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Background: Recent research points towards age- and sex-specific transmission of COVID-19 infections
and their outcomes. The effect of sex, however, has been overlooked in past modelling approaches of
COVID-19 infections.

Aim: The aim of our study is to develop an age- and sex-specific model of COVID-19 transmission and
to explore how contact changes effect COVID-19 infection and death rates.

Method: We consider a compartment model to establish forecasts of the COVID-19 epidemic, in which
the compartments are subdivided into different age groups and genders. Estimated contact patterns,
based on other studies, are incorporated to account for age- and sex-specific social behaviour. The model
is fitted to real data and used for assessing hypothetical scenarios with regard to lockdown measures.

Results: Under current mitigation measures as of mid-August, active COVID-19 cases will double by
the end of October 2020. Infection rates will be highest among the young and working ages, but will also
rise among the old. Sex ratios reveal higher infection risks among women than men at working ages; the
opposite holds true at old age. Death rates in all age groups are twice as high among men as women.
Small changes in contact rates at working and young ages may have a considerable effect on infections
and mortality at old age, with elderly men being always at higher risk of infection and mortality.

Discussion: Our results underline the high importance of the non-pharmaceutical mitigation measures
in low-infection phases of the pandemic to prevent that an increase in contact rates leads to higher
mortality among the elderly. Gender differences in contact rates, in addition to biological mechanisms
related to the immune system, may contribute to sex-specific infection rates and their mortality outcome.
To further explore possible pathways, more data on COVID-19 transmission is needed which includes
socio-demographic information.
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1 Introduction

Right from the start of the COVID-19 pandemic, the importance of age on COVID-19 contraction and
fatality has been recognised (among others, Esteve et al. (2020), Dudel et al. (2020), Kulu and Dorey
(2020), Wu and McGoogan (2020), Karagiannidis et al. (2020)), as well as of coresidence patterns (Esteve
et al. (2020)). Compartment and agent-based models aiming at projecting the spread of the disease have
incorporated age as an important variable of transmission (e.g. Davies et al. (2020), Deforche (2020),
Colombo et al. (2020), Blyuss and Kyrychko (2020), Balabdaoui and Mohr (2020)), in addition to other
characteristics such as space (Colombo et al. (2020)) or contact patterns (Zhang et al. (2020)). An
important determinant, which appeared to be largely overlooked in modelling exercises, is sex. In the
following, we will refer to sex when discussing technical details and biological factors, and gender, when
referring to social factors. While studies generally notice that infection and in particular fatality rates
were higher among elderly men than women, the reverse appears to be true for infections at working ages
(Sobotka et al. (2020)). In Germany, during the first wave of the pandemic through mid-May, infection
rates were higher among women than men at working ages (Figure 1), while they were higher for men
thereafter.
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Figure 1: Sex ratio (male/female) of COVID-19 incidence through 15 May 2020 for German Laender by
age, Data Source: Robert Koch-Institut Dashboard, authors’ calculations

One reason for this difference, in addition to biological factors (see discussion below) may lie in gender-
specific contact rates. Estimates of contact rates (van de Kassteele et al. (2017)) based on the POLYMOD
study (Mossong et al. (2008)) showed that household, workplace and school structures strongly shape age-
and gender-specific contacts made by individuals. Using the contact matrices from the latter study and
calculating the ratio of the age-specific number of contacts for men and women (contacts men/contacts
women) a clear pattern emerges (Figure 2): among ages 20–39, contacts are between 13%–26% higher
among women, while among ages 50 to 69, they are 9%–14% higher among men. At the highest ages,
the pattern reverses again, with women having slightly more contacts.
The aim of our study is to model COVID-19 transmission taking into account the two crucial demographic
factors age and sex. We develop an SEIRD-model that incorporates age- and sex-specific contacts, which
shape transmission rates. The model may be used for short- and long-term projections, our example
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Figure 2: Ratio of the average number of contacts among men compared to women, Data Source: (van
de Kassteele et al. (2017)).

