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Abstract

The growing number of available treatment options have led to urgent needs for reliable
answers when choosing the best course of treatment for a patient. As it is often infeasible
to compare a large number of treatments in a single randomized controlled trial, multivariate
network meta-analyses (NMAs) are used to synthesize evidence from existing trials of a subset
of the available treatments, where outcomes related to both efficacy and safety are considered
simultaneously. However, these large-scale multiple-outcome NMAs have created challenges
to existing methods due to the increasingly complexity of the unknown correlation structures
between different outcomes and treatment comparisons. In this paper, we proposed a new
framework for PAtient-centered treatment ranking via Large-scale Multivariate network meta-
analysis, termed as PALM, which includes a parsimonious modeling approach, a fast algorithm
for parameter estimation and inference, a novel visualization tool for comparing treatments
with multivariate outcomes termed as the star plot, as well as personalized treatment rank-
ing procedures taking into account the individual’s considerations on multiple outcomes. In
application to an NMA that compares 14 treatment options for labor induction over five modal-

ities, we provided a comprehensive illustration of the proposed framework and demonstrated
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its computational efficiency and practicality. Our analysis leads to new insights on comparing
these 14 treatment options based on joint inference of multiple outcomes that cannot be ob-
tained from univariate NMAs, and novel visualizations of evidence to support patient-centered

clinical decision making.

KEY WORDS: evidence-based medicine, multiple outcomes, network meta-analysis, star plot,

treatment ranking
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1 Introduction

In the areas of evidenced-based medicine and clinical decision making, clinicians are now facing
challenges caused by the growing number of available treatment options for a specific condition.
For example, there are over 20 commonly prescribed treatments for major depressive disorder,
and a comparison between all treatments in a single randomized controlled trial (RCT) is infea-
sible, making it difficult for clinicians to draw conclusions regarding the relative effectiveness of
all treatments (Cipriani et al. 2018). In addition to the increasing number of available treatments,
clinicians, patients and stakeholders often need to consider multiple aspects when choosing a treat-
ment. Specifically, in addition to a primary outcome that often reflects treatment efficacy, there are
secondary outcomes that are also important in clinical decision making, such as adverse effects,
quality of life outcomes, long-term risks, among others (Davey et al. 2011). In sum, the prolifera-
tion of treatment options for a condition has increased the complexity of clinical decision making,
and created the need of jointly comparing a large number of treatments over multiple outcomes of
interest.

A network meta-analysis (NMA) compares three or more treatments by using both direct com-
parisons of interventions within RCTs and indirect comparisons across trials based on a common
comparator (Lumley 2002). By incorporating evidence from indirect comparisons, an NMA po-
tentially includes more studies and can increase the precision of estimation. Statistical methods
for univariate NMAs have been developed during the last twenty years (Lumley 2002; Caldwell
et al. 2005; Lu and Ades 2006, 2009; Salanti et al. 2008; White et al. 2012). With the availability
of multiple outcomes, recent literature advocates for jointly analyzing multiple outcomes in both
conventional pairwise meta-analyses (Jackson et al. 2011; Riley et al. 2017) and NMAs (Efthimiou
et al. 2014, 2015; Liu et al. 2018), which is advantageous over separated univariate analyses as
it enables joint inferences on multiple outcomes, providing a more comprehensive evaluation of

treatment options.
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A major challenge of multivariate NMAs is modeling the correlation structure of different
outcomes and treatment options. Using the random-effects model, the variance-covariance ma-
trix among treatment comparisons and outcomes is assumed as a summation of the within- and
between-study variance-covariance matrices. As the within-study variances are usually reported,
in restricted cases this problem may be simplified when within-study correlations are also observed
or can be calculated. For example, Jackson et al. (2018) considered the case when within-study
correlations are reported by each study, and the unstructured between-study correlations are es-
timated through a method of moment approach. In studies where outcomes and exposures are
all dichotomous and their contingency tables are reported, the within-study correlations may be
calculated (Efthimiou et al. 2014). The within-study correlations among treatment comparisons
for a specific outcome may be calculated if the standard errors of estimated effect sizes in all
treatment groups are reported, taking advantage of the independence among the patients across
different groups. However, the within-study correlations between two different outcomes are often
not reported in RCTs (Jackson et al. 2011). Individual patient data (IPD) are needed to obtain
such correlations, but they are hardly available in practice. To deal with the unknown within-study
correlations, Efthimiou et al. (2015) adopted the method proposed by Riley et al. (2007), where
synthesized correlation parameters were used to account for the marginal correlation between out-
comes. Liu et al. (2018) focused on adjusting for outcome-reporting bias in multiple-outcome
NMAs, and the unknown correlations were handled through copulas. In these methods, the effect
sizes, heterogeneous variances, and correlations between outcomes need to be estimated. How-
ever, as more outcomes and treatments are considered simultaneously, the number of unknown
parameters sharply increases, leading to new challenges in estimation of model parameters and
valid statistical inference, as well as developing stable computational algorithms.

To address these issues, we propose a new framework for PAtient-centered treatment rank-
ing via Large-scale Multivariate network meta-analysis (PALM). The contribution of our work is
three-fold. First, we propose a parsimonious and robust modeling approach to address the unknown

correlation structure that only requires specifying the marginal distribution of each outcome and
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treatment comparison. We further show that the proposed estimator is asymptotically consistent
and normally distributed under mild regularity conditions. Second, we propose a computationally
efficient algorithm which can generally achieve fast and stable convergence within a few iter-
ations. Compared to the existing Bayesian methods (Efthimiou et al. 2015; Liu et al. 2018), the
computational time is largely reduced. Third, we develop novel tools for patient-centered treatment
ranking, including an intuitive star plot for presenting multivariate outcomes, as well as quantita-
tive summaries accounting for both the point estimation and statistical uncertainty of the relative
effectiveness of treatments.

The rest of the paper is organized as follows. Section 2 provides a motivating example of an
NMA with more than a dozen treatment options along with five clinically important outcomes.
Section 3 introduces the proposed method and a fast algorithm for estimation and statistical in-
ference. In Section 4, we introduce multiple tools for personalized treatments ranking which take
into account both the point estimates and the uncertainties estimated from our proposed method.
In Section 5, we provide an in-depth NMA study evaluating methods of labor induction using our
proposed method. Section 6 presents simulation studies to evaluate our method’s performance in
terms of estimation bias, efficiency, and coverage probabilities. We conclude this article with a

discussion in Section 7.

