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Abstract:  
As many prophylactics targeting SARS-CoV-2 are aimed at the spike protein receptor-binding 

domain (RBD), we examined the risk of immune evasion from previously published RBD-

targeting neutralizing antibodies (nAbs). Epitopes for RBD-targeting nAbs overlap one another 

substantially and can give rise to escape mutants with ACE2 affinities comparable to wild type 

that still infect cells in vitro. Based on this demonstrated mutational tolerance of the RBD, we 

used evolutionary modeling to predict the frequency of immune escape before and after the 

widespread presence of nAbs raised by vaccines, administered as prophylactics, or produced 

through natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two 

mildly deleterious mutations are expected to exist in high numbers due to neutral genetic 

variation, and likewise resistance to single or double antibody combinations will develop quickly 

under positive selection. 

 



One Sentence Summary: 
SARS-CoV-2 will evolve quickly to evade widely deployed spike RBD-targeting monoclonal 

antibodies, requiring combinations with at least three antibodies to suppress viral immune 

evasion. 

 
 
Introduction 

As the pandemic caused by SARS-CoV-2 continues to rage around the world, the question of 

mutational escape from biomedical intervention for this virus takes on direct relevance. SARS-

CoV-2 is commonly considered to acquire mutations more slowly than other RNA viruses (1, 2). 

However, the SARS-CoV-2 mutation burden and evolutionary rate (1x10-3 substitutions per base 

per year (2)) have only been estimated under conditions that favor neutral genetic drift (not to be 

confused with antigenic drift) (3), in the absence of strong positive selection pressure (provided 

by population-level immunity or other interventions that select for resistance mutations). In 

immunologically naïve COVID-19 patients, viral load and transmission (4) peak near the time of 

symptom onset, while the host antibody response peaks approximately 10 days later (5). Thus, 

most transmission occurs well in advance of the appearance of a robust humoral response, 

suggesting limited within-host immune evasion prior to transmission, consistent with direct 

genetic evidence from deep sequencing showing little to no positive selection (6). Hence, the 

current evolutionary rate (based primarily on neutral genetic drift) may underestimate the 

evolutionary potential of the virus to evade nAbs deployed as prophylactics. Under the selective 

pressure of widely deployed nAb prophylactics, population-level selection for antibody-evading, 

infection-competent viral mutants could result in a rapid resurgence of SARS-CoV-2 infections.  



Two key factors influence the rate of evolution under natural selection: mutation rate and 

mutational tolerance. Mutation rates alone offer a limited picture of the ability of viruses to 

generate successful escape mutations because even if escape mutations arise quickly, they will 

not persist in the population if they significantly reduce viral infectivity. While some vaccine-

preventable viruses have very low mutation rates (such as smallpox, ~1 x 10-6 sub/nuc/yr) (7), 

others have high mutation rates (such as poliovirus, 1 x 10-2 sub/nuc/yr) (Table S1). The 

interplay between the mutation rate and the fitness costs imposed by the mutation offers 

powerful clues as to the potential for evolutionary escape. Additionally, there is a sharp contrast 

between the high antigenic evolvability of viruses like influenza (8), notable for their 

evolutionary capacity for immune evasion, and the low antigenic evolvability of viruses like 

poliovirus, which have proven highly tractable to antibody-mediated prophylaxis via vaccines (9) 

despite a high evolutionary rate (Table S1). Studies of other infectious diseases support the 

concept that natural selection promotes antigenic evolvability (10). 

To better understand the potential for immune evasion mediated by SARS-CoV-2 RBD 

mutations in the presence of nAbs, singly or in combination, we focused on three questions. 

First, what is the evolutionary cost of harboring nAb-evading RBD mutations? Second, given 

this evolutionary cost, how likely is it that SARS-CoV-2 patients will harbor viral mutants as 

their dominant viral strain capable of evading single or combination monoclonal antibody 

prophylactics even before these interventions are deployed? Third, how rapidly will mutants 

capable of evading single or combination monoclonal nAbs become fixed in the population, once 

these interventions are deployed widely as prophylactics? 

 

 



Results 

There is a low evolutionary cost to developing resistance to RBD-targeting nAbs 

To explore the diversity of the B-cell response against the RBD, we catalogued the 

human antibody epitopes from antibody-RBD structures deposited in the Protein Data Bank 

(PDB). Consistent with prior work (11), we found that the reported epitopes show substantial 

overlap (Fig. 1A-B). We clustered these epitopes using the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm (12), and found three clusters representing 

distinct immunogenic sites on the RBD, the largest of which overlaps substantially with the 

ACE2 binding interface (Fig. 1A, C). Our clusters resemble those reported by other groups (13). 

Notably, there was limited evidence for glycosylation in these epitope clusters (Fig. S1). The 

observed overlap in residues included in epitopes from independently generated natural human 

antibodies shows that parts of the RBD surface are repeatedly targeted by the human B-cell 

response in different individuals. Spontaneous mutations at these key epitope residues could be 

capable of rendering many nAbs ineffective.  

Genomic sequencing of SARS-CoV-2 from infected individuals has revealed several 

point mutations in the RBD, some of which have been shown experimentally to confer resistance 

to nAbs. As of 8/18/20, multiple amino acid changes have been reported in the GISAID 

sequence database (14) in RBD residues within antibody epitopes (Fig. 2A), showing that SARS-

CoV-2 antibody binding region variants are capable of causing human infection. Some of these 

naturally occurring variants confer in vitro resistance to SARS-CoV-2 nAbs (Fig. 2B) (15–17). 

As of 8/18/20, 23 of these experimentally-identified escape mutations (out of 32) have been 

reported so far in the GISAID database, and many of them do not compromise spike-ACE2 

binding when directly examined in vitro (Fig. 2C), suggesting a low evolutionary cost for the 



virus in generating escape mutants that evade nAb binding (18). In fact, many antibodies have 

escape mutants that have increased ACE2 binding affinities, suggesting that the optimal escape 

pathways for these antibodies may not reduce cellular infectivity or viral fitness (Table S2).  

To further understand the evolutionary cost of escape mutations, we evaluated the link 

between ACE2 binding affinity and/or RBD expression and viral infectivity. We determined how 

well changes in RBD binding to ACE2 or RBD expression caused by a mutation (18) predicted a 

10% loss of infectivity as measured by luciferase reporter pseudoviral assay (16). The low-to-

moderate level of sensitivity and specificity of ACE2 binding affinity and RBD expression as 

predictors of pseudoviral infectivity suggests that changes in ACE2 binding affinity and RBD 

expression are well-tolerated in many immune-evading mutants, further providing the virus with 

a range of possibilities for generating mutants that can evade nAbs without compromising 

infectivity (Fig. 2D). 