explores short-term effects up to two and a half months of hypothetical changes in contact rates. The
model can be used to develop scenarios which address the effects of age- and gender-specific changes in
contacts due to the closing of schools, kindergarten and shops, or work in home office, as well as to explore
the effect lifting of these measures. While we are not able to address these effects separately, we translate
them into hypothetical changes in age- and sex-specific contact rates by developing four scenarios. The
first scenario reflects a continuation of the situation of mid-August 2020; the second assumes a lifting of
measures mainly at working ages, and the third extends this to children, adolescents, and young adults.
The manuscript is structured as follows: First we introduce the basic SEIRD model and discuss how age-
and sex-specific contact modelling was incorporated. We present the numerical implementation of the
model, model fitting and the development of uncertainty intervals. Then we introduce our scenarios and
present the projection results in terms of number of active infections (prevalence), and cumulated number
of deaths by 31 October 2020. We also explore how increasing contacts affect sex-ratios in infections and
deaths. We close with a discussion of the results, the strengths and limitations of our model, as well as
policy implications.

2 Methods
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Figure 3: SEIRD compartment model with 5 transitions. (S → E: susceptible person becomes exposed
to the virus, E → I: exposed person becomes infectious, E → R: exposed person is removed due to
recovery, I → R: infectious person is removed due to recovery, I → D: infectious person is removed due
to death)
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The core of the epidemiological model is an SEIRD compartment model (see Hethcote (2000)) consisting
of the epidemiological states S (susceptible, i.e. not yet exposed to the virus), E (exposed, but not
infectious), I (infectious), R (recovered), and D (dead). The compartments represent individual states
with respect to contagious diseases, i.e. COVID-19 in this case, and the transitions between them are
considered on a population level (see Figure 3). In this sense, the compartment model is used to describe
a population process, but is not intended to model individual processes with respect to COVID-19.
The following essential rate and fraction parameters are involved in the model:

� β (contact rate): the average number of individual contacts per specified timespan that are poten-
tially sufficient to transmit the virus (see below for detailed specification)

� ρ (manifestation index, fraction): the fraction of people who become infectious at some time after
being exposed to the virus

� ε (incubation rate): the mean rate of exposed people to become infectious; 1/ε is the average
incubation time

� γ (recovery rate): the mean rate of exiting the infectious state, either to recovery or death; 1/γ is
the average duration of the disease

� τ (infection fatality rate): the fraction of people who die due to COVID-19

2.1 Contact modeling

The contact model is considered for a population of N individuals, which is decomposed into A disjoint
groups. For each group a = 1, ..., A, the proportion of individuals with regard to the whole population is
Na/N , where Na denotes the number of individuals in group a. For any a ∈ {1, .., A} and b ∈ {1, ..., A},
let λab be the average number of contacts of an arbitrary individual from group a with individuals in
group b during a fixed base time unit δ, e.g. 24 hours.
More specifically, define ηab(t1, t2) as the random number of contacts of an individual in group a with

any individual from group b over the timespan [t1, t2] and ηa∗(t1, t2) :=
∑A
b=1 ηab(t1, t2) as the (random)

overall number of contacts of an individual from group a. It is assumed that ηab(t1, t2) is Poisson
distributed as

ηab(t1, t2) ∼ Poi

(∫ t2

t1

µab(s) ds

)
via the contact intensity µab(t). By assuming independence of contacts to different groups, it follows that

ηa∗(t1, t2) is also Poisson distributed having intensity µa∗(t) =
∑A
b=1 µab(t). The average rate of contact

of any individual from group a with group b is then obtained as

λab :=

∫ τ

0

µab(s) ds,

where for the sake of simplicity we assume that µab(t) is periodic in the sense that µab(t + δ) = µab(t)
for all t > 0. Deviations from these assumptions can be incorporated by appropriate modifications to the
contact model and parameter set. In the compartment modeling approach, individuals within each group
are generally assumed to be homogenous with respect to contact behaviour and no individual effects are
considered.