2 A Motivating Example: A Large-Scale Multivariate Network for Labor
Induction Treatments

More than 20% of women undergoing an induction of labor each year in the United States (Centers
for Disease Control and Prevention 2020). Cervical ripening is a necessary step prior to the be-
ginning the induction itself. Many RCTs have evaluated various cervical ripening methods which
include mechanical dilation of the cervix (e.g., with a Foley balloon catheter) and pharmacological
interventions. Among the pharmacological methods, prostaglandins are the most commonly used
both within and outside the U.S. (Boulvain et al. 2008; Alfirevic et al. 2015), with all forms of

prostaglandins being shown to reduce the risk of cesarean when compared to no treatment or oxy-
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tocin alone (White et al. 2012). Among prostaglandin use, different formulations, dosing regimens,
and routes of administration are used. In a recently published NMA, Alfirevic et al. (2015) com-
pared 12 types of prostaglandin treatments with placebo and no treatment (14 treatment options in
total), based on five clinically relevant outcomes: cesarean section, serious neonatal morbidity or
perinatal death, serious maternal morbidity or death, vaginal delivery not achieved within 24 hours,
and uterine hyperstimulation with fetal heart rate changes. Two hundred eighty RCTs comprising
48,068 women were selected from the Cochrane Pregnancy and Childbirth Group’s Database of
Trials, where at least one of the five outcomes were reported in each trial.

Figure 1 shows the treatment networks of the five outcomes. Most trials reported only one or
two outcomes, leading to substantial differences in the structures of the five networks. When con-
sidering five outcomes and 13 treatment comparisons (treating placebo as the reference treatment
option) simultaneously, modeling the correlation structure is rather difficult. If assuming an un-
structured correlation matrix, there are 1755 unknown parameters in the between-study covariance
matrix' . Also, within-study correlation estimates were not reported in any individual study, creat-
ing difficulties for joint modeling multiple outcomes using the existing methods. In Alfirevic et al.
(2015), three separate univariate NMAs were conducted one for each outcome of vaginal delivery
not achieved within 24 hours, cesarean section, and uterine hyperstimulation with fetal heart rate
changes, while the remaining two outcomes were not formally analyzed. As the decision making
of labor induction treatments often involve multiple outcomes, this approach of separated NMAs is
limited because it cannot provide a complete picture of the relative effectiveness of these treatment
options with respect to the five relevant outcomes.

These similar issues are shared in other NMAs with a large number of treatment options and
multiple outcomes, which have become increasingly common across a wide spectrum of areas,
including cancer (Mauri et al. 2008; Terasawa et al. 2013; Dulai et al. 2016), neuropsychiatric dis-
orders (Cipriani et al. 2018; Slee et al. 2019; Pillinger et al. 2020; Bahji et al. 2020), cardiovascular

diseases (Bash et al. 2012; Dunkley et al. 2012; Li et al. 2018), and among many others.

tSee Appendix G of the Supplementary Material.


https://doi.org/10.1101/2020.11.18.20234252
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.11.18.20234252; this version posted November 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Motivated by the need of jointly analyzing networks comparing large number of treatments
over multiple outcomes, as well as the need of new tools to support patient-centered clinical deci-

sion making, our methods are developed and introduced in the following sections.

3 Methods

3.1 Notation and model assumptions for multiple-outcome NMA

Suppose there are n studies in the network comparing a set of treatments 7 = {A,B,C,...}. A
set of K common outcomes, denoted by {Y;, Y5, ..., Yk}, is of interest. Each study compares at
least two treatments in 7. Suppose there are in total of D unique designs among all studies; denote
them by D = {1,2,..., D} and let 7; be the subset of treatments compared in design d.

In this paper, we focus on a contrast-based framework. Let y,ff%

be the effect size estimate
for outcome k from the i-th study comparing treatment Z to X, where Z, X € 7T, and sff% be
the corresponding estimated standard error. For a study with design d, in practice, usually only
estimates for | 7| — 1 contrasts are reported, i.e., one treatment is set as the reference level, and all
other treatments are compared to the reference.

To keep the notation simple and without loss of generality, in the following sections, we in-
troduce our method using a three-treatment NMA (comparing A, B, and C) with two outcomes
of interest, 1.e., (Y7, Y5). We note that our algorithm is easily scale up to a large number of treat-
ments or outcomes, as we will illustrate in Section 5. With treatments A, B and C, the possi-
ble designs include two-arm designs AB, BC, AC, and a three-arm design ABC. We denote y;
= (00 UL UL U U5, ysS) T, and s; = (9%, 75, 509, 557, 555, 555)" for the estimated effect
sizes and their estimated standard errors from the i-th study, respectively. Some studies may only

report parts of the results while the remaining results are unobserved. Taking between-study het-

erogeneity into consideration, the random-effects model assumes that
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where p = (B, uBC, pu2€, ubB, uBC, u2C)™ characterizes the true population effect sizes, and X is

the between-study variance-covariance matrix,

AB2 b . AB, BC b ..AB, AC b . AB,_AC
T P12T1 Ty P13T1 T1 o PeT1 T2
b _AB,_BC BC2 b _BC._AC b ,_BC,_AC
P12T1 T 1 P23T1 71 T PoeTr T2
Y = . 2)
b _AB_AC b . BC_AC b _AC_AC AC2
P1eT1 T2 P2eT1 T2 P36T1 T2 S T

. 2 . . .
In the above matrix, 7% is the between-study variance of outcome k comparing treatment X

and Z, for X, Y € 7, and p's’t for 1 < s < t < 6 are the between-study correlations. We
denote the between-study correlation matrix by R" and the heterogeneity variances by 72 =

2 BC2 _AC? _AB2 _BC2 _AC2 . : i :
(TABS 7BCT pACT pABT BT 7ACTYT In addition, €2, is the within-study covariance of y;:

AB2 w JAB.BC w _AB_AC W JAB LAC
S1,i P12,i51,: 51, P13,i51,i515 °°° P16,i51,i 52,
W AB _BC BC2 w  BC_AC w  BC AC
P12,i51,i 51, S1 P23:51:51,: ~°° P26,i51,i52,
w JAB.AC ,w .BC.,AC w JAC  AC AC2
P16,451,i52,i P26,i51,i52,i P36,:51,i52,4 - S,

We denote the within-study correlation matrix by R}". The elements of the within-study corre-
lations pyg; ; are rarely reported in published papers. One of the key motivations of our modeling
approach, which is introduced in the next subsection, is to conduct valid statistical inference with-

out the knowledge on the within-study correlation.