 Taken together, the narrow focus of the naturally generated immune response on a 

specific region of the RBD (Fig. 1), the immunodominance of the spike protein in this response 

(13), and the ability of nAb escape mutations in this region to yield viable and infectious viral 

particles that are capable of binding ACE2 (Fig. 2) suggest a low evolutionary cost for the virus 

in generating escape mutants for nAbs.  

 

Mutant frequency under neutral drift is likely to lead to escape from single and double antibody 

combinations 

Based on this assessment of a low evolutionary cost, we used evolutionary theory to 

predict the frequency of these immune escape mutants in the population both before and after 

widespread deployment of an antibody-based prophylactic. Before immunity or antibody 



prophylaxis is widely established in the population, there is no transmission advantage for 

viruses with immune escape mutations since most people are equally susceptible to infection 

from wild-type and mutant SARS-CoV-2. Instead, these mutations may have a small 

evolutionary fitness cost due to negative effects on ACE2 binding affinity or other factors, 

similar to the observed fitness cost of drug resistance mutations in HIV (19) and consistent with 

results suggesting that much of the SARS-CoV-2 genome is under weak purifying selection (20). 

Indeed, many point mutations modestly reduce the ability of SARS-CoV-2 to infect cells in vitro, 

which could lead to reduced host-host transmission (21). Although these mutants are at a fitness 

disadvantage compared to the wild-type virus before nAbs are broadly present in the population, 

they are constantly generated through de novo mutation which allows them to exist at nonzero 

frequencies. However, once nAbs are common in the population, these mutants will have a 

selective advantage. If they already exist at sufficient frequency in the population, the escape 

mutants will expand deterministically and lead to widespread SARS-CoV-2 resistance to nAbs. 

Using mathematical modeling methods developed to study intrahost evolutionary 

dynamics during HIV infection, we calculated the expected number of infected individuals 

whose dominant viral sequence harbors one or more mildly deleterious immune-evading 

mutations under drift conditions (referred to in this paper as “mutants”, see Methods for details) 

(22). Most reported nAbs are susceptible to at least one single-nucleotide change resulting in 

evasion, suggesting that each point mutation may correspond to the evasion of one antibody in a 

cocktail (18). This model predicts the frequency of such mutants using the mutation rate of the 

virus, the typical fitness cost to the virus from an immune escape mutation, and the total number 

of infected individuals. We estimated the per base per transmission mutation rate of SARS-CoV-

2 from population phylodynamic studies to be between 1x10-5 to 1x10-4 (Methods) (2). Many 



nAbs are evaded by multiple distinct point mutations, so the per-transmission rate of generating a 

new mutant that evades a particular neutralizing antibody can be more than an order of 

magnitude higher than the per base mutation rate (23). We investigated a range of infected 

population sizes (from 5 million to 640 million) and a range of transmission fitness costs for each 

mutation before widespread deployment of a vaccine or antibody prophylactic or development of 

natural immunity. 

The expected number of SARS-CoV-2-infected individuals whose dominant viral 

sequence harbors one or two immune escape point mutations is high enough to eventually lead to 

widespread resistance to nAbs deployed as prophylactics. We explored the number of expected 

individuals with immune escape mutations over a range of fitness costs and pandemic sizes (in 

terms of the number of active infections). Over a range of fitness costs and starting from a 

number of active infections that is lower than the number at present, we expect that over 10,000 

SARS-CoV-2-infected individuals worldwide would harbor a dominant viral sequence capable 

of evading one antibody (Fig. 3A). This number far exceeds the number of individuals required 

to exceed the boundary at which natural selection and not drift is the primary driver of evolution 

(dashed lines in Fig. 3). Assuming an immune escape mutant will eventually have a fitness 

advantage of 0.1, corresponding to approximately 14% of the population receiving an effective 

prophylactic (Fig. S2), this selection-drift threshold suggests that if 10 or more individuals are 

infected with an immune escape mutant virus, positive selection will allow the mutant to expand 

and eventually outcompete the wild-type virus (24). However, more than one nucleotide change 

may be required to confer resistance to an antibody prophylactic if it contains more than one 

antibody with distinct escape mutation profiles. If a specific two-mutation combination is 

required for resistance, the expected number of infected individuals harboring a dominant viral 



sequence capable of evading the antibody prophylactic can be orders of magnitude lower (Fig. 

3B). However, substantial double mutant populations (on the order of hundreds of individuals) 

are expected for pandemic sizes greater than 50 million active infections worldwide (a plausible 

count, as of this writing, see Methods for details).  

If more than two mutations are required for a virus to escape antibody neutralization, it is 

much less likely that population-level resistance will arise immediately. Each triple mutant is 

expected to be at appreciable frequencies only when the fitness cost of immune-evading 

mutations is lower than 0.04. Specific quadruple mutants are not expected to exist at significant 

frequencies in the population due to standing genetic variation alone (Fig. 3D), for all but the 

lowest fitness costs. 

 

Single and double resistance mutants are expected to establish quickly under selection 

Even if a specific combination of mutations that confers resistance to a prophylactic 

antibody combination or vaccine is not present in the infected population before the intervention 

is released, spontaneous mutation and positive selection will eventually lead to generation and 

expansion of an escape mutant. To estimate how quickly population-level resistance to SARS-

CoV-2 antibodies will emerge under natural selection, we modeled the acquisition of multiple 

mutations over time as a fitness valley-crossing problem (see Methods for details). To acquire a 

specific combination of mutations that confers therapeutic resistance, the wild-type virus must 

transit through a valley of intermediate lower-fitness genotypes that have some, but not all, of the 

mutations required for immune escape. Previous theoretical expressions describing the expected 

time required to cross a fitness valley (25) were used to estimate the time needed for SARS-

CoV-2 to acquire a given combination of one to four mutations (Fig. 4). The time required for 



establishment of population-level resistance depends on how beneficial resistance is for virus 

transmission, and this benefit increases as more individuals in the population receive the 

antibody prophylactic. For antibodies or antibody combinations capable of being defeated by a 

single mutation, our modeling predicts the existence of a resistant fraction before deployment of 

the intervention (Fig. 4A). When examining double mutants, for pandemic sizes of 40 million or 

more, resistance to a widely deployed prophylactic combination will occur within months (Fig 

4B). However, triple and quadruple mutation combinations will take much longer to establish in 

the population, even if nAbs are used widely and exert a strong selection pressure for these 

mutants (Fig. 4C-D). These results hold under a range of intermediate fitness costs for viral 

mutants that harbor only a subset of the mutations required for escape (Fig. S3). 

