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Abstract 40 

Understanding the transmission dynamics of the severe acute respiratory syndrome coronavirus 2 41 

(SARS-COV-2) is critical to inform sound policy decisions. We demonstrate how the 42 

transmission of undetected cases with pre-symptomatic, asymptomatic and mild symptoms, 43 

which are typically underreported due to lower testing capacity, explained the “bomb-like” 44 

behavior of exponential growth in the coronavirus disease 2019 (COVID-19) cases during early 45 

stages before the effects of large-scale, non-pharmaceutical interventions such as social 46 

distancing, school closures, or lockdowns. Using a Bayesian approach to epidemiological 47 

compartmental modeling, we captured the initial stages of the pandemic resulting in the 48 

explosion of cases and compared the parameter estimation with empirically measured values 49 

from the current knowledgebase. Parameter estimation was conducted using Markov chain 50 

Monte Carlo (MCMC) sampling methods with a Bayesian inference framework to estimate the 51 

proportion of undetected cases. Using data from the exponential phase of the pandemic prior to 52 

the implementation of interventions we estimated the basic reproductive number (R0) and 53 

symptomatic rates in Italy, Spain, South Korea, New York City, and Chicago. From this 54 

modeling study, R0 was estimated to be 3·25 (95% CrI, 1·09-29·77), 3·62 (95% CrI, 1·13-34·89), 55 

2·75 (95% CrI, 1·04-22·44), 3·31 (95% CrI, 1·69-20·55), and 3·46 (95% CrI, 1·01-34·41), 56 

respectively. For all locations, 3-25% of infected patients were identified with moderate and 57 

severe symptoms in the early stage of the COVID-19 pandemic.  Our modeling results support 58 

the mounting evidence that potentially large fractions of the infected population were undetected 59 

with asymptomatic and mild symptoms. Furthermore, a significant number of models of 60 

transmission that do not account for these asymptomatic cases may lead to an underestimation of 61 

R0 and, subsequently, policies that do not sufficiently reduce transmission to contain the spread 62 
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of the virus. Detecting asymptomatic transmission can help slow down the spread of SARS-63 

CoV-2. 64 

 65 

Author Summary 66 

The spread of SARS-CoV-2 has led to a global pandemic that is still spreading across countries. 67 

We fitted a mathematical model to reported infections in Spain, Italy, South Korea, New York, 68 

and Chicago before any large-scale interventions, such as lockdowns and school closures, and 69 

found that undetected infected individuals drove the accelerated pace of transmissions. Due to 70 

the limited capacity in testing in many of the five locations, undetected cases were most likely 71 

asymptomatic and mild to moderate symptomatic infections. Given the explosive nature in the 72 

number of cases during the early phase of the pandemic and the latest serological surveys, our 73 

study suggested that most active cases were undetected. Other cohort studies have shown that a 74 

significant proportion of cases reported little or no symptoms. We also showed that early 75 

detection of asymptomatic and mild symptomatic cases can lead to a slower spread of SARS-76 

CoV-2 as evident in South Korea. Policies targeting symptomatic individuals, such as travel 77 

restrictions on affected areas or quarantines of sick individuals, are not as effective because they 78 

neglect asymptomatic transmission events.   79 
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Introduction 80 

The spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared 81 

a global pandemic by the World Health Organization on March 11, and confirmed cases of 82 

coronavirus disease 2019 (COVID-19) have since grown exponentially on every inhabited 83 

continent [1]. Despite the rising numbers of cases and deaths, vital questions about the dynamics 84 

of the spread of COVID-19, particularly the “bomb-like” dynamics of the disease, remain. In 85 

most countries, states, and cities, the number of confirmed cases remained low for weeks and 86 

then suddenly exploded, with the number of confirmed cases exponentially increasing in a matter 87 

of days (Figure 1). There are two possible explanations for this dynamic: (i) the growth rate is 88 

intrinsic to the disease or (ii) the rapid growth is due to undercounting of asymptomatic or mild 89 

cases of the disease. The R0 measure is important for capturing the magnitude and speed that the 90 

population will be infected with SARS-CoV-2. Initial estimates of R0 ranged widely from 1·4 to 91 

