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Predicting COVID19 Critical Care Beds 
The London North-West University Healthcare Trust Experience  

J.A Naude1,2, M. Taniparthi1, K. Adams1, J. Biggin-Lamming1, R. Elias1, P. Milner1, I. Mohammed1, 

 M. Towers1, M. Kuper1  

Abstract 
Our trust has an urgent need to make short-term (3-4 days in advance) informed operational 

decisions which take into account best-practice treatment regimens and known clinical features of 

COVID19 inpatients. 

We believe that any model which is relied upon for operational decision making should have 

clinically identifiable parameters. Our model’s parameters take into account the conversion rates 

from acute wards into wards equipped with Non-Invasive Ventilation (NIV) and Mechanical 

Ventilation (MV), the typical time that these conversions take place and, the historical non-COVID 

usage of NIV and MV beds. 

We have observed that this clinical performance is mathematically identical to a series of linear 

delays on the time varying inpatient level. High frequency inpatient data, sampled ~4 hourly, has 

allowed our hospital trust to predict total critical care usage up to 4 days in advance without making 

any assumptions on upcoming inpatients. It is based entirely upon current bed occupancy levels and 

measured clinical pathways. 

Through back-testing over the recent 4 months, the bounds of this model include 93.8% of all 4 day 

inpatient sequences. The average next-day error is 0.8 (95% CI: 0.44, 1.15) and so the system tends 

to over-predict the next day critical care inpatients by approximately 1 bed. 

Potential extensions to the basic model include adjustments for seasonality, case mix, probabilistic 

marginalisation and known discharges. 

Method 
The line of reasoning involves bed occupancy as a key signal, denoted as 𝑥(𝑡).  

We have reliably measured a scaling and time shift of COVID bed occupancy with respect to NIV and 

MV needs. We note ~ 18% of COVID inpatients require Non-Invasive Ventilation (NIV) and ~ 6% 

require Mechanical Ventilation (MV). As an ensemble average, these inpatients require these 

treatments at 4 and 6 days respectively.  

Hence, if COVID bed occupancy levels are currently known, the probable critical care inpatients can 

be reasonably estimated as 24% of these. We would also expect any changes in COVID inpatient 

levels to be reflected within 4 - 6 days’ time. 
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Mathematically, the baseline estimate for total critical care, denoted  𝑦̂(𝑡) is given by  

𝑦̂(𝑡) = 𝛼𝑁𝑥(𝑡 − 𝑇𝑁) + 𝛼𝑉𝑥(𝑡 − 𝑇𝑉) + 𝐴𝑁 + 𝐴𝑉 , 

where 

 𝛼𝑁 is the fraction of COVID positive bed occupancy  that convert to NIV, 

𝛼𝑉 is the fraction of COVID positive bed occupancy  that convert to MV, 

𝑇𝑁 is the measured delay in conversion to NIV, 

𝑇𝑉  is the measured delay in conversion to MV, 

𝐴𝑁 is the historical average non-COVID NIV bed occupancy, 

and, 𝐴𝑉  is is the historical average non-COVID MV bed occupancy. 

The prediction interval includes upper and lower bounds above and below this baseline by 

incorporating twice the average deviation of the historical non-COVID critical care bed occupancy. 

In order to implement this solution, it was necessary to have high quality and frequent updates to 

the COVID inpatient count and the trust’s electronic patient record system was configured to have 

database views that were dedicated to this task. 

Fractional Inpatient Levels 

The fractional parameters were fit using a ratio of running total of COVID positive NIV inpatients to 

running total of COVID positive inpatients over time since 1 September 2020 i.e. 

𝛼(𝑇) =
∑ 𝑖𝑁,𝐶(𝑡)
𝑇
𝑡=0

∑ 𝑖𝐶(𝑡)
𝑇
𝑡=0

, 

where 𝑖𝑁,𝐶(𝑡) is the COVID positive NIV inpatient level at sample instant 𝑡 and 𝑖𝐶(𝑡) is the total 

COVID positive inpatient level at sample instant 𝑡. For comparison, the parameters were also fit with 

a time average of the instantaneous ratio i.e. 

𝛼(𝑇) =
1

𝑇
∑

𝑖𝑁,𝐶(𝑡)

𝑖𝐶(𝑡)

𝑇

𝑡=0

. 

This second method is subject to large variation due to the low levels at the start of the second wave 

and these are depicted in Figure 1. 
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Figure 1: Fractional Inpatient Conversion 

Time Delay to Conversion 

The time parameters were fit by using the patient ensemble average of minimum time between 

admission and being present within the NIV or MV category respectively. There will be some 

uncertainty as to the exact time to conversion due to operational data capturing and the 4 hourly 

database snapshot. The ensemble included 70 NIV and 15 MV COVID positive conversions since 1 

Sept 2020. 