 

Population-level resistance occurs more quickly at higher viral mutation rates 

The SARS-CoV-2 mutation rate is a key parameter that determines how quickly the virus 

will acquire resistance to antibody interventions. While we estimated the per transmission rate of 

generating an antibody escape mutant at 1x10-4 (Methods), differences between antibody epitope 

sizes or changes in the mutation rate of the virus population over time (26) could affect this 

effective mutation rate. We found that many individuals would be infected with single or double 

SARS-CoV-2 mutants at a range of mutation rates greater than 1x10-5 (Fig. 5A-B), while at 

higher mutation rates even triple and quadruple mutants will occur at sufficient frequencies to 

establish in the population after deployment of a prophylactic (Fig. 5C-D). Similarly, we found 

that resistance to antibody combinations requiring two or fewer mutations for resistance would 

establish quickly after deployment of an antibody prophylactic (Fig. 5E-F). If the mutation rate 



were as high as 1x10-3 per transmission, resistance could emerge against even antibody 

combinations that require the acquisition of 4 mutations (Fig. 5H). 

In summary, the ability of the virus to readily tolerate mutations that confer resistance to 

one or more nAbs means SARS-CoV-2 has a substantial evolutionary capacity to evade nAbs 

targeting a small number of antigenic regions while retaining infectivity. 

 

Discussion 
 

The spread of SARS-CoV-2 through its newfound human hosts has occurred rapidly, and 

thus far, in the absence of medical countermeasures. Numerous COVID-19 prophylactics (and 

some therapies) are explicitly focused on the spike protein (27, 28), and the immunodominance 

of the spike RBD in the natural immune response (13) implies that even vaccines that use live-

attenuated or inactivated SARS-CoV-2 will target this moiety to some extent (29). Thus, as the 

next phase of this evolutionary chess game between SARS-CoV-2 and humans unfolds, 

anticipating the virus’ counter-move to the widespread deployment of spike RBD-targeting nAbs 

has significant implications for our ability to prevent spread of the disease via an antibody based 

prophylactic strategy. 

The evolvability of SARS-CoV-2 spike protein RBD in the presence of nAbs depends on 

two things: the mutation rate in the presence of selection pressure and the mutational tolerance of 

the spike protein.  

The mutation rate of SARS-CoV-2 is in line with that of other single-strand RNA viruses, 

(30), ranging between two and four fold lower than that of influenza and HIV (1, 31)). Mutation 

rates for RNA viruses in general are among the highest known (on the order of 10-6 per base per 

viral replication cycle). When compared against many other RNA viruses, such as Hepatitis C, 



for which evolution has practical clinical consequences, SARS-CoV-2 has a relatively high 

evolutionary rate (Table S1) (32, 33). As mentioned earlier, the currently estimated mutation rate 

for SARS-CoV-2 is in the context of neutral genetic drift (20). Mutation rates themselves are 

evolvable and increase over time due to natural selection (34)- a SARS-CoV-2 RNA dependent 

RNA polymerase (RdRp) variant that increases the mutation rate by two to five times 

(eliminating the mutation rate differential with respect to HIV and influenza) has already been 

identified in clinical isolates (26).  

At the same time, the tolerance of spike protein RBD to immune-evading mutations 

appears to be relatively high. Our analyses demonstrate that experimentally determined immune 

escape mutations are capable of binding host ACE2, in many cases with little to no loss of 

affinity relative to wild-type (Fig. 2C). In fact, one prevalent RBD immune escape mutation 

(N439K) has been shown experimentally to enhance ACE2 binding and have similar in vitro 

replication fitness to wild-type virus (35). Our analyses also demonstrate that compromising 

spike RBD function (either through loss of ACE2-binding or expression levels) has a weak 

impact on in vitro infectivity (Fig. 2D). 

The baseline mutation rate of SARS-CoV-2 has likely already produced a substantial 

population of viruses with single and double nucleotide changes that confer nAb resistance due 

to standing genetic variation. These variants will establish quickly in the population under 

selection pressure. In fact, there is already precedent for this type of selective sweep, as one such 

sweep occurred early on in the SARS-CoV-2 pandemic, as the D614G mutation rose to nearly 

80% frequency in under 6 months (36). This mutation confers increased infectivity on the virus 

(37) and was readily generated in sufficient numbers to ensure its expansion. As of this writing, a 

second selective sweep appears to be underway in Europe, with the 2A.EU1 variant (38). 



Additionally, the recent outbreak in minks of a variant with a combination of mutations that 

reduce antibody binding suggests that even variants with multiple mutations can be generated 

and are viable (39). Currently, most of the SARS-CoV-2 genome is not under positive selection 

(20), but if nAbs are widely deployed as prophylactics, mutations that confer resistance via 

immune evasion will experience positive selection pressure and will have the opportunity to 

expand and render the prophylactic useless. 

The current consensus in the scientific literature is that SARS-CoV-2 mutations and 

evolution are not likely to change the course of this pandemic (31, 40, 41). One line of reasoning 

is that generating viral mutants with higher fitness is difficult because very few individual 

nucleotide changes are likely to increase viral replication, transmission, or infectivity. However, 

this argument confuses the rate of evolution in the absence of selection pressure (neutral genetic 

drift) with the rate of evolution under natural selection. To this end, our analysis suggests that 

mutations capable of evading nAbs with limited impact on viral fitness are already broadly 

present in the population (Fig. 2). The N439K immune-evading spike mutant was reported to 

maintain replicative fitness in patients (35), supporting this idea. A second line of reasoning is 

that because the SARS-CoV-2 mutation rate is relatively low, evolution will be too slow to be 

consequential. However, the reported mutation rate under drift is not particularly low, is likely to 

increase under selection pressure, and is high enough at present to generate single and double 

immune-evading mutants at a concerning frequency.  

Going forward, our work suggests strategies for designing SARS-CoV-2 prophylactics 

that are more resistant to viral evolution. First, nAbs should be used in combinations, preferably 

targeting more than two non-overlapping epitopes. Strategies for the design of prophylactic 

antibodies and vaccines should involve combining nAbs that bind to non-overlapping escape 



mutant regions, including those from smaller, distinct clusters outside the RBD. Alternatively, if 

antibodies from the same cluster are used, escape mutants must be carefully characterized to 

ensure they do not overlap (23). Second, the evolutionary pressure on the virus will determine 

the practical market size for individual nAb prophylactics. The more widely deployed the 

prophylactic, and the more effective it is, the faster it will generate resistance (Fig. 4). Third, the 

overall size of the pandemic in terms of number of active infections will play a significant role in 

whether the virus can be brought under control with nAbs as prophylactics. The effectiveness of 

a nAb prophylactic strategy for disease control will depend on how many different antibody 

combinations are deployed, how many mutations are required to evade each cocktail, and the 

extent to which their escape mutations overlap. 

