 
(reference 11/NW/0382), and all study procedures were in accordance with the World 
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Medical Association for medical research. Access to the UK Biobank data was obtained 
under application number 16406.  

 

Nord-Trøndelag Health Study (HUNT) 
 

The HUNT data consists of 1156 cases and 7157 controls, where cases were 
defined as individuals diagnosed with ICD-10 G30.0 or F00*, or ICD-9 331.0 and controls 
were individuals last seen as healthy with no previous diagnosis of Alzheimer’s disease. All 
controls were more than 80 years old. Participants overlapping with the DemGene study 
were removed. Further information about the biobank is available at https://hunt-
db.medisin.ntnu.no/hunt-db/#/.  
 

The samples were genotyped with Illumina HumanCoreExome arrays 
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1, or UM HUNT Biobank v1.0). 
Participants with call rates <99%, contamination >2.5%, large chromosomal copy number 
variants, lower call rate of technical duplicate pair or twins, uncommon sex chromosomal 
conformations, or discrepancies in reported gender were removed. The samples passing QC 
were analysed in a second round of genotype calling, using the Genome Studio quality 
control described elsewhere41. Variants were mapped to the Genome Reference Consortium 
Human genome build 37 (http://genome.ucsc.edu) using BLAT42.  
 

Variants were excluded if they had call rates <99%, higher call rates in another 
assay, probe sequences not mapping to the reference genome, cluster separation <0.3, 
gentrain score <0.15, or Hardy Weinberg equilibrium deviation (P-value<0.0001) from 
unrelated European samples. We also removed variants with frequency differences > 15% 
between the datasets or that were monomorphic in one dataset and had MAF > 1% in one of 
the others. Only European ancestry individuals were included. Ancestry was inferred using 
PLINKv1.9043, projecting the HUNT samples into the space of the principal components of 
the Human Genome Diversity Project panel44,45. The data was phased using Eagle2 v2.346, 
before imputing with Minimac3 v2.047, using a customized reference panel of HRC combined 
with 2,201 low-coverage whole-genome sequences HUNT samples. Variants with low 
estimated squared correlations between imputed and true genotypes (R2 <0.3) were 
excluded. A logistic regression analysis was run with SAIGE48, including sex, batch, and 4 
PCs as covariates.  

 
23andMe 

The 23andMe data consists of 3807 cases and 359,839 controls. Among the 
controls, there were 19,638 individuals between the age of 45-60 and 340,201 individuals 
over 60. There were 130 cases between 45-60 and 3677 cases over the age of 60. DNA 
extraction and genotyping were performed on saliva samples by National Genetics Institute 
(NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory Corporation of 
America. Samples were genotyped on one of five genotyping platforms. The v1 and v2 
platforms were variants of the Illumina HumanHap550+ BeadChip, including about 25,000 
custom SNPs selected by 23andMe, with a total of about 560,000 SNPs. The v3 platform 
was based on the Illumina OmniExpress+ BeadChip, with custom content to improve the 
overlap with our v2 array, with a total of about 950,000 SNPs. The v4 platform was a fully 
customized array, including a lower redundancy subset of v2 and v3 SNPs with additional 
coverage of lower-frequency coding variation, and about 570,000 SNPs. The v5 platform, in 
current use, is an Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented 
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with ~50,000 SNPs of custom content. Samples that failed to reach 98.5% call rate were re-
analyzed. 

Only individuals of European ancestry were included in the data. Individuals were 
assigned ancestry by first partitioning the phased genomic data into short windows of about 
300 SNPs. Within each window, a support vector machine (SVM) classified individual 
haplotypes into one of 31 reference populations (https://www.23andme.com/ancestry-
composition-guide/). The SVM classifications are then fed into a hidden Markov model 
(HMM) that accounts for switch errors and incorrect assignments, and gives probabilities for 
each reference population in each window. Finally, we used simulated admixed individuals 
to recalibrate the HMM probabilities so that the reported assignments are consistent with the 
simulated admixture proportions. Europeans were defined as those with ancestry 
probabilities of European + Middle Eastern > 0.97 and European > 0.90. Only unrelated 
individuals were used for the GWAS analysis. Individuals were defined as related if they 
shared more than 700 cM IBD, including regions where the two individuals share either one 
or both genomic segments IBD. Cases were preferentially chosen over controls.  
 