The results are 𝑇𝑁 = 3.41(95% CI: 2.34, 4.47) and 𝑇𝑉 = 6.42 (95% CI: 4.77, 8.06) respectively. Given 

the need for integers due to the data samples, 4 and 6 were chosen respectively as good first 

approximations. 

Results  
Database snapshots from the present 4 hourly interval extending backwards to late June 2020 were 

immediately available within the trust. The tool correctly predicted the critical care needs during a 

second wave COVID surge in inpatient levels in mid-October 2020. This is depicted in Figure 2, where 

the left hand side is the actual critical care inpatient level and the right hand side are the predictions 

for 4 days in advance. Note that every value on the right hand side of Figure 2 is a prediction from 

the linear delay model as a function of total COVID positive inpatient levels. 

 

Figure 2: Screenshot of prediction tool [Sept to mid Nov. 2020] 

Most importantly, during the middle of October where actual critical usage was decreasing, the 

model correctly anticipates a surge to a new level of approximately 30 critical care beds before this 

event materialises. 
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The above results utilise the clinically derived parameters and the bounds of the prediction included 

93.8% of all 4 day actual inpatient levels over the 4 months of historical data. The average next-day 

error is 0.8 (95% CI: 0.44, 1.15) patients over the full time frame. 

As a test, the model structure was frozen and the parameters were fit with a generalised reduced 

gradient algorithm, incorporating integer constraints on the delays and the requirement that the MV 

fraction be below the NIV fraction. A multi-start run with 100 initial conditions was employed and a 

Bayesian stopping criterion was used. The resulting parameters from this exercise were near 

identical to the clinically derived parameters and gave no additional performance with regards to the 

fraction of actuals contained within the prediction bounds. 

Discussion 
Measuring 𝑥(𝑡) automatically includes admissions, discharges and length of stay. For example, if bed 

occupancy decreases, then either there are fewer admissions or more discharges or length of stay is 

reduced or some combination of all of these effects. 

This line of thinking is subtle. The underlying clinical situation may be rapidly evolving, though the 

bed occupancy could remain constant. This simple relationship is obfuscated when looking at 

admitted cohorts, length of stay and discharges and how these change over time. The bed 

occupancy as a function of time appears to be a sufficient statistic. A theoretical exposition is 

intended to follow this rapid communication in a follow-up paper. 

It is noteworthy that brute force numerical optimisation of the parameters within the model 

resulted in much the same values as those clinically derived. 

The results are encouraging and the system is currently being used to assist with operational 

decision making within the trust to safe guard our critical care patients and ensure adequate supply 

for the variation in expected short term needs.  

Refinements 
The average levels for NIV and MV, 𝐴𝑁 and 𝐴𝑉  depend on historical conversion ratios of non-COVID 

inpatients. Each of these average levels can be further sub-divided to incorporate the inpatient case-

mix for other diseases. This would extend the methodology to multiple diseases and if accurate 

records are timeously available on these inpatient levels, critical care utilisation may be more 

generally predictable. 

Stated differently, the current case-mix labelling is currently for COVID and non-COVID inpatients 

only. There is no reason that the non-COVID inpatients may be further sub-divided into their various 

case types and, provided there is a typical delay before needing critical care, the same anticipatory 

action may be employed to predict a changing case mix on the critical care facilities available. 

The system currently employs a single fraction and delay time for each critical care component. This 

may be extended by, in effect, probabilistically marginalising over the various fractions and timings 

of sub-cohorts of the patient ensemble. For example, if 15% overall inpatients convert to NIV at 

around 4 days; it is likely that some smaller fraction will convert in sooner than 4 days, and another 

fraction will convert later than 4 days so that overall these parameters are valid. There is ample 
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evidence that this state of affairs matches reality as reported by clinical staff who are presently 

engaged with treatment. 

As another possible refinement on other case mixes; the seasonality of the historical critical care 

usage may be incorporated if there is insufficient delay between inpatient levels rising and critical 

care levels rising.  

Transfers (clinical and non-clinical) from critical care act as a disturbing input to the steady state 

levels predicted with this model. The model was developed at a time of few transfers out from 

critical care due to capacity reasons so no specific allowance has been made for this.  As a 

refinement for the short-term predicted level, these transfers may be subtracted from the steady 

state predictions to enhance next-day accuracy. 

It is hoped that this framework stimulates healthcare practitioners, operational managers and other 

members within our healthcare community to extend the current practice regarding anticipated 

need. We believe that only by marrying clinical insight with robust and clinically transparent 

mathematics will the results be trusted and the full promise of our current data be realised. 

Limitations 
This methodology can be reasoned to be ‘deductive’ in the sense that the prediction time horizon is 

intimately dependent on observed delays in the clinical evolution of inpatient numbers. If the time 

shift was not at all present, then future needs would depend on future inpatient numbers (which 

would be probabilistic). Currently, the system is configured to use up to the present patient numbers 

and hence the prediction time horizon is dependent on observed delays. 
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