Additionally, SARS-CoV-2 antigen tests where antibodies are the capture reagent (42, 

43) could impose a selective pressure on the targeted epitope(s). Our work suggests that these 

tests should be based on multiple antibodies targeting distinct epitopes.  

 This work has focused narrowly on the question of the immune-evading potential of the 

viral spike RBD to prophylactics based on nAbs. That said, the questions addressed here are 

relevant to the prophylactic viability of any modality, including vaccines that rely on humoral 

immunity, which can be evaded by a series of single-nucleotide mutations. Similar questions can 

and should be asked of the viral capacity to evade the cellular adaptive immune response and the 

ability of other viral proteins to escape nAbs. Additionally, reports that SARS-CoV-2 mutates 

sufficiently rapidly within each patient to form a quasispecies suggests that genetic diversity 

within hosts may be sufficient to lead to acquired resistance to therapeutic nAbs (44). 



 We are at the beginning of a protracted existential conflict with SARS-CoV-2, and it is 

the virus’ ability to evolve around selection pressures that will determine the ultimate tractability 

of our efforts at disease control.  



 

 
 
Figure 1. Epitopes for antibodies targeting the spike protein RBD overlap substantially. A. 
Contact residues for spike protein RBD antibody epitopes. Colors and symbols denote antibody 
clusters: grey squares: cluster 1, yellow diamonds: cluster 2, green circles: cluster 3. B. RBD 
structure with each residue colored by the number of antibody epitopes including it, compiled 
from PDB data. C. RBD structure, colored by the number of antibody epitopes that each residue 
is part of, by epitope cluster. 
  



 
 
 
Figure 2. The spike protein RBD tolerates mutations that confer resistance to one or more 
nAbs. A. Spike protein RBD structure, with each residue colored by the number of distinct 
amino acid changes present in the GISAID sequencing database. B. RBD structure with residues 
at which mutations have been shown to confer escape from antibody neutralization marked in 
blue. C. Experimentally-measured effects of immune escape mutations on ACE2 binding, as 
taken from (18). D. ROC curve showing the low predictive value of ACE2 binding 
measurements (grey) and expression (red) for in vitro infectivity of SARS-CoV-2 mutants. Area 
under the curve (AUC) is 0.67 for ACE2 binding as a predictor of infectivity and 0.72 for RBD 
expression as a predictor of infectivity. 
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Figure 3. SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected 
to exist at high numbers. A-D. The expected number of individuals infected with a specific 
single (A), double (B), triple (C), or quadruple (D) SARS-CoV-2 mutant viruses at different 
values of the fitness cost. For all panels, the colors denote the total number of individuals with 
active SARS-CoV-2 infection globally. The horizontal dashed line is the drift boundary 
calculated at a fitness benefit of 0.1 for the mutation combination.  
  



 
 
Figure 4. Resistance to single or double antibody combinations will develop quickly under 
positive selection pressure. A-D. Expected time to establishment of a successful single (A), 
double (B), triple (C), or quadruple (D) immune escape mutant assuming a per-site per-
transmission mutation rate of 1x10-4. The advantageous antibody resistant phenotype is acquired 
only after a specific combination of 1-4 mutations is present in the same virus. For all panels, the 
colors denote the total number of individuals with active SARS-CoV-2 infection. The fitness cost 
for each intermediate mutant is 0.05. 
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Figure 5. Resistance to single or double antibody combinations will develop quickly across 
a range of SARS-CoV-2 mutation rates. A-D. The expected number of individuals infected 
with a specific single (A), double (B), triple (C), or quadruple (D) SARS-CoV-2 mutant viruses 
at different values of the per transmission mutation rate. E-H. Expected time to establishment of 
a successful single (E), double (F), triple (G), or quadruple (H) immune escape. The fitness 
benefit of resistance is 0.2, corresponding to 24% of the population receiving an effective 
prophylactic. For all panels, the colors denote the total number of individuals with active SARS-
CoV-2 infection. The fitness cost for each intermediate mutant is 0.05. 

A BSingle mutants Double mutants

Triple mutants Quadruple mutants

Number of infected individuals (millons)

C D

5     10    20    40     80   160  320   640 

E FSingle mutants Double mutants

Triple mutants Quadruple mutantsG H



References 
 
1.  Z. Zhao, H. Li, X. Wu, Y. Zhong, K. Zhang, Y.-P. Zhang, E. Boerwinkle, Y.-X. Fu, 

Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol 
Biol. 4 (2004), doi:10.1186/1471-2148-4-21. 

2.  L. van Dorp, M. Acman, D. Richard, L. P. Shaw, C. E. Ford, L. Ormond, C. J. Owen, J. 
Pang, C. C. S. Tan, F. A. T. Boshier, A. T. Ortiz, F. Balloux, Emergence of genomic 
diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution. 83, 
104351 (2020). 

3.  CDC, How Flu Viruses Can Change. Centers for Disease Control and Prevention (2019), 
(available at https://www.cdc.gov/flu/about/viruses/change.htm). 

4.  X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. 
Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. 
Zhang, B. J. Cowling, F. Li, G. M. Leung, Temporal dynamics in viral shedding and 
transmissibility of COVID-19. Nat Med. 26, 672–675 (2020). 

5.  K. K.-W. To, O. T.-Y. Tsang, W.-S. Leung, A. R. Tam, T.-C. Wu, D. C. Lung, C. C.-Y. 
Yip, J.-P. Cai, J. M.-C. Chan, T. S.-H. Chik, D. P.-L. Lau, C. Y.-C. Choi, L.-L. Chen, W.-
M. Chan, K.-H. Chan, J. D. Ip, A. C.-K. Ng, R. W.-S. Poon, C.-T. Luo, V. C.-C. Cheng, J. 
F.-W. Chan, I. F.-N. Hung, Z. Chen, H. Chen, K.-Y. Yuen, Temporal profiles of viral load 
in posterior oropharyngeal saliva samples and serum antibody responses during infection by 
SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases. 20, 565–574 
(2020). 

6.  A. Berrio, V. Gartner, G. A. Wray, Positive selection within the genomes of SARS-CoV-2 
and other Coronaviruses independent of impact on protein function. PeerJ. 8, e10234 
(2020). 

7.  I. V. Babkin, I. N. Babkina, The Origin of the Variola Virus. Viruses. 7, 1100–1112 (2015). 

8.  B. Thyagarajan, J. D. Bloom, The inherent mutational tolerance and antigenic evolvability 
of influenza hemagglutinin. Elife. 3 (2014), doi:10.7554/eLife.03300. 