7·1 [2–6]. The variability in reported R0 between locations could be explained by different 92 

detection rates of asymptomatic and mild symptomatic cases. 93 
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 94 

Figure 1. Confirmed cases of COVID-19 per million residents for France, Germany, 95 

Italy, South Korea, Spain, United Kingdon, and the United States. The rate of 96 

exponential increase are observed for all countries except South Korea where early 97 

surveillence was employed. Source: Center for Systems Science and Engineering [1] at 98 

Johns Hopkins Universty. 99 

 100 

Understanding the percentage of the population infected with SARS-CoV-2 is critical for 101 

developing policies for containment, particularly as the threat of a second wave of disease 102 

appears inevitable. Most countries have instituted extended shutdowns to limit social contacts 103 

and opportunities for disease spread; the lifting of these restrictions in the continued presence of 104 

cases may expose these countries to explosive increases in infections. However, questions 105 

remain regarding the most effective strategies to contain the pandemic in the short- and long-106 
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term. Countries that have contained or slowed the spread of disease include China, Singapore, 107 

Hong Kong, Taiwan, and South Korea [7–11]. Through comprehensive strategies including early 108 

detection, extensive testing, shelter-in-place orders, and isolation of infected individuals, these 109 

countries have demonstrated that a combination of control measures can effectively slow 110 

transmission from affected individuals whether they are severely sick or asymptomatically 111 

infected. In contrast, isolated measures like broad travel restrictions or enforced quarantine have 112 

proven less effective, as the ability to achieve “zero risk” through these measures is virtually 113 

unattainable in most contexts [12,13]. Moreover, the effectiveness of these strategies, which 114 

primarily target individuals with noticeable symptoms of COVID-19, is questionable given 115 

evidence of asymptomatic and mildly symptomatic carriers as important vectors for community 116 

transmission of SARS-CoV-2 [14–17]. 117 

Emerging evidence from China [17], Germany [18], Taiwan [19], Iceland [20], and other 118 

places [21] suggests a larger fraction of the population may be asymptomatically or mildly 119 

infected than previously thought. The first report of genomic differences in the virus from 120 

Washington State in the United States suggested widespread community transmission as early as 121 

late January [22], which presumably generated asymptomatic or mild cases that were not 122 

identified. Given that the spread of the disease coincided with peak influenza season, it is 123 

reasonable to assume that mild COVID-19 infections could have been misdiagnosed and 124 

undetected. Furthermore, data on SARS-CoV-2’s effect on children have been almost entirely 125 

lacking in the numbers of cases and hospitalizations reported [23]. Some evidence suggests 126 

children are being infected at the same rate as adults, albeit with lesser severity [24,25], implying 127 

that at least 15% of the population in many countries may be asymptomatic when infected, with 128 

potential to be much higher. Studies have also emerged showing similar viral loads between 129 
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asymptomatic and symptomatic cases, which suggests that there is potential for similar 130 

transmissibility between the two cohorts [18,26].  131 

Here we assess the value of R0 using a Bayesian framework to estimate the role of 132 

asymptomatic cases in driving disease dynamics. Our goal was to explain the data associated 133 

with emerging outbreaks in countries where initial effects of distancing and other measures to 134 

control the disease were largely absent. During this early, “bomb-like” phase, infection count 135 

data are assumed to be largely representative of the transmission dynamics, with some proportion 136 

of the infected population being masked due to asymptomatic and mild symptomatic cases and 137 

shortages in testing. We examined data from Italy and Spain, both of which had large outbreaks 138 

that were not well contained and did not institute early lockdowns. These countries are compared 139 

to South Korea, which largely contained its outbreak through extensive testing and no hard 140 

lockdown. In addition, we contrasted these country-wide outbreaks with two metropolitan areas 141 

in the United States, New York City and Chicago, as dynamics at the city level may differ from 142 

those at the country level (see S1 Appendix for metropolitan area classification). Understanding 143 

the transmission patterns of SARS-CoV-2 can help policymakers predict critical moments in its 144 