Variants were imputed in two separated imputation reference panels. For the first 
one, we combined the May 2015 release of the 1000 Genomes Phase 3 haplotypes2 with 
the UK10K40 imputation reference panel to create a single unified panel. We used the 
Human Reference Consortium (HRC) as the second imputation reference panel39. 
Participant data was phased using an internally-developed tool based on Beagle49 and a 
new phasing algorithm Eagle50. The phased participant data was imputed against both 
reference panels using Minimac40. The resulting imputed data was merged with HRC given 
preference over the merged panel. The imputed dosage data was analyzed using age, sex, 
platform, and PCs 1-4 as covariates. The association test P-value was computed using a 
likelihood ratio test.  
 

For QC of genotyped GWAS results, SNPs genotypes only on v1 and v2 platforms 
were flagged due to low sample size. SNPs on mitochondrial DNA and chromosome Y were 
flagged. Using trio data, SNPs that failed a test for parent-offspring transmission were 
flagged (specifically, child’s allele count was regressed against the mean parental allele 
count and flagged SNPs with fitted β<0.6 and P<10−20 for a test of β<1). SNPs with a Hardy-
Weinberg P<10−20, or a call rate of <90% were flagged. Genotyped SNPs with batch effects 
or date effects (P<10−50) were flagged. SNPs with large sex effect (ANOVA of SNP 
genotypes, r2>0.1) were flagged. SNPs with probes matching multiple genomic positions in 
the reference genome (‘self chain’) were flagged. For imputed GWAS results, SNPs with 
Rsq < 0.3, as well as SNPs that had strong evidence of a platform batch effect were flagged. 
The batch effect test is an F test from an ANOVA of the SNP dosages against a factor 
representing v4 or v5 platform (P<10−50). SNPs with a sample size <20% the total sample 
were flagged. These flagged SNPs were removed before analysis. Logistic regression 
results that did not converge due to complete separation, identified by abs(effect)>10 or 
stderr>10 on the log odds scale were removed. SNPs with MAF < 0.1% were removed. 
 
BioVU 
 

The BioVU data consists of 600 cases and 36,059 controls. Cases were defined as 
individuals diagnosed with ICD-10 G30 and ICD-9 331.0. Controls were individuals without 
any of the following ICD-10 diagnoses; G30, F01, F02, F03, F10.27, F10.97, F13.27, 
F13.97, F18.17, F18.27, F18.97, F19.17, F19.27, F19.97, G31.0, G31.83 and the following 
ICD-9 diagnoses; 331.0 ,290, 291.2, 292.82, 294.1, 294.10, 294.11, 294.2, 294.20, 294.21, 
331.19, 331.82. Individuals with a family history of dementia in their electronic health records 
were also excluded from the control sample. The participants were genotyped on the 
Illumina MEGAEX array. The genotypes were filtered for SNP and individual call rates, sex 
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discrepancies, and excessive heterozygosity using PLINK (--geno 0.05, --mind 0.02, |Fhet| > 
0.2, HWE <10x10-10). Autosomes were imputed to the HRC panel using Michigan Imputation 
Server1 in five batches and converted to hardcalls using default PLINK threshold settings. 
Non-biallelic SNPs were filtered out and SNPs with imputation quality (R2) less than 0.3. 
SNPs with minor allele frequency less than 0.005 were removed. SNPs with genotyping 
rates less than 0.98 were excluded. Individuals with call rates less than 0.98 were excluded.  
 