9.  A. A. Quadeer, J. P. Barton, A. K. Chakraborty, M. R. McKay, Deconvolving mutational 
patterns of poliovirus outbreaks reveals its intrinsic fitness landscape. Nature 
Communications. 11, 377 (2020). 

10.  C. J. Graves, V. I. D. Ros, B. Stevenson, P. D. Sniegowski, D. Brisson, Natural selection 
promotes antigenic evolvability. PLoS Pathog. 9, e1003766 (2013). 

11.  M. Yuan, H. Liu, N. C. Wu, C.-C. D. Lee, X. Zhu, F. Zhao, D. Huang, W. Yu, Y. Hua, H. 
Tien, T. F. Rogers, E. Landais, D. Sok, J. G. Jardine, D. R. Burton, I. A. Wilson, Structural 
basis of a shared antibody response to SARS-CoV-2. Science. 369, 1119–1123 (2020). 

12.  M. Ester, H.-P. Kriegel, J. Sander, X. Xu, (AAAI Press, Portland, OR, 1996), pp. 226–231. 



13.  L. Piccoli, Y.-J. Park, M. A. Tortorici, N. Czudnochowski, A. C. Walls, M. Beltramello, C. 
Silacci-Fregni, D. Pinto, L. E. Rosen, J. E. Bowen, O. J. Acton, S. Jaconi, B. Guarino, A. 
Minola, F. Zatta, N. Sprugasci, J. Bassi, A. Peter, A. D. Marco, J. C. Nix, F. Mele, S. Jovic, 
B. F. Rodriguez, S. V. Gupta, F. Jin, G. Piumatti, G. L. Presti, A. F. Pellanda, M. 
Biggiogero, M. Tarkowski, M. S. Pizzuto, E. Cameroni, C. Havenar-Daughton, M. 
Smithey, D. Hong, V. Lepori, E. Albanese, A. Ceschi, E. Bernasconi, L. Elzi, P. Ferrari, C. 
Garzoni, A. Riva, G. Snell, F. Sallusto, K. Fink, H. W. Virgin, A. Lanzavecchia, D. Corti, 
D. Veesler, Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike 
Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 183, 1024-
1042.e21 (2020). 

14.  S. Elbe, G. Buckland‐Merrett, Data, disease and diplomacy: GISAID’s innovative 
contribution to global health. Global Challenges. 1, 33–46 (2017). 

15.  A. Baum, B. O. Fulton, E. Wloga, R. Copin, K. E. Pascal, V. Russo, S. Giordano, K. Lanza, 
N. Negron, M. Ni, Y. Wei, G. S. Atwal, A. J. Murphy, N. Stahl, G. D. Yancopoulos, C. A. 
Kyratsous, Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational 
escape seen with individual antibodies. Science. 369, 1014–1018 (2020). 

16.  F. Schmidt, Y. Weisblum, F. Muecksch, H.-H. Hoffmann, E. Michailidis, J. C. C. Lorenzi, 
P. Mendoza, M. Rutkowska, E. Bednarski, C. Gaebler, M. Agudelo, A. Cho, Z. Wang, A. 
Gazumyan, M. Cipolla, M. Caskey, D. F. Robbiani, M. C. Nussenzweig, C. M. Rice, T. 
Hatziioannou, P. D. Bieniasz, Measuring SARS-CoV-2 neutralizing antibody activity using 
pseudotyped and chimeric viruses. J Exp Med. 217 (2020), doi:10.1084/jem.20201181. 

17.  Q. Li, J. Wu, J. Nie, L. Zhang, H. Hao, S. Liu, C. Zhao, Q. Zhang, H. Liu, L. Nie, H. Qin, 
M. Wang, Q. Lu, X. Li, Q. Sun, J. Liu, L. Zhang, X. Li, W. Huang, Y. Wang, The Impact 
of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 0 (2020), 
doi:10.1016/j.cell.2020.07.012. 

18.  T. N. Starr, A. J. Greaney, S. K. Hilton, D. Ellis, K. H. D. Crawford, A. S. Dingens, M. J. 
Navarro, J. E. Bowen, M. A. Tortorici, A. C. Walls, N. P. King, D. Veesler, J. D. Bloom, 
Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints 
on Folding and ACE2 Binding. Cell. 182, 1295–1310 (2020). 

19.  D. Kühnert, R. Kouyos, G. Shirreff, J. Pečerska, A. U. Scherrer, J. Böni, S. Yerly, T. 
Klimkait, V. Aubert, H. F. Günthard, T. Stadler, S. Bonhoeffer, Quantifying the fitness cost 
of HIV-1 drug resistance mutations through phylodynamics. PLoS Pathog. 14 (2018), 
doi:10.1371/journal.ppat.1006895. 

20.  R. Cagliani, D. Forni, M. Clerici, M. Sironi, Computational Inference of Selection 
Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome 
Coronavirus 2. Journal of Virology. 94 (2020), doi:10.1128/JVI.00411-20. 

21.  Q. Li, J. Wu, J. Nie, L. Zhang, H. Hao, S. Liu, C. Zhao, Q. Zhang, H. Liu, L. Nie, H. Qin, 
M. Wang, Q. Lu, X. Li, Q. Sun, J. Liu, L. Zhang, X. Li, W. Huang, Y. Wang, The Impact 
of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 182, 1284-
1294.e9 (2020). 



22.  R. M. Ribeiro, S. Bonhoeffer, M. A. Nowak, The frequency of resistant mutant virus before 
antiviral therapy. AIDS. 12, 461–465 (1998). 

23.  A. J. Greaney, T. N. Starr, P. Gilchuk, S. J. Zost, E. Binshtein, A. N. Loes, S. K. Hilton, J. 
Huddleston, R. Eguia, K. H. D. Crawford, A. S. Dingens, R. S. Nargi, R. E. Sutton, N. 
Suryadevara, P. W. Rothlauf, Z. Liu, S. P. J. Whelan, R. H. Carnahan, J. E. Crowe, J. D. 
Bloom, bioRxiv, in press, doi:10.1101/2020.09.10.292078. 

24.  I. M. Rouzine, A. Rodrigo, J. M. Coffin, Transition between Stochastic Evolution and 
Deterministic Evolution in the Presence of Selection: General Theory and Application to 
Virology. Microbiol. Mol. Biol. Rev. 65, 151–185 (2001). 

25.  D. B. Weissman, M. M. Desai, D. S. Fisher, M. W. Feldman, The Rate at Which Asexual 
Populations Cross Fitness Valleys. Theor Popul Biol. 75, 286–300 (2009). 