progression, such as peak infection, the point when herd immunity has been reached, and local 145 

peaks during periods of relaxed or tightened restrictions on activity.  146 

  147 
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Methods 148 

We adapted the Kermack and McKendrick compartmental model to the reported disease 149 

dynamics of COVID-19 [27]. In our model, we assume there is (i) an incubation period for 150 

susceptible individuals that become infected; and (ii) a fraction of individuals who are 151 

asymptomatic or mildly symptomatic and neither tested nor counted as confirmed cases. For a 152 

given population N, the model is described by the following set of ordinary differential 153 

equations,  154 

 155 
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 156 

where S is the population of susceptible individuals, and E are exposed individuals incubating 157 

the disease that eventually become infected. After an incubation period, μ-1, we assume a 158 

proportion of individuals, defined by θ, will transition to a state I with moderate to severe 159 

symptoms which would result in detection, while the other proportion C will remain undetected 160 

because they have mild symptoms or are asymptomatic. For undetected individuals, we assumed 161 

there is a reduction of α which modifies the symptomatic transmission rate β. Finally, R 162 

represents individuals that either recover, die, or remove themselves from transmission through 163 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.04.05.20054338doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.05.20054338
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

self-quarantine until they are no longer transmissible at rates γ1 for asymptomatic/mild cases and 164 

γ2 for symptomatic cases.     165 

Bayesian estimation of model parameters 166 

While traditional unbiased curve-fitting methods yield a set of parameter estimations that capture 167 

observed data, they do not account for known prior belief on parameter ranges shown in Table 1. 168 

A Bayesian approach to parameter estimation allows us to quantify the credibility of one set of 169 

model parameters. This approach is useful for this context as it provides a range of credible 170 

parameters that describes the observed data and allows us to infer underlying causal pathways 171 

and quantify uncertainty. 172 
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Table 1. Parameters estimation from other literature where the means and corresponding credible intervals are shown in the parenthesis 
Parameter Definition Ages 0-64 Ages 65-79 Ages ≥ 80 Calculation Reference 

�� 
Basic Reproduction 
Number 

3.1  
(1.9 – 6.5) 

3.1  
(1.9 – 6.5) 

3.1  
(1.9 – 6.5) 

 [6] 

� Detection (symptomatic) rate 0.038 
(0.011-0.121) 

0.038 
(0.011-0.121) 

0.038 
(0.011-0.121) 

������ 
� �
���
����� �����

������ 
� �
������ �����
 

[31,32] 

� Reduction of infection rate 
for asymptomatic/mild 
transmission† 

0.053 
*(0.102) 

0.053 
*(0.102) 

0.053 
*(0.102) 

��
���
����� ����������
� �
���������, �� 

�
���
����� ����������
� �
���������, ��
 

[38] 

� Infection rate for 
symptomatic transmissions† 

0.579 
(0.443-0.917) 

0.672 
(0.514-1.065) 

0.660 
(0.506-1.046) 

��

�������
�� ����
�������
 

[33,34,39] 

�� Clearance rate for 
asymptomatic/mild cases† 

0.204 
(0.169-0.303) 

0.237 
(0.197-0.352) 

0.233 
(0.193-0.346) 

1

�������
�� ����
�	
��

 
[33,34] 

�
 

Clearance rate for 
symptomatic non-
hospitalized cases† 

0.202 
(0.168-0.300) 

0.235 
(0.195-0.348) 

0.231 
(0.192-0.342) 

��  
���
���
 !���	
�� 

���
���
 !���	��

 
[33,34] 

�� Clearance rate for 
symptomatic hospitalized 
cases† 

0.145 
(0.120-0.215) 

0.168 
(0.140-0.250) 

0.165 
(0.137-0.246) 

��  
���
���
 !���	
�� 

���
���
 !���������
 

[33,34] 

" Hospitalization Rate‡ 0.202 
(0.167-0.237) 

0.361 
(0.286-0.435) 

0.471 
(0.308-0.634) 

������ 
� �������� #
�����$�%��

������ 
� �
���
����� �����
 

[40,41] 