3.2 A robust and parsimonious modeling approach

One major challenge in fitting the model described in Equations (1)—(3) is the estimation of the
large number of unknown parameters. Usually, the overall effect sizes p and the heterogeneity
variances 72 are parameters of primary interest, while the between-study correlation matrix RP is
often considered as nuisance parameters. For a large network, the dimension of R is large and
estimating such a large number of parameters is challenging or infeasible.

We tackle this problem by constructing a pseudolikelihood likelihood function, adapting the

idea of a composite likelithood which requires specifying only the marginal distribution of each
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Ykﬁz, while avoiding the specification of the correlations between outcomes and contrasts. Es-
sentially, it is done by assuming a working independent correlation structure for the multivari-
ate outcomes. According to Lindsay (1988) and Cox and Reid (2004), this approach will obtain
consistent estimates of the parameters of interest, and valid inference can be constructed using a
sandwich-type variance-covariance estimator.

Different from White et al. (2012) and Efthimiou et al. (2014), for studies with a three-arm
design ABC, we do not assume that all studies choose the same reference treatment. For example,
if A is a common standard treatment or a placebo, in most cases y B and y C are reported for
outcomes k£ = 1 and 2 with their standard errors 537 and ;.. However, we do not eliminate the
possibility that a study chooses B or C as the reference treatment. If we only observe y B and
yE? with s2® and sBS .- under the evidence consistency assumption, the treatment effect of C vs. A
can be obtained as y;$ P = yk ; + y . However, its standard error s2$ may not be obtained using
the observed data s’k*f and sk -, when the within-study correlation is not reported. Moreover, if
effect sizes and standard errors for all comparisons of AB, BC, and AC are reported, we suggest
incorporating all of them in the analysis, instead of only using those of AB and AC. Although
Yps can be derived from y} and y$, its information is not redundant because both ¢ and s}
contribute to the estimation of TEC and thus improve the estimation of other parameters. More
importantly, by simultaneously incorporating all reported outcomes, we can avoid the issue that
estimation results may depend on the choice of the reference level.

To construct the pseudolikelihood, let A, be the subset of studies which report effect sizes
and standard errors of outcome k for comparing treatments X and Z. Also, let the sample size be
nxzk, where XZ € {AB, BC, AC}. The log-pseudolikelihood function can be written as

2 XZ X7 2
):_%Z Z Z log<S?§% +T§ZQ>+% : 4)
k=1 \ XZe{AB,BC,AC} ic N, ki k

Under the evidence consistency assumption, the parameters satisfy the constraint

e = — - fork =1,2.
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Therefore, we only need to estimate the parameters 17 = (u{'8, €, ub, p5€, (7%)%)*. By maxi-

mizing the log-pseudolikelihood function in Equation (4), we obtain the estimated parameters:
n = argmax L(n). (5)
n
The following theorem describes their limiting distribution.

Theorem 1. Under Assumptions C1-C5 in Appendix F of the Supplementary Material, the maxi-

mum pseudolikelihood estimator defined in Equation (5) satisfies

~

N—=1(5 2
M =n")V = (n-n") = xq
as the total number of trials n increases, and the variance-covariance structure V is defined as

V =T'ATY, with

2
1-—g|ZEW) g A—E
on?

on on

OL(n) <0L(n) )]
and n* denotes the true value of parameter 7).

A sketch of the proof is provided in Appendix F of the Supplementary Material.

Remark 1. (Asymptotic normality and implication to univariate NMA) Theorem 1 shows the max-
imum pseudolikelihood estimator defined in Equation (5) is asymptotically normal. It is a general
conclusion regardless of the true underlying correlation structure of the observations. Our method
can also be applied to univariate NMA with a straightforward adjustment to the pseudolikelihood
function in Equation (4). In practice, the restricted maximum likelthood (REML) approach can
be adapted to improve the finite-sample estimation of the components in the variance-covariance
matrix by adding a term Y7, log{> . (ABBCAC) Dic N)?Z(sff + 7X2*)} in Equation (4), and
the REML estimator shares the same asymptotic distribution as the maximum likelihood estimator

defined in Equation (5).


https://doi.org/10.1101/2020.11.18.20234252
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.11.18.20234252; this version posted November 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Remark 2. (Information orthogonality) The information matrix I is a block-diagonal matrix. With

a slight abuse of notation, let g1 = (p4®, ¢, 115®, 15€)". Denote

where 1, = E[0*L(n)/0p?), 1, = E[0*L(n)/0(7*)*] and 1., = E[9*L(n)/0pd(7?)]. It can
be shown that I,,, = 0, implying that 72 and p are considered as information orthogonal (Liang
et al. 1995). This information orthogonality is stronger than other types of weak orthogonality
conditions defined in Liang (1983) and Liang et al. (1995), and it provides the following simpler

form when making inference on p. The variance-covariance matrix of f is simplified as

V=T, A5 (6)

B pp

where

e (52 (5]

We can estimate V,, empirically using i;lﬂf\uui;}“ where iuu and ./A&ML are the corresponding
submatrices of the sample-version matrices I and A, defined in Appendix A of the Supplementary
Material. The information orthogonality provides a simplified way of estimating the variance-
covariance matrix of the estimated effect sizes f1, which only involves submatrices of the informa-
tion matrices. In addition, the information orthogonality reveals the minimal impact of estimation
of the between-study variance 72 on the estimation of the effect sizes p. In the case of having a
relatively small sample size, the variance term 72 is often hard to be estimated accurately. With

the property of the information orthogonality, the estimation of g is not sensitive to the estimation

of 72 (Liang 1983).