Principal component analysis (PCA) was used to determine BioVU individuals of 
European genetic ancestry. First, we performed PCA using FlashPCA51 on BioVU combined 
with CEU, YRI, and CHB reference sets from 1000 Genomes Project Phase 32. Principal 
components were scaled so that the axes could be interpreted as proportions of genetic 
ancestry. We selected BioVU individuals who were within 40% of the CEU cluster along the 
CEU-CHB axis and within 30% of the CEU cluster on the CEU-YRI axis, generating a once-
PCA filtered European set. To ensure subsequent steps would remove SNPs associated 
with reduced quality rather than cryptic population substructure, we filtered the previously 
identified BioVU European cluster to identify individuals falling within the CEU, TSI, and GIH 
1000 genomes populations, producing a twice-filtered European set. Using the twice-filtered 
European set we conducted a series of SNP checks. We filtered individuals with IBS greater 
than 0.2. We checked for imputation batch effects by conducting pairwise logistic regression 
of the five imputation batches using sex and top 10 principal components as covariates. 
SNPs with p-values less than 0.001 in the additive model were flagged. Any SNPs with a 
MAF difference greater than 0.1 between BioVU and CEU were flagged. SNPs with a Hardy-
Weinberg Equilibrium P-value less than 10x10-10 were flagged. Flagged SNPs were removed 
from the once-filtered European set. Individuals in the once-filtered European set and SNPs 
passing QC in the hardcall data were extracted from the dosage data. Finally, a GWAS was 
performed using SAIGE48 with default settings including sex and the top 10 PCs as 
covariates.   

DemGene, TwinGene, STSA, Gothenburg, and ANMmerge 
 

The origin of the DemGene (1638 cases and 6059 controls), STSA (320 cases and 
750 controls), and TwinGene (224 cases and 6321 controls) samples has been previously 
described in Jansen et al. (2019). For the STSA data, informed consent was obtained from 
all participants and the studies were approved by the Regional Ethics Board in Stockholm 
and the Institutional Review Board at the University of Southern California. For the 
TwinGene data, written informed consent was obtained from all participants and the study 
was approved by the Regional Ethics Board in Stockholm. The ANMmerge data (366 cases 
and 259 controls) consists of 3 batches. Batch 1 and 2 are available on synapse.org 
(synapse ID: syn22130010); the origin and genotyping of this data is described in Birkenbihl 
et al. (2020)52. Batch 2 and 3 were both genotyped on Illumina HumanOmniExpress-12 v1.0 
and were merged after QC and removal of non-EUR individuals. The merged version of 
batch 2 and batch 3 were put through the same QC pipeline again and the batch associated 
variants were removed. Batch associated variants (P<5x10-8) were identified through 
assigning the batch 2 individuals as controls and batch 3 individuals as cases and running 
Plink logistic regression. 

The Gothenburg AD cases originate from Sweden and were either collected in 
memory clinics (in different parts of Sweden) or as a part of two population-based 
epidemiological studies in Gothenburg; the Prospective Population Study of Women (PPSW) 
and the Gothenburg Birth Cohort Studies (H70, H85 and 95+), described in detail previously 
53–56. Controls originate from the Gothenburg Birth Cohort Studies and PPSW. Individuals of 
non-European descent were excluded as part of the QC or the GWAS-data. AD diagnosis 
was based on National Institute of Neurological and Communicative Disorders and Stroke-
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Alzheimer’s Disease and Related Disorders (NINCDS-ADRA) criteria. All control samples 
were clinically investigated and free from dementia. The individuals were genotyped using 
the Illumina Neurochip array.  

Initially, the genotype data were obtained in Plink v1.9027 binary format and, if 
necessary, were converted to build GRCh37 using the UCSC LiftOver tool28. The raw 
genotypes were processed using the Psychiatric Genomics Consortium (PGC) Ricopili 
pipeline version 2019_Aug_16.001. The quality control (QC) procedure initially removed 
SNPs with a missingness > 0.95, then kept individuals with a SNP missingness < 0.05 and 
an autosomal heterozygosity deviation (Fhet) < 0.2. Finally, SNPs with a missingness > 0.02, 
a difference in SNP missingness between cases and controls > 0.02; and deviation from 
Hardy-Weinberg equilibrium (P < 10−6 in controls or P < 10−10 in cases) were removed. 
  