& Incubation rate 0.202 
(0.101-0.364) 

0.202 
(0.101-0.364) 

0.202 
(0.101-0.364) 

1

��������
� !���
 

[29,30] 

† Age groups are: 0-59, 60-69, 70+; ‡ Age groups are: 0-59, 60-69, 70+; 0-64, 65-74, 65+ 
* represents standard deviation of a normal distribution 
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To estimate the posterior distribution of the parameters, we obtained data on outbreaks in 173 

Italy, Spain, South Korea, and Chicago from the Center for Systems Science and Engineering at 174 

Johns Hopkins University [1], and for New York City we fitted the model to reported 175 

hospitalizations of COVID-19 patients obtained from the New York Department of Health and 176 

Mental Health [28]. We trained the model to fit the observed data assuming that the first 177 

observed case was in the more severe, symptomatic group. For each initial symptomatic case, we 178 

seeded an additional twenty people in the exposed compartment. We determined these 179 

timeframes in 2020 to be January 31 to March 21 for Italy, February 1 to March 25 for Spain, 180 

January 22 to March 3 for South Korea, January 22 to April 22 for Chicago, and February 17 to 181 

April 10 for New York City, which coincide with the first observed case.  182 

We used Markov Chain Monte Carlo (MCMC) methods assuming a uniform prior 183 

density, specifically the Metropolis-Hasting Algorithm, to approximate a posterior distribution of 184 

the parameter set. To explore all possibilities and demonstrate robustness in the estimation 185 

results, we ran three cases for each locale with different Bayesian priors for the symptomatic rate 186 

(θ). Reported parameter estimates are the medians of the posterior distributions and the 95% 187 

credible intervals (CrI) from quantiles of the posterior distribution. We provide a full description 188 

of the mathematical structure of our models and estimation procedures in the S1 Appendix. The 189 

model was fit to the number of cumulative infections and the likelihood was estimated based on 190 

the sum of squared residuals (SSR). For New York City, we included the number of cumulative 191 

hospitalizations into the SSR error metric in order to estimate the hospitalization rate. The error 192 

between the results of the model yielding the expected number of observed cases and the 193 

observed number of cases is considered to be distributed with ��0,���.  194 

  195 
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Biological Parameters and Prior Beliefs 196 

In order to assess fit, determine model parameter priors, and provide context for the analysis, we 197 

conducted a literature search of the biology and transmission of SARS-CoV-2 using peer-198 

reviewed literature and non-peer-reviewed literature available on pre-print servers medRxiv, 199 

bioRxiv and SSRN’s First Look (Table 1). From the literature, we found a mean incubation 200 

period, defined as the time from exposure to onset of illness, of 4·95 (CI, 2·75-9·90) [29,30]. The 201 

proportion of the population with no/mild/moderate symptoms was estimated to be as high as 202 

96·2% of the population [31,32]. Based on the dynamics of earlier coronaviruses [33], the 203 

recovery periods for symptomatic and asymptomatic cases were estimated to be ~4·9 days while 204 

hospitalized cases were around 6·9 days [33,34]. In our model, γ1, γ2, and γ3 represented the 205 

infectiousness period, which is not necessarily equivalent to the recovery rate since 206 

severe/moderate symptomatic and hospitalized cases are effectively removed due to self-207 

quarantine. Data on confirmed cases reported in the US estimate the hospitalization rate for all 208 

ages to range from 20·7%-31·4%, with lower rates observed among younger populations and 209 

higher rates observed among older age groups. Finally, we estimated the transmission rates by 210 

asymptomatic, αβ, and symptomatic, β, persons based on calculations of the basic reproduction 211 

number, R0, of COVID-19, clearance estimates, and contact rates. Values for R0 in the literature 212 

range from 1·4 to 7·1 [2–6]; given these values we assumed the transmission rate for β was likely 213 

between 0·01 and 2.  214 

We conducted MCMC sampling for three cases using different bounds on weakly-215 

informed priors for the symptomatic rate in order to test for robustness. The main results are 216 

presented as the fitted parameter values of the posterior distribution with unconstrained 217 

symptomatic rate (θ) priors and their relative relationship to the known biology. In addition to 218 
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the unconstrained prior of θ, we refitted the data twice using two different prior assumptions of 219 

the symptomatic fraction: θ is less than 50%, and θ is less than 10% with the results located in S1 220 

