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This supplementary file includes the detailed form of the variance estimator of the proposed

method (Appendix A); the estimation algorithm and the variance estimator of the model assuming

equal between-study variances across treatment comparisons (Appendix B); the modified formu-

lation of the model to relax the consistency assumption (Appendix C); an example to show the

limitation of the radar plot (Appendix D), which motivated our proposed star plot; additional re-

sults for the labor induction NMA (Appendix E); and regularity conditions and the sketch proof of

Theorem 1 (Appendix F).

Appendix A: Variance Estimation
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The variance of the estimator η̂ from Equation (5) of the main paper can be estimated by the

following estimator

V̂ (η̂) = Î−1Λ̂Î−1. (3)

Appendix B: Model Assuming Equal Between-Study Variances

When assuming equal between-study variance for each outcome, i.e., τAB
k = τAC

k = τBC
k for k =

1, 2, Algorithm 1 can be slightly modified. First, we define the log-pseudolikelihood function for

each outcome,
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Thus, Algorithm 1 can be changed to the following algorithm.

Algorithm 1 Iterative estimation
1: for k = 1, 2 do
2: Specify the initial values τ (0)

k , D = 1.
3: while t ≤ T or D > δ, do
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To estimate the variance of the estimator from the above algorithm, we define η = (µT, τ 21 , τ
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The variance of the estimator η̃ obtained by maximizing Lequal can be estimated by the following

estimator

Ṽ (η̃) = Ĩ−1Λ̃Ĩ−1. (6)

Appendix C: Inconsistency Formulation

When the consistency assumption does not hold, i.e., we are not confident to assume that
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Since now each comparison has their own set of parameters, optimizing the above function is

equivalent as optimizing separately the following functions
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forXY ∈ {AB,BC,AC}, and k ∈ 1, 2, which is equivalent as fitting a random-effects model for

each treatment comparison and each outcome. However, now without the consistency assumption,

only the effect sizes of comparisons being compared by randomized clinical trials can be estimated

by the above procedure.

When assuming equal variance, the pseudo likelihood function can be written as
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which can be decomposed to
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Appendix D: Limitation of the Radar Plot

The radar chart, which is commonly used for comparing multiple outcomes (Zhu et al. 2017), has

a limitation in the setting of treatment comparison. As shown in Figure S1, we have two treatments

(A and B) and we want to compare them over five outcomes using a radar plot. In the upper panel,

five outcomes from outcome1 to outcome 5 are ordered in clockwise order. The area of shaded

region of treatment A is apparently larger than that of treatment B. However, if we swap the two
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Algorithm 2 Iterative estimation for inconsistency model with equal heterogeneity variance
1: for k = 1, 2 do
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axes for outcome 4 and outcome 5 (lower panel), then the area of shaded region of treatment A

becomes smaller than that of treatment B. Therefore, the area of the shaded region is sensitive to

how the axes corresponding to the outcomes are ordered, which is the motivation of the star plot.

Appendix E: Additional Results for Labor Induction NMA

Model fitting results:

In this subsection, we show the complete model fitting results of our proposed method applied on

the labor induction NMA. Figure S2 shows the estimated odds ratios with their 95% confidence

intervals of the 13 treatments compared to placebo across the five outcomes. Figures S3-S7 show

the head-to-head comparison of the 13 treatments the five outcomes.

WSUCRA based on a utility function

Please see Table S1 for the estimated WSCURA for the eight treatments corresponding to the three

utility functions defined in Section 5 of the main paper. We also considered another utility function,

which was constructed by a weighted sum of all 5 outcomes (See Figure S8).
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Weighted star plot

Figure S9 shows the weighted star plot to compare 8 treatment options for labor induction across

five outcomes, where outcomes hyperstimulation and vaginal delivery not within 24 hours were

given half of the weight as the rest three outcomes. Based on this weighted star plot, we know that

low dose of oral misoprostol solution was the best treatment when consider hyperstimulation and

vaginal delivery not within 24 hours less important as cesarean section, maternal morbidity and

neonatal morbidity.

Sensitivity analysis

In the sensitivity analysis, we only included the 162 studies out of the 280 studies which were

considered in Alfirevic et al. (2015) as of low risk for bias. We show the forest plot of the estimating

results in Figure S10.