3.3 A fast iterative algorithm for parameter estimation

We propose an iterative algorithm for estimating the model parameters by maximizing the log-
pseudolikelihood function in Equation (4) based on the following observations. First, this function

can be written as the summation of two separate parts, i.e., L(n) = Li(p1,72) + La(pe, 73),
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where 1, = (uB, p2CY, and 72 = (2B 7B¢% 72€%Y for k = 1 and 2, with
2
1 2 (a7 — 1%)
2 XZ i
Li(pn, 730) = =5 > > |log (Sm + 75 )JFW
XZ&{AB,BC,AC} ic %, ki k
This implies that the estimation of 77 can be done by estimating (1, 7¢)" and (s, 75)' separately.
t
Second, if 77 is fixed at some value T,i‘z2( ), the parameter p, can be estimated by solving a system

of linear equations. More specifically, denote

¢ 2 20\
wli(%()_(xz+?z ) :

AB(t) BC(t) BC( )
H(t) . ZzeNAB + Zzej\/’“ wk i - Zie/\/gc ki )
k. )
(t) (t)
- ZiGNBC wg,(z: ZZGNk + EZENHBC Eg
v(t) . ZzeN’“ yl?? A]zB( ) ZzENk yllcgg B(z:( )
F AC AC BC Bc(t)

ZzE/\/k yk i ki + ZzeNk Yg W )

XZQ( )

Maximizing Ly (Mlm ) over puy, yields

H e = of

where p, is the solution of the above system of linear equations. Thus, we propose to decompose
the optimization into iteratively maximizing over g, and 7',5(22. The detailed steps are summarized
in Algorithm 1.

The initial value for TXZ can be obtained by fitting a separate univariate random-effects meta-
analysis for outcome £ and comparison XZ. Based on our numerical study, the initial value can
be chosen from a wide range of values, yet the results are not sensitive to the choice of initial
values. The quantity J is a specified tolerance level for convergence which is set to 107° in this
paper. In each iteration, updating g by solving the linear system equations is computationally
efficient. Based on our simulations and application, the convergence is usually achieved within

five iterations.

10
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Algorithm 1 Iterative estimation

1: fork=1,2do

2. Specify the initial values 7., D = 1.
3: whilet < T or D > §,do
4

Obtain ,u,,(:H) by solving

5 Obtain 7" by
Tét“) = arg max L, (u,(fﬂ), 7',3)
Tk
6 Update D = "Tk(:t+1) — Tk(t) andt =t -+ 1
7:  end
8: end
9: return u(lT), Tl(T), ngT)a 7'2(T)-

Remark 3. (Special case with equal between-study variances) As suggested in White et al. (2012)
and Efthimiou et al. (2015), we might want to reduce the model complexity and assume all treat-
ment comparisons have the same between-study variance 77 for each outcome k = 1,2. In this
case, the log-pseudolikelihood in Equation (4) reduces to
2 2
L(p,72,73) = — % Z Z Z log (sﬁ? + T;f) + —(3(19/2;;%22_—‘_#3(22) )
k=1 \ XZe{ABBC,AC} ic Nk, ki k

The optimization algorithm is modified correspondingly by mapping T,z(Z(t) to T,gt) in H® and
v, The detailed algorithm and a variance estimator Vu are provided in Appendix B of the
Supplementary Material. We noted that due to information orthogonality, the inference on the
population effect sizes p is not affected by the potential violation of the equal between-study

variance assumption.

3.4 Inconsistency model

The foregoing methods are based on the assumption of evidence consistency; that is, ub¢ =
i€ — ut® for each trio of treatment pairs AB, AC, and BC and for each outcome k. In prac-
tice, this assumption may be violated for some NMAs, and models that permit evidence inconsis-

tency may be considered. The inconsistency may arise from various factors, including outlying,
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low-quality, or high-risk-of-bias studies (Guyatt et al. 2011). In the presence of potential evidence
inconsistency, we may apply both inconsistency and consistency models to the NMA dataset, and
compare their corresponding goodness of fit, measures of model selection (e.g., Akaike informa-
tion criterion), and estimated heterogeneity extents. If the inconsistency is found to be substantial
and meaningful, their causes should be explored; otherwise, great cautions should be employed in
the interpretation of results that are affected by unexplained inconsistency.

Various statistical methods are available to adjust or test for evidence inconsistency (Lu and
Ades 2006; Salanti 2012; Chaimani et al. 2013); for example, Dias et al. (2013) suggested the
unrelated mean effects (UME) model, which treats p2®, u2C, and 1€ as three separate, unrelated
parameters to be estimated. It is straightforward to extend the proposed method to the setting of
evidence inconsistency. Specifically, the log-pseudolikelihood function in Equation (4) remains
the same; however, without using the consistency equation, the parameters 7 to be estimated ad-
ditionally include p5€ and pB€. All theoretical results and algorithms can be readily modified by
including these additional parameters. We provide detailed model formulation and algorithm in

Appendix C of the Supplementary Material.

4 A Framework for Personalized Treatment Ranking

4.1 Star plot: a novel visualization tool for multiple outcomes

To jointly visualize the treatment efficacy among all the outcomes, we propose a visualization
tool, termed as the star plot, which is inspired by the radar chart, in which multivariate outcomes
are represented as multiple axes in two dimensional plot. See Figure 2 as an illustration. For a
particular treatment, the radar chart presents the impacts of this treatment on all five outcomes as
dots on five axes that are arranged radially around a common origin. For each outcome the origin
of the axis represents the value of the lowest ranking (i.e., the worst treatment) effect estimate
for the corresponding outcome among all treatments. In contrast, the utmost point represents the
effect size of the highest ranking (i.e., the best) treatment from among all treatments. Lines are

added to connect dots to obtain a polygon, and the area of the polygon is often used to quantify the
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overall treatment impact considering all the outcomes, with the larger area indicating better overall
performance (Zhu et al. 2017). The advantage of the radar plot is that it presents both the individual
outcomes and also provides an intuitive way of summarizing the overall comparison based on all
outcomes. However, the area of the polygon is sensitive to the order of the outcomes in the plot.
We provided an example in Appendix D of the Supplementary Material to show that changing the
order of the outcomes can lead to different ranking of the treatments in a radar plot.

To address this limitation, we propose a new visualization tool which provides treatment rank-
ing invariant to how the outcomes are ordered in the plot. As shown in the right panel of Figure
2, in addition to the five main axes (the solid lines) which present the individual outcomes, we
propose to add an auxiliary line (dashed line) between each pair of two adjacent main axes (solid
line). In our example, for a given treatment, we place five dots on the main axes to represent each
outcome and five dots each on an auxiliary line. These five auxiliary points equally distant from
the center, however, the distance can be arbitrary. If we choose a distance near the origin and
connect all dots in order, we can obtain a shaded region for each treatment which has a star like
shape, hence the name star plot. Each angle of a star represents one outcome where longer length
indicates better performance of this outcome for the specific treatment. In the star plot, we also
indicate next to the angle the ranking of the treatment for the corresponding outcome. Importantly,
the area of the shaded region, which is now invariant to the ordering of the outcomes, provides an
overall quantification of the treatment impact across all the outcomes where a larger area indicates
better overall performance of the treatment when taking all outcomes into consideration.