Appendix. In our parameter estimation, we assumed that transmission from our unobserved 221 

group was lower by a factor of α than transmission from the symptomatic observed group, β, as 222 

mild/asymptomatic cases are likely to shed fewer viruses and thus be less transmissible. Thus, 223 

we constrained α between 0·01-0·99 and β between 0·01-2·00. As the process is stochastic, we 224 

evaluated the median and credible intervals of the posterior distribution obtained from this 225 

procedure to guide our understanding of the parameters and to assess the ability of the model to 226 

fit actual data with biologically plausible values. 227 

Results 228 

Assuming a uniform prior with no constraint on the fraction of the population that was 229 

symptomatic, θ, the parameter estimation from our MCMC sampling resulted in a posterior 230 

median for the symptomatic rate of 0·04 (95% CrI, 0·01-0·41), 0·03 (95% CrI, 0·01-0·32), 0·18 231 

(95% CrI, 0·02-0·85) for Italy, Spain, and South Korea, respectively, while the symptomatic rates 232 

of metropolitan areas of New York City and Chicago were 0·25 (95% CrI, 0·01-0·89) and 0·03 233 

(95% CrI, 0·01-0·36), respectively. The median posterior values of these parameter ranges 234 

resulted in a calculated R0 of 3·25 (95% CrI, 1·09-29·77), 3·62 (95% CrI, 1·13-34·89), 2·75 (95% 235 

CrI, 1·04-22·44), 3·31 (95% CrI, 1·69-20·55), and 3·46 (95% CrI, 1·01-34·41) for Italy, Spain, 236 

South Korea, New York City, and Chicago, respectively (Table 2 and Figure 2).  237 
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 238 

Figure 2. Estimated Basic Reproduction Number R0 for New York, Chicago, Italy, 239 

Spain, and South Korea from Bayesian distribution. Each curve is the posterior 240 

distribution generated from the MCMC sampling for the R0 of each location are shown. For 241 

each location, the raw data, box and whisker plot (median, interquartile ranges, 95% 242 

credible intervals), and probability density are displayed top-to-bottom. 243 
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 244 

Table 2.  Posterior parameters estimation for US cities from the Bayesian analysis using the epidemiological model where the 
medians and corresponding 95% credible intervals are shown in the parenthesis. 

Variable 
Prior 
Distribution 

 Countries  Cities 

 Italy Spain South Korea  New York Chicago 

�� --  3.25 
(1.09-29.77) 

3.62 
(1.13-34.89) 

2.75 
(1.04-22.44)  3.31 

(1.69-20.55) 
3.46 

(1.01-34.41) 

� U(0.01,0.99)†  0.04 
(0.01-0.41) 

0.03 
(0.01-0.32) 

0.18 
(0.02-0.85)  0.25 

(0.01-0.89) 
0.03 

(0.01-0.36) 

� U(0.01,0.99)  
0.67 

(0.24-0.97) 
0.68 

(0.22-0.97) 
0.58 

(0.09-0.96) 
 

0.61 
(0.09-0.97) 

0.61 
(0.16-0.97) 

� 

U(0.01,2)  
1.38 

(0.53-1.96) 
1.36 

(0.51-1.96) 
1.29 

(0.43-1.95) 
 

1.35 
(0.58-1.96) 

1.27 
(0.4-1.95) 

�� 

U(0.01,0.99)  
0.22 

(0.02-0.84) 
0.18 

(0.02-0.78) 
0.33 

(0.03-0.94) 
 

0.36 
(0.03-0.93) 

0.17 
(0.02-0.85) 

�� U(0.01,0.30)  
0.49 

(0.03-0.96) 
0.5 

(0.03-0.96) 
0.37  

(0.03-0.95) 
 

0.38 
(0.03-0.95) 

0.5 
(0.03-0.97) 