26.  M. Pachetti, B. Marini, F. Benedetti, F. Giudici, E. Mauro, P. Storici, C. Masciovecchio, S. 
Angeletti, M. Ciccozzi, R. C. Gallo, D. Zella, R. Ippodrino, Emerging SARS-CoV-2 
mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of 
Translational Medicine. 18, 179 (2020). 

27.  F. Amanat, F. Krammer, SARS-CoV-2 Vaccines: Status Report. Immunity. 52, 583–589 
(2020). 

28.  A. Baum, D. Ajithdoss, R. Copin, A. Zhou, K. Lanza, N. Negron, M. Ni, Y. Wei, K. 
Mohammadi, B. Musser, G. S. Atwal, A. Oyejide, Y. Goez-Gazi, J. Dutton, E. Clemmons, 
H. M. Staples, C. Bartley, B. Klaffke, K. Alfson, M. Gazi, O. Gonzalez, E. Dick, R. 
Carrion, L. Pessaint, M. Porto, A. Cook, R. Brown, V. Ali, J. Greenhouse, T. Taylor, H. 
Andersen, M. G. Lewis, N. Stahl, A. J. Murphy, G. D. Yancopoulos, C. A. Kyratsous, 
REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and 
hamsters. Science (2020), doi:10.1126/science.abe2402. 

29.  Q. Gao, L. Bao, H. Mao, L. Wang, K. Xu, M. Yang, Y. Li, L. Zhu, N. Wang, Z. Lv, H. 
Gao, X. Ge, B. Kan, Y. Hu, J. Liu, F. Cai, D. Jiang, Y. Yin, C. Qin, J. Li, X. Gong, X. Lou, 
W. Shi, D. Wu, H. Zhang, L. Zhu, W. Deng, Y. Li, J. Lu, C. Li, X. Wang, W. Yin, Y. 
Zhang, C. Qin, Development of an inactivated vaccine candidate for SARS-CoV-2. 
Science. 369, 77–81 (2020). 

30.  K. M. Peck, A. S. Lauring, Complexities of Viral Mutation Rates. Journal of Virology. 92 
(2018), doi:10.1128/JVI.01031-17. 

31.  E. Callaway, The coronavirus is mutating — does it matter? Nature. 585, 174–177 (2020). 

32.  F. A. Di Lello, A. C. A. Culasso, R. H. Campos, Inter and intrapatient evolution of hepatitis 
C virus. Ann Hepatol. 14, 442–449 (2015). 

33.  T. Khera, D. Todt, K. Vercauteren, C. P. McClure, L. Verhoye, A. Farhoudi, S. Bhuju, R. 
Geffers, T. F. Baumert, E. Steinmann, P. Meuleman, T. Pietschmann, R. J. P. Brown, 



Tracking HCV protease population diversity during transmission and susceptibility of 
founder populations to antiviral therapy. Antiviral Res. 139, 129–137 (2017). 

34.  S. Duffy, Why are RNA virus mutation rates so damn high? PLoS Biol. 16 (2018), 
doi:10.1371/journal.pbio.3000003. 

35.  E. C. Thomson, L. E. Rosen, J. G. Shepherd, R. Spreafico, A. da S. Filipe, J. A. 
Wojcechowskyj, C. Davis, L. Piccoli, D. J. Pascall, J. Dillen, S. Lytras, N. Czudnochowski, 
R. Shah, M. Meury, N. Jesudason, A. D. Marco, K. Li, J. Bassi, A. O’Toole, D. Pinto, R. 
M. Colquhoun, K. Culap, B. Jackson, F. Zatta, A. Rambaut, S. Jaconi, V. B. Sreenu, J. Nix, 
R. F. Jarrett, M. Beltramello, K. Nomikou, M. Pizzuto, L. Tong, E. Cameroni, N. Johnson, 
A. Wickenhagen, A. Ceschi, D. Mair, P. Ferrari, K. Smollett, F. Sallusto, S. Carmichael, C. 
Garzoni, J. Nichols, M. Galli, J. Hughes, A. Riva, A. Ho, M. G. Semple, P. J. Openshaw, K. 
Baillie, T. I. Investigators, C.-19 G. U. (COG-U. Consortium, S. J. Rihn, S. J. Lycett, H. W. 
Virgin, A. Telenti, D. Corti, D. L. Robertson, G. Snell, bioRxiv, in press, 
doi:10.1101/2020.11.04.355842. 

36.  B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. 
Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley, K. M. Hastie, M. D. Parker, D. G. 
Partridge, C. M. Evans, T. M. Freeman, T. I. de Silva, C. McDanal, L. G. Perez, H. Tang, 
A. Moon-Walker, S. P. Whelan, C. C. LaBranche, E. O. Saphire, D. C. Montefiori, 
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the 
COVID-19 Virus. Cell. 182, 812-827.e19 (2020). 

37.  J. A. Plante, Y. Liu, J. Liu, H. Xia, B. A. Johnson, K. G. Lokugamage, X. Zhang, A. E. 
Muruato, J. Zou, C. R. Fontes-Garfias, D. Mirchandani, D. Scharton, J. P. Bilello, Z. Ku, Z. 
An, B. Kalveram, A. N. Freiberg, V. D. Menachery, X. Xie, K. S. Plante, S. C. Weaver, P.-
Y. Shi, Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 1–9 (2020). 

38.  E. B. Hodcroft, M. Zuber, S. Nadeau, I. Comas, F. G. Candelas, S.-S. Consortium, T. 
Stadler, R. A. Neher, medRxiv, in press, doi:10.1101/2020.10.25.20219063. 

39.  WHO | SARS-CoV-2 mink-associated variant strain – Denmark. WHO, (available at 
http://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/). 

40.  N. D. Grubaugh, M. E. Petrone, E. C. Holmes, We shouldn’t worry when a virus mutates 
during disease outbreaks. Nature Microbiology. 5, 529–530 (2020). 

41.  B. Dearlove, E. Lewitus, H. Bai, Y. Li, D. B. Reeves, M. G. Joyce, P. T. Scott, M. F. 
Amare, S. Vasan, N. L. Michael, K. Modjarrad, M. Rolland, A SARS-CoV-2 vaccine 
candidate would likely match all currently circulating variants. Proc Natl Acad Sci USA. 
117, 23652–23662 (2020). 

42.  Abbott’s Fast, $5, 15-Minute, Easy-to-Use COVID-19 Antigen Test Receives FDA 
Emergency Use Authorization; Mobile App Displays Test Results to Help Our Return to 
Daily Life; Ramping Production to 50 Million Tests a Month. Abbott MediaRoom, 
(available at https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-
Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-



Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-
Million-Tests-a-Month). 