Next, non-European individuals within the datasets were removed based on principle 
component analysis (PCA), using the 1KG Phase 3 dataset as a reference29. The PCA 
pipeline was repeated including all European individuals in all genotype level datasets to 
identify individuals across the datasets with a pihat > 0.2 for exclusion from the analysis. 
PCA was additionally performed within each European dataset to create principal 
component covariates for logistic regression. The genotype data of the European individuals 
were imputed to the Haplotype Reference Consortium reference (HRC r1.1 2016)30 using 
the Michigan Imputation Server31. The imputed genotypes within each dataset were 
analysed using Plink27 logistic regression adjusted for covariates. The covariates were 
principal components 1-4, plus principal components significantly associated with the 
phenotype, and sex. The significant principal components were identified by testing the first 
20 principal components for phenotype association and evaluating their impact on the 
genome-wide test statistics using λ. At the time of analysis age information was not available 
for use as a covariate however the cases and controls of each dataset were well matched in 
age (Supplementary Table 15). Unfortunately, only a fraction of age information for 
DemGene participants (40.4% of cases and 9.19% of controls) was available so age 
matching cannot be determined. 
 
IGAP 

The summary statistics from the International Genomics of Alzheimer's Project 
(IGAP)57 were obtained from https://www.niagads.org/datasets/ng00075. The stage 1 results 
were used in the meta-analysis. The stage 1 results were derived from genotyped and 
imputed data (11,480,632 variants, phase 1 integrated release 3, March 2012) of 21,982 
Alzheimer’s disease cases and 41,944 cognitively normal controls. Further information on 
the methods for generating the summary statistics and phenotyping are available in Kunkle 
et al. (2019)58. The data was generated using standard QC procedures. The genotypes were 
imputed to the 1KG reference panel2, analyzed with general linear mixed effects models and 
then meta-analyzed with METAL59. Written informed consent was obtained from study 
participants or, for those with substantial cognitive impairment, from a caregiver, legal 
guardian or other proxy, and the study protocols for all populations were reviewed and 
approved by the appropriate institutional review boards.  

Finngen 

The summary statistics for 1798 cases and 72206 controls from Finngen were 
obtained from https://storage.googleapis.com/finngen-public-data-
r3/summary_stats/finngen_r3_AD_LO_EXMORE.gz. The genotype data were quality 
controlled with a standard protocol, imputed to SISu v3 reference panel, and analysed using 
SAIGE48. Thorough documentation of data sourcing and processing is available at 
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https://finngen.gitbook.io/documentation/. Cases were defined as being diagnosed with ICD-
10 G301, further information regarding the phenotype is available at 
https://risteys.finngen.fi/phenocode/AD_LO.  

GR@CE 
 

The GR@CE data from Moreno-Grau et al. (2020)60 was obtained through the 
GWAS catalog portal (ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/Moreno-
GrauS_31473137_GCST009020/GRACE_StageI.txt). The phenotype was determined 
through structured neurological evaluation. The data was quality controlled using standard 
procedures, the genotypes were imputed to the HRC reference panel39, and the dosages 
were analysed using an additive model in PLINK v1.943 with the top 4 PCs as covariates. 
Further information is available in Moreno-Grau et al. (2020)60. 
 

Brain regional gene expression 
 

The per-region mean gene expression of the genes that map to the genomic risk loci 
based on eQTL expression was calculated using GAMBA (alpha version)29. A full description 
of the methods of GAMBA is available in Wei et al. (in preparation). In short, the gene 
expression data was obtained from the Allen Human Brain Atlas (http://human.brain-
map.org) and the tissue samples were mapped to 64 FreeSurfer cortical and subcortical 
brain regions to generate a mean regional expression for each gene. Linear regression was 
used to compare the regional expression of the tested gene-set and the regional expression 
of the null model gene-set. The tested gene-set included 329 genes that mapped to genomic 
risk loci based on eQTLs and were present in the GAMBA gene expression data. The brain 
gene null model gene-set was composed of 329 randomly selected genes which are 
significantly over-expressed in the brain compared to other GTEx tissues. The random gene 
model was composed of 329 randomly selected genes with regional gene expression values 
in GAMBA.  
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