�� U(0.01,0.30)  -- -- --  
0.46 

(0.03-0.95) 
-- 

� U(0.01,0.50)  -- -- --  
0.34 

(0.13-0.49) 
-- 

� U(0.01,0.99)  
0.31 

(0.07-0.92) 
0.26 

(0.05-0.89) 
0.25 

(0.05-0.92) 
 

0.42 
(0.1-0.94) 

0.12 
(0.02-0.83) 

Inverse Sum of 
Squared Residuals 

(SSR-1) 
--  

0.013 
(0.006-0.024) 

0.013 
(0.006-0.028) 

0.029 
(0.014-0.042) 

 
0.012 

(0.007-0.026) 
0.005 

(0.003-0.01) 
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Variation between the locales that had higher symptomatic infections was primarily 245 

governed by differences in the length of the infectiousness of the asymptomatic group. In the 246 

high symptomatic scenarios of South Korea and New York City, the fit of the parameter 247 

produced median infectious periods of 3 days in contrast to lower symptomatic locales where the 248 

infectious period was estimated to be about 5-6 days. The symptomatic group at all locales had 249 

median infectious periods of 2-3 days. 250 

Assuming stronger priors with constrained uniform priors of the symptomatic rate θ to be 251 

under 50% or 10%, the inverse sum of squared residuals (SSR-1) was relatively lower, resulting 252 

in a slightly better fit for all locations (Tables S1 and S2 in S1 Appendix). However, the 253 

parameter estimation of constrained priors still resulted in similar values as to their 254 

unconstrained counterparts. The posterior density of θ was truncated for South Korea and New 255 

York City if we constrained θ’s prior to be less than 10 percent (Tables S31 and S32 in S1 256 

Appendix). Figure 3 illustrates a negative relationship between symptomatic rate θ and SSR-1, 257 

indicating that lower estimates of symptomatic rates resulted in higher posterior likelihoods. In 258 

all projections using the accepted posterior parameter samples, the simulations overestimated 259 

actual case numbers following the initial period of infection, as non-pharmaceutical interventions 260 

such as lockdowns artificially reduced disease spread (Figure 4).  261 
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 262 

Figure 3. Scatterplot of inverse residual (goodness of fit) versus posterior sample of 263 

symptomatic rate. The posterior distribution of symptomatic rate θ and the inverse of 264 

sum of squared residuals (SSR-1) for Chicago and New York City (A) and the same set of 265 

priors for Italy, Spain, and South Korea (B). The marginal posterior density of θ and SSR-266 

1 are displayed on the right and top of the scatter plot, respectively. The ellipses encircle 267 

95% of simulation runs for each location. 268 
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 269 

Figure 4.  Simulated versus actual cumulative infections and hospitalization. (A) The 270 

simulated and actual cumulative infections for each location (Spain, Italy, South Korea, 271 

Chicago, and New York City are shown) for three different prior distributions of the 272 

symptomatic rate (θ). The turquoise line (simulated) corresponds with the simulated 273 

outputs for cumulative confirmed cases, which were fitted to the yellow line (trained) 274 

representing the actual data. The red dashed line represents the actual data after the 275 

explosion date, which is demarcated by the vertical black dotted line. The grey ribbon 276 

represents the upper and lower bounds of the MCMC sampling for all cases for each day. 277 

(B) Simulated and actual cumulative hospitalizations and cumulative infections for New 278 

York City. 279 

 280 

Discussion 281 
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With no end in sight to the ongoing COVID-19 pandemic, understanding the rate of disease 282 

spread and the extent of people infected is vital to designing effective containment policies. This 283 

analysis contributes to available disease models, which play an integral role in defining the 284 

policy choices of government officials, by providing accurate evidence that conforms to 285 

observed data. Given the growth rate in infection cases in the exponential phase and assuming 286 

the force of infection for undetected cases is lower, our results for all scenarios and countries 287 

suggest that the undetected population is significantly larger than the symptomatic population, 288 

the latter of which accounts for only 3-25% of the total infected population. The value of R0 289 

varies from 2·8-3·6, which corresponds with a growing consensus that R0 is approximately 3·1 290 