Using the star plot, we can compare treatments based on any subsets of the individual out-
comes, as well as considering all the outcomes jointly. In addition, the star plot can be customized
to include only outcomes of interest, and/or can assign different weights to different outcomes
depending on their importance to individual patients. For example, our clinical expert suggested
that the two outcomes, vaginal delivery not achieved within 24 hours and uterine hyperstimulation,

may not be as important as the other three outcomes in terms of clinical decision making. In this
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case, the star plot can be modified (see Figure S9 in the Supplementary Material) to assign less

weights to these two outcomes.

4.2 A weighted utility function

For univariate NMAs, several quantitative measures have been developed for ranking interventions.
For example, the Pbest calculates the probability of each treatment to produce the best outcome; a
rankogram is a graphical presentation of the probabilities for any intervention having specific ranks
(Salanti et al. 2011). More specifically, the probabilities of m treatments ranking at m places using
a combined histogram, where the i-th bar is partitioned into m parts with each part denotes the
probability of a treatment ranking at the ¢-th places. In addition, the surface under the cumulative
ranking curve (SUCRA) is commonly used as a quantitative way to rank interventions (Salanti
et al. 2011; Trinquart et al. 2016). When considering more than one outcome, Mavridis et al.
(2019) recently proposed to calculate the probability of all outcomes of treatment Z being better
than the corresponding outcomes of treatment X plus some prespecified clinical important values,
ie., Pr(NE {iX% > C}).

In this paper, we proposed to rank the treatment based on a joint consideration of multiple
outcomes, through a personalized utility function which incorporates individual considerations
on different outcomes. For example, when evaluating treatment options for labor induction, risk
for cesarean section is often an important efficacy measure as cesarean section has been associ-
ated with many immediate and long-term complications (Silver 2012; Caughey et al. 2014). On
the other hand, treatment options with higher risk for serious adverse events such as maternal or
neonatal morbidity or death would not be preferred. In addition, some patients may care more
about whether virginal delivery can be made within 24 hours compared to others. Therefore, these
outcomes need to be balanced against one another when evaluating induction methods.

Without loss of generality, suppose outcome 1 measures the treatment efficacy and outcome 2
measures safety. To jointly consider the two outcomes, we define a combined utility function by

assigning different weights to the two outcomes and calculate the weighted sum. Let w; and w- be
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the weights for outcomes 1 and 2, respectively. To compare two treatments X and Z, we define the

weighted utility function as

W% = w5 + woiil?, )

and the treatment ranking is based on the weighted utility function. The weights can be specified
by clinicians, patients or stakeholders when they make decisions on choosing the best treatment.

This framework can be easily extended to utility functions of more than two outcomes.

4.3 Pairwise comparison of two treatments based on the utility function

For pairwise comparison, we are interested in the quantity Pr(a*# > 0), which measures the prob-
ability of treatment X being better than Z, under a certain weight assignment. From Section 3.2,
we can approximate the joint distribution of £ by a multivariate normal distribution with mean g
and variance V n defined in Remark 2.

When X is the reference drug A, then we define e,z as an indicator vector with the same length
as p,, where the i-th entry of e,z indicates whether the i-th entry of p; involves the contrast AZ.
For example, in the three-arm setting used in the previous sections, we define p; = (uf®, ut)";
thus, we have exg = (1,0)", and exc = (0,1)".

If neither X nor Y is the reference drug, we have

~X7Z __ ~X7Z ~XZ __ ~AZ ~AX ~AZ ~AX
W =wiy” + wafly” = wi(i” — 177) + wafiy” — 7).

We then define exy as the indicator vector with the same length as pt,, where the i-th entry of exz
is —1 if the i-th entry of pt; involves the contrast AZ and is 1 if that of p, involves the contrast AX.
For example, in the three-arm case, we have egc = (—1,1)". Let wxz = (wiexz, wsexz)”.
By the property of multivariate normal distribution, we provide an estimator pxz for the quantity

Pr(a** > 0), calculated as

fxg = @ (axz / \/nw;(zv“wxz) . 9)
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4.4 Treatment ranking of more than two treatments using weighted SUCRA

When more than two treatments are to be compared, we are interested in estimating the probabil-
ities for any treatment assuming any possible rank. For example, consider there are m treatments
of interest, assume them to be {X;,..., X,,}. We define ¢;; to be the probability of treatment X
ranking at the j-th place based on the defined utility function in Equation (8). To estimate g;;, we
first define e; to be an indicator function of the i-th treatment where the :-th entry of e; indicates

whether the i-th entry of g, involves the contrast AX;. If X; = A, i.e., the reference treatment, we

have e; = 0. In this way, we obtain a design matrix D = (ey,...,e,,)", and
U)1D 0
W =
0 U)QD

and we propose to estimate ¢;; using the following sampling method.

Algorithm 2 Estimating ¢;; via random sampling

Obtain . = Wp.
Obtain V;, = WV, W’
Choose number of random samples to be N;.
fors=1,...,N,do
Sample u* from N (1, V,,,).
end
Obtain Gi; = SN I(us = ug;))/Ns, where ;) is the j-th largest value of u”.

AN A ey

With the estimated ¢;;, we define the weighted SUCRA as

This WSCURA synthesizes multiple treatment effects into a single value, which ranges from O to
1. Higher the value of the WSUCRA indicates a better treatment based on the personalized utility
function; WSUCRA= 0 indicates an always worst treatment, and WSUCRA= 1 indicates the best

ranked treatment, making it easy for both interpretation and decision making.
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Remark 4. In addition to SUCRA, we can also define the weighted P-score as
Pm oy X
e
337
It can be shown that P-score is numerically nearly identical as SUCRA, which provides a way to

estimate SUCRA without resampling by directly using Equation (9).