Appendix F: Regularity Conditions and Proof of Theorem 1

Regularity Conditions

(C1). The parameter space, denoted by Θ is compact and true parameter value, denoted by η∗ is

an interior point of Θ.

(C2). As n → ∞, we assume the proportion of studies that report the estimated effect size and

standard error of treatment comparison XY for outcome k, i.e., nk
XY satisfies nk

XY/n→ rkXY > 0.

(C3). The marginal population risk, defined as
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has an unique maximizer, which is the true parameter value {µ∗k, τ ∗k 2}.

(C4). The first, second, and third order derivatives of L(η) defined equation (4) of the main paper

are bounded.

(C5). The expectation of the second-order derivation of L(η) , i.e., E∇2L(η) exist and is positive

definite.
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Sketch proof of Theorem 1 For each study, we define
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where Iik,XY is an indicator of whether the k-th outcome of the XY comparison is reported in

the i-th study. According to C(3), the first derivative of hi(η), denoted by ∇hi(η) is an unbiased

estimating equation of η. We noticed that L(η) can be written as

L(η) =
n∑

i=1

hi(η).

Thus, the maximum pseudolikelihood estimator of L(η) is also the solution of the following esti-

mating equation

∇L(η) =
n∑

i=1

∇hi(η) = 0.

As the data in each study are independently distributed. using assumption (C1) - (C5), and the

classical theory of unbiased estimating equations (e.g. Song and Song (2007)), we can show the

asymptotic normality of the proposed estimator follows Theorem 1.

Appendix G: Calculation of Unknown Parameters

Here we give a detailed calculation of how we determine the number of unknown parameters in

the between-study variance-covariance matrix mentioned in Section 2 of the main paper.

Since we have 5 outcomes for 13 treatment comparisons (setting placebo as the reference drug),

there are in total 5 = 65 different effect sizes. The unstructured variance-covariance matrix will

have
(
65
2

)
+ 65 = 2145 unique parameters since it is symmetric. Under a consistency assumption,

the correlation between treatment comparisons for a specific outcome is often assumed known or

can be derived from other parameters, so the number of unknown parameters can be reduced to

2145−
(
13
2

)
× 5 = 1755.
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Figure S1: Example of changing the order of outcomes in the radar chart can lead to inconsistent
ranking of treatment.
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Figure S2: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S3: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S4: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S5: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S6: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S7: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
five outcomes.
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Figure S8: Ranking of the 8 treatment options for labor induction regarding a utility function which
give 30% of weight to cesarean section, 25% to serious maternal morbidity or death, 25% to serious
neonatal morbidity or perinatal death, 10% to hypersitimulation and 10% to vagina delivery not
within 24 hours. In each plot, the j-th bar represents the probabilities of each treatment ranking in
the j-th place.
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Figure S9: A weight star plot to compare 8 treatment options for labor induction across five out-
comes. Outcomes 4 and 5 are given half the weight of outcomes 1, 2, and 3.
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Figure S10: Forest plots of estimated odds ratios of the 13 labor induction treatment options across
four outcomes from sensitivity analysis. Due to limited sample size in the network for the outcome
maternal morbidity or perinatal death, the outcome was not studied.
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Table S1: WSUCRA of the eight treatments corresponding to the three utility functions. Y1 stands
for cesarean section and Y2 stands for maternal morbidity.

Treatment 10%Y1 + 90%Y2 50%Y1+ 50%Y2 90%Y1 + 10%Y2
vaginal PGE2 (gel) 0.51 0.42 0.34
vaginal PGE2 pessary (slow release) 0.16 0.21 0.42
intracervical PGE2 0.86 0.67 0.17
vaginal misoprostol (dose less than 50 mcg) 0.55 0.59 0.66
vaginal misoprostol (dose 50 mcg or more) 0.42 0.47 0.62
oral misoprostol tablet (dose less than 50 mcg) 0.23 0.08 0.09
oral misoprostol tablet (dose 50mcg or more) 0.71 0.78 0.78
titrated (low dose) oral misoprostol solution 0.56 0.77 0.92
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