43.  Y. Kyosei, M. Namba, S. Yamura, R. Takeuchi, N. Aoki, K. Nakaishi, S. Watabe, E. Ito, 
Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike 
Proteins of SARS-CoV-2. Diagnostics. 10, 594 (2020). 

44.  M. Z. Chaudhry, K. Eschke, M. Grashoff, L. Abassi, Y. Kim, L. Brunotte, S. Ludwig, Ž. M. 
Šafranko, I.-C. Kurolt, A. Markotić, A. Kröger, F. Klawonn, L. Cicin-Sain, bioRxiv, in 
press, doi:10.1101/2020.08.10.241414. 

45.  H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. 
Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 

46.  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, 
M. Perrot, É. Duchesnay, Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research. 12, 2825–2830 (2011). 

47.  J. Hu, C.-L. He, Q.-Z. Gao, G.-J. Zhang, X.-X. Cao, Q.-X. Long, H.-J. Deng, L.-Y. Huang, 
J. Chen, K. Wang, N. Tang, A.-L. Huang, bioRxiv, in press, 
doi:10.1101/2020.06.20.161323. 

48.  A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, F. Butler, J. 
Griffin, E. A. Lane, C. McAloon, K. O’Brien, P. Wall, K. A. Walsh, S. J. More, Inferred 
duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of 
available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open. 10, 
e039856 (2020). 

49.  Worldometers.info, Coronavirus Update (Live), (available at 
https://www.worldometers.info/coronavirus/). 

50.  K. E. Johnson, M. Stoddard, R. P. Nolan, D. E. White, N. Hochberg, A. Chakravarty, 
medRxiv, in press, doi:10.1101/2020.08.19.20177550. 

51.  S. Anand, M. Montez-Rath, J. Han, J. Bozeman, R. Kerschmann, P. Beyer, J. Parsonnet, G. 
M. Chertow, Prevalence of SARS-CoV-2 antibodies in a large nationwide sample of 
patients on dialysis in the USA: a cross-sectional study. The Lancet. 396, 1335–1344 
(2020). 

 
 
  



 
Materials and Methods 
 
Compilation of published neutralizing antibody epitopes 
The authors performed a comprehensive search of all entries in the Protein Data Bank (PDB) 
(45) as of September 1st, 2020 which matched the criteria “Source Organism Taxonomy Name 
equals SARS-2 AND Source Organism Taxonomy Name equals Homo sapiens”. Structures were 
included if there were patient-derived nAbs present and the authors reported the binding 
residues. Structures were excluded if they were not patient-derived, if they were not nAbs, or if 
the authors did not report the binding epitope because the resolution was too low to identify it 
precisely. Additionally, other epitopes that met the inclusion criteria but were not found in the 
PDB were included on an ad hoc basis. The structures used are listed in Table S3. 
 
After the search was complete, it was determined that there were too few epitopes reported 
outside of the RBD to attempt clustering in those residues. Thus, the clustering analysis was 
limited to the RBD. The RBD was defined as in (18). 
 
Clustering of antibody epitopes 
The antibodies were clustered using the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm (12). The distance function used to compare two epitopes was the 
median distance between residues in the epitopes. The maximum distance between two epitopes 
in one cluster was set at 30 residues. The minimum number of epitopes per cluster was set at 2. 
Epitopes classified as noise were assigned to their own clusters. These parameters were set based 
on a subset of 9 antibodies and used for all subsequent clustering. They were also tested on larger 
sets that included non-neutralizing antibodies (data not shown). Clustering was done using 
Python version 3.7 with the scikit-learn package (46). 
 
ACE2 binding affinity and RBD predictivity for pseudoviral infectivity 
Tolerability of SARS-CoV-2 to changes in ACE2 binding affinity or RBD expression were 
examined based on a receiver operating characteristic (ROC) analysis. Based on publications 
measuring the impact of 44 spike RBD mutations on the in vitro infectivity of SARS-CoV-2 
pseudovirus, we examined the predictivity of changes in RBD binding to ACE2 or expression 
according to (18) for greater than 10% loss of infectivity as measured by luciferase reporter 
pseudoviral assay (16). These mutants were either observed circulating in the population in 
GISAID (21) or experimentally identified to confer escape from nAbs (18, 47). Predictivity of 
ACE2 binding affinity or RBD expression for in vitro infectivity was evaluated based on ability 
to predict a 90% or greater infectivity relative to the WT strain.  
 
Expected number of mutants without positive selection 
To investigate the emergence of SARS-CoV-2 resistance to nAbs, we modeled virus 
transmission dynamics using a modified deterministic susceptible-infectious-recovered (SIR) 
model with mutation. The simplest version of this model includes two viral genotypes, wild-type 
(WT) and mutant viruses with a specific single nucleotide change. At the population level there 
are four different compartments: susceptible individuals (S), individuals infected with WT virus 
(I0), infected with mutant virus (I1), and recovered or resistant to infection from WT virus (R). 
The number of individuals in each compartment obey the following differential equations: 



 

, 
 
where β is the transmission rate of WT virus, μ is the per transmission probability of mutation at 
a specific site, s is the fitness cost to transmission of the mutation, and γ is the recovery rate from 
the infection. The infected compartments of this SIR model have the same mathematical 
description as the virus-infected cells in the intrahost virus dynamics model presented by Ribeiro 
and co-workers (22), assuming the birth and death rates of uninfected cells in the intrahost model 
is negligible. We also assume that the frequency of recovered individuals in the population is 
small enough so S and R can be treated as constant. Therefore, for the frequency of virus mutants 
present in the population at steady state before establishment of widespread immunity or 
vaccination, we used the frequency of individuals infected with a virus with a single mutation f1 
= μ/s, which agrees with the expected frequency of single mutants under mutation-selection 
equilibrium (25). As given in (22), the frequency of viral mutants with k mutations is  
 

. 
  
Expected time to development of population-level resistance under positive selection 
If a substantial fraction of the population is immune to the WT virus (either due to lasting 
immunity after recovering from the infection, vaccination, or administration of therapeutic 
antibodies), viruses with antibody escape mutations will have a fitness advantage over the WT 
virus. This advantage comes from the ability of the mutant virus to infect individuals who are 
immune to the WT virus and depends on the fraction of the population who are immune. If a 
single mutant has the ability to infect recovered/resistant individuals, the SIR model equations 
for infected individuals change to 
 

 
 

and the effective transmission rate for the mutant virus is given by .  
 

The selective advantage w of the mutant virus is therefore . 
 