(Table 1). The variation in symptomatic cases is almost certainly a function of testing, which has 291 

been quite variable among cities and countries, yet even in South Korea, which had extremely 292 

high rates of testing during the beginning of the pandemic, our models still suggest large 293 

fractions of cases were likely missed due to asymptomatic/mild infections. Nevertheless, higher 294 

testing rates in South Korea also led to a slower transmission of SARS-CoV-2. This is also true 295 

when you compare testing in New York City versus Chicago, where testing per capita during the 296 

exponential phase was higher in New York City. 297 

If the proportion of individuals that are asymptomatically infected is higher than initially 298 

assumed, policies targeting symptomatic individuals, such as travel restrictions on affected areas 299 

or quarantines of sick individuals, are not productive. By the time these policies can be 300 

implemented, a large proportion of the population may already be infected but not yet infectious 301 

due to the long incubation period [35]. Evidence from China suggests that the observed infection 302 

data lagged reported infections by about two weeks -- despite a dramatic drop in transmission 303 

between January 15 and January 25, the rate of newly confirmed cases did not begin to level off 304 
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country-wide and within each local city until two weeks later. As of May 18, 2020, the uptick of 305 

COVID-19 cases has forced northeast China to reinitiate lockdown measures [36], which 306 

indicates the sensitivities and caution around case reemergence. Accurate assessments of the risk 307 

of community spread are needed to inform these decisions about when and where to re-impose 308 

restrictions to contain the spread of SARS-CoV-2. Our study found that asymptomatic cases may 309 

be easily missed without extensive testing, leading to the continued, undetected spread of disease 310 

despite possibly lower transmission rates among asymptomatic individuals compared to more 311 

severe cases. Thus, identifying asymptomatic cases is imperative for reducing widespread 312 

transmission and explosive growth of the disease, especially if a large majority of the population 313 

remains susceptible.  314 

A potentially large asymptomatically infected population has important implications for 315 

policy regarding herd immunity. In recent reports, the vast majority of available evidence 316 

suggests that infected individuals develop some level of immunity to circulating strains of 317 

SARS-CoV-2, but there are potential differences in immunity between symptomatic and 318 

asymptomatic cases [37]. As more of the population gains immunity, the susceptible population 319 

will decrease and disease spread will slow. When transmissibility between contacts falls because 320 

of widespread immunity, the effective reproductive number is reduced, the disease spreads more 321 

slowly, and the threat posed by widespread numbers of infected individuals fades away. Such 322 

widespread immunity would allow restrictions to be lifted sooner, as most individuals would not 323 

pose a transmission risk to the general public and would abrogate the possibility of a second peak 324 

in the future. Our analysis underscores the likelihood of a large, hitherto undetected population 325 

of immune individuals in areas hit hard by the pandemic. Widespread, representative serological 326 

surveys are therefore essential to understanding the extent of disease spread and the necessity of 327 
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mandatory social distancing policies to contain the spread of the virus. Understanding the 328 

potential risks requires serological surveys to be conducted as soon as possible across 329 

representative populations of disease burden to improve our understanding of disease 330 

transmission and to inform better policies regarding quarantines. 331 

As with most COVID-19 modeling studies, the limitations of epidemiological models 332 

have been constrained by data and testing quality regarding the true prevalence of SARS-CoV-2 333 

infections. We assumed for the beginning stages of the pandemic, the confirmed cases only 334 

reflected cases that were mostly moderate and severely symptomatic, while asymptomatic and 335 

mild cases were mostly overlooked due to the limited supply of testing kits. The uncertainty of 336 

these testing differences was implicitly captured in the Bayesian framework. The population size 337 

for each country are simplified and assumed to be static. Nevertheless, the parsimonious model 338 

provides a conservative estimate of undetected cases since traveling individuals make up a 339 

negligible proportion population, and if these travelers are infected and undetected in early stages 340 

of the pandemic, it will further support our claim. Furthermore, the estimation of transmission is 341 

assumed to be homogenous population mixing, while in reality contact networks are 342 

heterogeneous with varying contact patterns.  343 
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