5 Multivairate NMA of labor induction methods

We applied our method to the dataset from the NMA for labor induction treatments introduced in
Section 2. Choosing the placebo as the reference treatment, we jointly modeled all five outcomes
using the network shown in Figure 1. As suggested by the simulation study in Section 6, assuming
the same between study variance across different treatment comparisons can further reduce the
model complexity without creating additional bias on estimation of treatment effects. Thus, we
used the likelihood function defined in Equation (7) with a REML correction. The algorithm
took less than 3 seconds to converge on a computer cluster node (HP DL165-G6) with AMD 2.2
GHz CPU and 16GB memory. We presented the detailed estimation results in Appendix E of
the Supplementary Material, where Figure S2 shows the forest plots of the estimated log odds
ratios and the corresponding 95% confidence intervals for the 13 treatment options compared to
the placebo across the five outcomes, and Figure S3 presents the pairwise comparisons of any two
treatments over the five outcomes.

Among the 12 prostaglandin treatment options, 8 are commonly used both within and outside
the United States (Boulvain et al. 2008; Alfirevic et al. 2015). They are vaginal prostaglandin E2
(PGE2) gel, vaginal PGE2 pessary (slow release), intracervical PGE2, vaginal misoprostol (dose
<50 pg ), vaginal misoprostol (dose > 50 pg ), oral misoprostol tablet (dose < 50 pg ), oral
misoprostol tablet (dose > to 50 pg ), and low dose oral misoprostol solution. The four other
groups are not currently manufactured for routine use (vaginal PGE?2 tablet, PGF2 gel, vaginal
PGE2 pessary (normal release), and sustained release misoprostol vaginal pessary). Therefore, we

focused on comparisons of the former 8 treatments to the placebo in the following.
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Jointly analyzing five outcomes using the proposed framework has led to a few new insights.
First, we are able to intuitively visualize the treatment comparisons based on all five outcomes
(See Figure 3). As we introduced in Section 4.1, each star of the plot represents a treatment and
each angle of the star corresponds to one of the five outcomes. The longer length of the angle
of the star, the better the treatment performed on the corresponding outcome. Starting at the top
and moving clockwise we observed that low dose misoprostol solution is ranked as number 1 as
it had the lowest risk for cesarean section (star #4), intracervical PGE2 had the lowest risk for
serious maternal morbidity (star #1), vaginal PGE2 (gel) was the best treatment based on the risk
for serious neonatal morbidity or perinatal death (star #7), low dose oral misoprostol tablet had
the lowest risk for hyperstimulation (star #3), and high dose vaginal misoprostol had the highest
chance for vaginal delivery within 24 hours (star #5).

The overall treatment rankings based on all 5 outcomes (ordered by the area of the stars) were
also indicated in the plot, and it showed vaginal PGE2 (gel) had the best overall effect among
all 8 treatment options, while vaginal PGE2 pessary (slow release) ranked the lowest. Again,
the star plot can be tailored to up-weight or down-weight certain outcomes (See Figure S9 in the
Supplementary Material for an example).

Secondly, we considered the risk for cesarean section and serious neonatal morbidity or perina-
tal death combined. These two outcomes are of great clinical importance when evaluating efficacy
and safety. The efficacy outcome, cesarean section, has been associated with many immediate
and long-term complications with a strong national push to lower the rate of first-time cesarean
sections (Silver 2012; Caughey et al. 2014). Determining which cervical ripening/induction meth-
ods are more effective at lowering the cesarean rate would have huge public health implications.
The neonatal outcome of morbidity or death is of critical importance as no clinician or patient
would choose an effective method if it caused harm to the neonate. Therefore, these two outcomes
need to be balanced against one another and incorporated as major outcomes in studies evaluating

induction methods.
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Figure 4 presents the estimated effect sizes of the 8 treatments and their corresponding confi-
dence intervals using a two dimensional-scatter plot. The drugs with lower risk of cesarean section
and serious neonatal morbidity or perinatal death are in the upper right panel of the scatter plot.
Most of the 8 treatments had significantly lower risk for cesarean section with the exception of
low dose of oral misoprostol tablet, and intracervical PGE2 (marginally significant). For neonatal
morbidity or perinatal death, however, no treatment was observed to be significantly better than
the placebo. Based on the point estimates (dots in the plot), the high dose oral misoprostol tablet
had low risk for both cesarean section and neonatal or perinatal death. Titrated oral misoprostol
solution has the lowest risk for cesarean section but the risk for neonatal morbidity or perinatal
death is relatively high. Vaginal PGE2 gel and intracervical PGE2 have similar risk for neonatal
morbidity or perinatal death as the high dose oral misoprostol tablet, but their risk for cesarean
section are higher, although the confidence intervals overlap. Given the different pharmacokinetics
of prostaglandins based on the route of administration (Tang et al. 2002; Bygdeman 2003; Khan
et al. 2004), it is plausible that higher doses or vaginal misoprostol would not have the same risks
when administered orally. This NMA suggests that oral misoprostol with doses >50 pg is superior
to other preparations and dosing regimens.

Thirdly, we compared the 8 treatments by considering cesarean section and maternal morbidity
jointly, as both patients and clinicians usually feel that cesarean section and maternal morbidity
are two competing risks. We defined a utility function as a weight sum of these two outcomes, and
calculated the probabilities of each treatment ranking from the best to the worst based on the utility
function. Figure 5 shows the rankogram for the eight treatment options based on the personalized
utility function. For example, when a pregnant woman or physician weighs risk of cesarean section
higher than the risk of maternal morbidity (Figure 5 panel 1: 90% weight to cesarean and 10%
weight for maternal morbidity), titrated oral misoprostol solution was more likely to be better than
other treatment options, while oral misoprostol tablet (low dose) was more likely to be the worst
option. When a woman or physician weighs the two outcomes equally (panel 2: 50% weight

for cesarean and 50% weight for maternal morbidity), oral misoprostol tablet (low dose) has the
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most probability to be the best option, although titrated oral misoprostol solution was ranked very
closed to it. The oral misoprostol tablet (low dose) was rank as the worse option. If a woman or
physician weighs maternal safety and morbidity more important than the risk of cesarean (panel
3: 90% weight for maternal morbidity and 10% weight for cesarean), the intracervical PGE2 was
more likely to be better than other options while vaginal PGE2 pessary (slow release) would not
be recommended. The WSUCRA of the eight treatment options gave a more clear ranking of the 8
treatment options, and we included the results in Appendix E of the Supplementary Material. We
also explored other utility functions of the five outcomes, and the results are shown in Appendix E
of the Supplementary Material.

Finally, in addition to the above analyses, we performed a sensitivity analysis by removing
studies that were evaluated with high risk of bias in Alfirevic et al. (2015). The sensitivity analysis
included 162 studies out of the 280 studies, and the results were mostly consistent with the analysis
including all studies, which can be found in Appendix E of the Supplementary Material.