In order for a virus with one or more mutations that confer immune escape to expand 
deterministically due to positive selection and establish in the population, the variant must first 
be created through mutation of a single virion. Then, the mutant virus must infect enough 
individuals so that it is unlikely to go extinct due to stochastic drift. Assuming the total number 
of infected individuals N is constant, if a single mutation is sufficient to lead to immune escape, 



the time needed to establish an immune escape mutant is exponentially distributed with expected 
time 1/Nμw generations (25). 
 
To estimate the time needed for establishment of double-, triple-, or higher-order mutants that 
confer immune escape, we adapted previously reported work on the dynamics of asexual 
populations crossing fitness valleys (25). If k mutations are required for immune escape and all 
intermediates with less than k mutations have fitness cost s, the time τk to establishment of the k-
mutant was approximated as 

, 
 
where γ is Euler’s constant, , and the probability pi of an i-mutant to be 
successful was approximated as 
 

. 
 
This approximation holds for intermediate population sizes (Nμ < 1). Following the argument for 
large populations in (25), when Nμ > 1 we treated mutants with few mutations deterministically. 
We again used the results in (22) to estimate the frequency of i-mutants at steady state under 
mutation-selection equilibrium fi for i <= k. The minimum value of i for which the estimated i-
mutant population size Nfi was < 1/μ was taken as the mutant with the most mutations that could 
be treated deterministically as a constant-sized population. Denoting this number of mutations as 
j, the modified expression for the expected time to escape for large population sizes is 
 

. 
 
Evolutionary model parameter value selection 
The SARS-CoV-2 infection length was set to 2 weeks, based on published estimates of 
infectious period length (48). 
 
The effective rate of acquiring nucleotide substitutions that escape a given nAb was estimated to 
be 1x10-4 per transmission. The overall single nucleotide substitution rate has been estimated at 
approximately 1x10-3 per site per year from multiple phylogenetic analyses of global SARS-
CoV-2 genomic sequences (2), which is a 3.8x10-5 per site per transmission mutation rate 
assuming a 2 week infection generation time. However, since multiple different single nucleotide 
mutations have been shown to confer resistance to many nAbs (23), we estimated the effective 
mutation rate (defined as the per transmission rate of producing a mutation that generates 
resistance to a particular nAb) to be 2-3x higher than the rate of producing a particular nucleotide 
substitution. The effect of changing the mutation rate on the mutant frequency and escape time 
estimates is shown in Fig. 5. 
 
We assumed that, without selective pressure imposed by deployment of an intervention, mutant 
virus is less fit than wild-type virus and is not transmitted as effectively. A similar fitness cost is 



assumed to apply to mutant intermediates that only harbor a subset of mutations required for 
escape from an antibody combination. This fitness cost to viral transmission is difficult to 
directly measure, so we used a range of fitness cost from 0.01 to 0.1, corresponding to a 1-10% 
reduction in transmission rate for mutant viruses. These fitness costs are of similar magnitude to 
those measured for HIV drug resistance mutations in treatment-naïve patients (19) and are 
broadly justified by the limited impact of spike RBD mutations on ACE2 binding and the limited 
ability of ACE2 binding and expression to predict infectivity (Fig. 2). 
 
We estimated the total number of individuals infected with SARS-CoV-2 using the number of 
diagnosed cases. As of 11/8/20, the number of active diagnosed cases worldwide is 14 million 
(49), and the number of infections is expected to be 5-10 times the number of diagnosed cases, as 
determined by modeling (50) and seroprevalence studies (51). 
 
 



Table S1. Evolutionary rates of pathogenic RNA viruses 
 

Virus Type Evolutionary rate 
(10-3 sub/site/year) Reference 

HIV Retrovirus 2.02 – 16.8 (1) 
Poliovirus +ssRNA 10.3 (2) 
Influenza A -ssRNA 1.43 - 1.16 (3) 
SARS-CoV +ssRNA 7.8 (4) 
SARS-CoV-2 +ssRNA 0.8 - 6.58 (5) 
Rotavirus dsRNA 0.73 (6) 
Hepatitis C virus +ssRNA 0.48 – 0.91 (7) 
MERS-CoV +ssRNA 0.24 (4) 
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 Table S2. Antibody escape mutants with highest ACE2 binding affinities. 
 

Antibody % Change in Binding Affinity for Optimal 
Escape Mutant 

S309 120% 
EY6A 155% 
S2A4 120% 
S304 155% 

S2M11 117% 
B38 200% 

C105 178% 
P2B-2F6 141% 

CB6 151% 
CC12.1 200% 
CC12.3 200% 
CV30 200% 

Fab 2-4 178% 
COVA2-04 200% 
COVA2-39 200% 

S2H13 200% 
S2H14 200% 
S2E12 123% 

REGN10933 178% 
REGN10987 200% 

 
 



Table S3. Antibody structures used. 
 

Antibody Name Structure Type Source 
S309 Cryo-electron Microscopy and Crystal Structure (1) 
EY6A Cryo-electron Microscopy and Crystal Structure (2) 

 
S2A4 Cryo-electron Microscopy and Crystal Structure (3) 
S304 Cryo-electron Microscopy and Crystal Structure (3) 
S2M11 Cryo-electron Microscopy (4) 

 
B38 Crystal Structure (5)  
C105 Cryo-electron Microscopy of complex. Crystal 

structure of antibody. 
(6) 
 

P2B-2F6 Crystal Structure (7) 
CB6 Crystal Structure (8) 
CC12.1 Crystal Structure (9)  
CC12.3 Crystal Structure (9) 
CV30 Crystal Structure (10) 
Fab 2-4 Cryo-electron Microscopy (11) 
COVA2-04 Crystal Structure (12) 
COVA2-39 Crystal Structure (12) 
S2H13 Cryo-electron Microscopy (3) 
S2H14 Cryo-electron Microscopy and Crystal Structure (3) 
S2E12 Cryo-electron Microscopy of complex. Crystal 

structure of antibody. 
(4) 
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Figure S1. Glycosylation in SARS-CoV-2 spike protein RBD. Glycosylated residues are marked in 
blue, while the remainder of residues are colored by the number of epitopes that contain the 
residue (red color bar).  
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Figure S2. Relationship between the fraction of the population that receive a prophylactic that 
is completely effective in preventing infection from wild-type virus and the strength of selection 
for an escape mutant.  
  



 
 
Figure S3. Time required to establish a resistant viral single (A), double (B), triple (C), or 
quadruple (D) mutant with different fitness costs for intermediate mutants. In our model, viral 
variants with some, but not all, mutations required for resistance to an antibody intervention 
have a fitness cost (ranging from 1-9% less infectious). Increasing the fitness cost of these 
intermediates prolongs the time required for a resistant variant with a specific combination of 
2-4 mutations (B-D) to establish in the population. 
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