In summary, this investigation of treatment options for labor induction using our method and
visualization tools has provided a comprehensive picture of the labor induction treatment com-
parisons based on five clinical relevant outcomes, and offers a patient-centered treatment ranking

approach to better support clinical decision making.

6 Simulation Study

We conducted simulation study to evaluate the performance of the proposed methods. Without loss
of generality, we considered three-arm designs with two outcomes and use the contrast-based data

AC rAB 7AC) and we first generated

generating mechanism. Let D = diag (7B, 7{*C, 74

Wy, uos oS )" ~ N (i, 15, 15®, 15)", DR’D + ;) ,

where R is the between-study correlation matrix and €2; is the within-study variance. Also, we
set B = 0.5, uf¢ = 1, uy® = 0, and ph¢ = —0.5. By the evidence consistency assumption,

p¢ = 0.5 and 5 = —0.5. Then, we obtained yP§ = y7' — 9} and y55 = y55 — v4y. The
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. 2 2
between-study variance 72 and 72 can be calculated as

BC2 _ AB2+ AC2 _2Rb[1 2] AB_AC.

T =N 71 4T T

BC2 _ AB2+ AC2_2Rb[3 4] AB_AC

T2 =T T2 » 2Ty Ty -

We considered the following two settings. In setting 1, between-study variances were equal
for each outcome, i.e., ¥ = 7€ = 8¢ = 7. We set 7; = 0.5 and 75 = 0.6. In this setting,

R’[1,2] = RP[3,4] = 0.5, and we set the between-study correlation matrix to

1 05 01 0.1
05 1 0.1 0.1
0.1 01 1 0.5

0.1 0.1 0.5 0.1

In setting 2, between-study variances were not equal. We set 7{*8 = 0.5, 7€ = 0.6, 708 = 0.6, and
72¢ = 0.4. We set the between-study correlation matrix R® to have an exchangeable correlation
structure with correlation coefficient 0.1; that is, all its off-diagonal elements were 0.1. Therefore,
we obtained that 78 = 0.74 and 7€ = 0.69.

Under each scenario, we randomly generated €2; for each observation and consider the sample
size for each design were equal; that is, nag = ngc = nac = napc = n. We compared the
proposed method under two assumptions, i.e., equal between-study variance and unequal between-
study variances, corresponding to Algorithm 1 (PALM) introduced in Section 3.3 and Algorithm S1
(PALM-equal) from Remark 3 and the Supplementary Material. To compare the two algorithms,
we calculated the bias, model-based variance, empirical variance, and coverage probability based
on 1000 simulation replicates.

Tables 1 and 2 present the simulation results under simulation settings 1 and 2, respectively.
When the between-study variances were the same for different treatment comparisons (see Table
1), the algorithm assuming equal variance (PALM-equal) had smaller bias, and slightly underesti-

mated variance, which led to coverage probabilities slightly below 95%. The method assuming un-

equal between-study variances (PALM) had much larger bias when sample size is small, compared
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to PALM-equal. The variance was also larger than PALM-equal, with the relative efficiency rang-
ing from 1.5 to 2. PALM had better coverage probabilities, which ranged from 93.2% to 95.8%.
When the between-study variances are unequal (see Figure 2), PALM-equal still had smaller bias
compared to PALM. PALM-equal had smaller coverage probabilities, especially when sample size
is small. When sample size was large, the coverage probabilities are around 92.0%. PALM had
slightly overestimated variances, and coverage probabilities ranged from 93.6% to 96.6%.

In summary, our proposed method assuming unequal between-study variances provides correct
coverage probabilities under both settings, while the proposed algorithm assuming equal variance
provides more accurate estimation in terms of bias, with slightly lower converge probabilities when
sample size is small. Depending on the complexity of the network and number of studies for each
contrast, treating 72 as equal can provide benefits in the accuracy and the computational efficiency
of the estimation of effect sizes, while the converge of the confidence interval might be slightly

smaller.

7 Discussion

In this study, we proposed a comprehensive framework, PALM, for multiple-outcome NMA:s, in-
cluding a robust and parsimonious modeling approach and a fast computational algorithm for esti-
mation and inference. Our proposed method is advantageous over existing methods for large-scale
multiple-outcome NMA (when the number of treatment and/or the number of outcomes is large)
as it avoids the need to specify the complex between- or within- study correlation structures. The
iterative algorithm for parameter estimation is computationally efficient and it converges within
seconds even for very large NMAs. We also proposed a comprehensive set of tools for compar-
ing multiple treatments, including a new visualization tool named star plot, and an approach for
patient-centered treatment ranking which facilitates evidence-based clinical decision making.

Our method is most beneficial when the population-level effect size u is of interest, instead
of the heterogeneity variance 72. Although we allow the heterogeneity variances to be different

across treatment comparisons, estimating all these unique heterogeneity variances for different
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contrasts is challenging due to the often limited number of studies which directly compare specific
treatments. This is a common problem in many NMA methods, and most of the current approaches
assumed a common heterogeneity variance for all contrasts. However, the information orthogo-
nality of our model formulation ensures that the accuracy of estimating g is not sensitive to the
assumptions regarding 72, and our simulation study demonstrates the benefits and validity of using
the equal-variance model as a parsimonious working model.

The proposed method only requires specification the marginal distribution of each observation,
which reduces the complexity of the model specification, and also improves the computational
efficiency and the robustness in terms of misspecification of the correlation structures. Compared
to existing Bayesian approaches which require specification of the correlation matrix and its prior
(Efthimiou et al. 2014, 2015), one limitation of our method is that it does not allow borrowing infor-
mation across outcomes or contrasts. When the correlation structure is known, or the within study
correlations are reported in each study, our method is not able to incorporate such information, and
therefore may lose some efficiency. However, as demonstrated in the setting of multivariate meta-
analysis (Trikalinos et al. 2013), the efficiency gain from modeling correlation structures might be
limited.

The potential violation of the consistency assumption, as well as the risk for publication bias
and outcome reporting bias need to be evaluated to avoid misleading conclusions and inference.
As mentioned in Section 3.4, we can modify the current model to allow evidence inconsistency,
and by comparing with the model under consistency assumption, we may test and quantify the
strength of inconsistency. Selection models and sensitivity analysis can be incorporated with the
current model to correct the bias due to publication and outcome reporting bias (Copas and Shi
2000; Copas et al. 2014, 2019; Kirkham et al. 2012, 2018; Schmid 2017).

Recently, there have been a few important efforts in collecting published networks and creating
databases for NMAs: Nikolakopoulou et al. (2014) created a database containing 186 networks of
interventions, and Petropoulou et al. (2017) collected data for 456 NMAs published between 1999

to 2015. These databases provide opportunities for evaluating our method across large number of
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NMAs to compare with existing methods, and updating results for patient-centered treatment rank-
ing. Following their efforts, we are collecting NMAs published after 2015, and till the submission
of this manuscript, we have collected additional 152 NMA studies where a large portion of these
studies reported more than two outcomes. We are evaluating the broad impact of our method on
a large number of NMA networks, and the results will be summarized and reported in the near

future.
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Figure 1: Network plots of the 14 treatment options and 5 outcomes in the network meta-analysis
for prostaglandins in labor induction by Alfirevic et al. (2015).
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Figure 2: An illustration of the construction of the star plot (on the right), which is based on the
radar chart (on the left). The radar chart displays multiple outcomes using dots on multiple axes
which are arranged radially with a common origin on a two-dimensional plot. To construct the
star plot, we keep the main axes of the radar plot (on the left) and add five auxiliary axes (the
dashed lines) each in between of a pair of two adjacent main axes. Dots with equal distance to the
origin are place auxiliary axes. We connect the dots in order and obtain a star shape region. The
ranking of a treatment based on each individual outcome is placed next to the corresponding axis,

and the area of the shaded region is used as an overall quantification of the treatment based on all
outcomes.
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Figure 3: A star plot to compare 8 treatment options for labor induction across five outcomes. The
distance of the dots on the main axes to the common origin are determined by the estimated effect
sizes of the corresponding treatment from the proposed method. The distance of the dots on the
auxiliary axes are set to 1/5 of the total length of the axis. The ranking of a treatment based on
each individual outcome is placed next to the corresponding axis. The overall treatment ranking

based on the area of the shaded region is indicated in the plot.
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Figure 4: The estimated odds ratios of cesarean section and serious neonatal or perinatal death,
with the corresponding 95% confidence intervals for the 8 treatment options for labor induction.
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Figure 5: Ranking of the 8 treatment options for labor induction regarding three different weight
options for cesarean section and maternal morbidity. In each plot, the j-th bar represents the
probabilities of each treatment ranking in the j-th place.
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Table 1: Comparison of the bias, model based standard error (MBSE), empirical standard error
(ESE) and the coverage probability (CP) of the effect sizes of treatment comparison AB and AC
estimated from the PALM and PALM-equal methods, under the Setting 1 where 7% = 72¢ = 7€
fork =1,2.

No. of Method Comparison AB Comparison AC

studies Bias MBSE ESE CP Bias MBSE ESE CP

Outcome 1:

5 PALM —0.055 0.384 0.356 0.932 —0.057 0.382 0.368 0.937
PALM-equal  0.004 0.301 0.318 0.922 —0.028 0.311 0.316 0.934

10 PALM —0.026  0.274 0.292 0.942 —0.019 0.273 0.331 0.944
PALM-equal —0.001 0.201 0.232 0.905 —0.021 0.207 0.224 0.921

15 PALM —0.008 0.222 0.218 0.939 —0.006 0.221 0.236 0.933
PALM-equal  0.004 0.167 0.189 0.910 —0.012 0.169 0.187 0918

20 PALM —0.005 0.192 0.194 0.949 0.012 0.192 0.203 0.937
PALM-equal —0.004 0.145 0.157 0.936 —0.012 0.147 0.160 0.935

Outcome 2:

5 PALM 0.024 0.377 0.336 0.941 0.037 0.376 0.329 0.953
PALM-equal —0.005 0.290 0.309 0.918 0.017 0.297 0.311 0.924

10 PALM 0.001 0.270 0.249 0.948 0.005 0.268 0.238 0.962
PALM-equal —0.002 0.205 0.231 0.907 0.003 0.206 0.226 0.920

15 PALM 0.002 0.221 0.204 0.955 0.000 0.219 0.199 0.958
PALM-equal —0.002 0.168 0.188 0.915 0.000 0.169 0.188 0.917

20 PALM —0.002 0.191 0.178 0.957 —0.003  0.190 0.173 0.962
PALM-equal —0.002 0.146 0.156 0.939 —0.002 0.147 0.162 0.928
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Table 2: Comparison of the bias, model based standard error (MBSE), empirical standard error
(ESE) and the coverage probability (CP) of the effect sizes of treatment comparison AB and AC
estimated from the PALM and PALM-equal methods, under the Setting 2 where between-study
variances were not equal.

No. of Method Comparison AB Comparison AC

studies Bias MBSE ESE CP Bias MBSE ESE CP

Outcome 1:

5 PALM —0.017 0.405 0.359 0.936 —0.056  0.377 0.371 0.948
PALM-equal  0.008 0.288 0.332 0.889 —0.028 0.305 0.331 0.908

10 PALM —0.060 0.288 0.257 0.945 —0.038 0.286 0.272 0.951
PALM-equal  0.001 0.207 0.236 0.908 —0.013 0.216 0.238 0.917

15 PALM —0.053 0.236 0.214 0.947 —0.027 0.234 0.232 0.946
PALM-equal  0.002 0.236 0.190 0.918 —0.008 0.234 0.197 0917

20 PALM —0.055 0.204 0.189 0.946 —0.026  0.203 0.204 0.948
PALM-equal  0.000 0.149 0.163 0.923 —0.007 0.154 0.168 0.935

Outcome 2:

5 PALM 0.020 0.377 0.350 0.941 0.033 0.316 0.350 0.958
PALM-equal —0.003 0.300 0.333 0.901 0.012 0.290 0.310 0.924

10 PALM 0.013  0.269 0.256 0.941 0.014 0.266 0.228 0.964
PALM-equal  0.003 0.212 0.239 0.905 0.007 0.204 0.220 0.921

15 PALM 0.005 0.221 0.212 0.945 0.005 0.218 0.190 0.965
PALM-equal —0.001 0.221 0.196 0.914 0.002 0.218 0.181 0.927

20 PALM 0.005 0.192 0.185 0.945 0.002 0.189 0.165 0.966
PALM-equal  0.001 0.152 0.169 0.916 0.002 0.145 0.156 0.929
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