2.2 Group-specific system of ODEs

In order to address the potential impact of the implementation and easing of lockdown measures, we
expand the model structure to group-specific compartments. Below, we define groups according to sex
and age group, but the following reasoning is valid for any specification of disjoint groups, given that the
resulting groups are sufficiently large. Specifically, for given groups a = 1, ..., A and any time t, set Sa(t)
as the number of susceptible people in group a at time t, Ea(t) as the number of exposed people in group
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a at time t, and so on. The group-specific compartment model is characterised by the ODE system

dSa/dt = −
A∑
b=1

βabIbSa/Nb

dEa/dt =
A∑
b=1

βabIbSa/Nb − εEa

dIa/dt = ρεEa − γIa
dRa/dt = (1− ρ)εEa + (1− τa)γIa

dDa/dt = τaγIa

for all groups a = 1, ..., A, which is a direct extension of the ODE system of the basic compartment model
for the special case A = 1. We define

βab = w(1−mab)(1− r)(1− hb)λab

as the effective contact rate between groups a and b, where w is the secondary attack rate, mab is the
specific mitigation effect by lockdown measures with regard to contacts between groups a and b, r is
a general factor that accounts for compliance to distance, isolation and quarantine orders, hb is the
proportion of infectious people in group b in need of hospitalisation and λab is the basic contact rate
between groups a and b when no lockdown measures are in place. As we are primarily interested in short-
term prediction, we do not model biological aging, i.e. transitions between demographic groups. Therefore,
for any time t, compartment-specific additivity is assumed, i.e. S(t) =

∑
a Sa(t), E(t) =

∑
aEa(t), I(t) =∑

a Ia(t), R(t) =
∑
aRa(t) and D(t) =

∑
aDa(t) and N = S(t) +E(t) + I(t) +R(t) +D(t). The system

is closed, meaning that the sum of all ODEs is 0 at each time t.
In the absence of any lockdown measures, the general contact patterns are characterised by the basic
contact rates λab, which represent how intensive/often group a has any contact with group b sufficient
for potential virus transmission. In the POLYMOD study (Mossong et al. (2008), 7,290 participants
from 8 countries including Germany reported the number and extent of their social contacts during a
randomly assigned 24 hour period, using a written diary. The age and gender of the contacted persons
were recorded, among other information. Overall, the study contains information on 97,904 contacts,
distributed across the 8 participating countries. The overall contact pattern for Germany is displayed in
Figure 4.
The behaviour of the epidemiological model is primarily governed by the effective contact rates βab
which result from the basic contact rates λab by accounting for the secondary attack rate and lockdown
measures. It is implicitly assumed here that hospitalised cases are effectively isolated from the remaining
population and can not spread the disease. Note that the product (1 −mab)(1 − r)(1 − hb) represents
the proportion of potential virus transmissions that are not prevented.
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Figure 4: Overall contact rates λab in Germany for different sex and age groups in the absence of lockdown
measures (based on van de Kassteele et al. (2017); the scale displays the average number of contacts over
the course of 24 hours).

3 Numerical implementation

We have implemented the suggested model in R using a discrete approximation of the ODE system
via the Forward Euler Method (see Butcher (2016)). The step size ∆t is chosen as a quarter fraction
of one day. Accordingly, the transition rates between the compartments need to be adjusted, whereas
the fraction parameters remain unchanged. For instance, if the average incubation time is 5 days and
∆t = 1/4 (days), the transition parameter ε = 1/5 ·1/4 = 1/20, whereas the manifestation index ρ, as the
relative proportion of exposed people developing symptoms, is the same for any ∆t. The time-discrete
approximation of the system of ODEs is therefore described as follows.

∆Sa = −
A∑
b=1

βabIbSa/Nb∆t

∆Ea =
A∑
b=1

βabIbSa/Nb∆t− εEa∆t

∆Ia = ρεEa∆t− γIa∆t

∆Ra = (1− ρ)εEa∆t+ (1− τa)γIa∆t

∆Da = τaγIa∆t

For the involved epidemiological parameters, estimates are available from Imperial College COVID-19
Response Team (2020) and Verity et al. (2020). Pastor-Barriuso et al. (2020) provide estimates of the
age- and sex-specific infection fatality rates, based on an seroepidemiological study.

3.1 Model fitting

We suggest to fit the model along the following consecutive steps:

(1) Determine a timespan {1, ..., T} during which no lockdown measures had been in place, and determine
the cumulative number of infections during this time.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.10.06.20207951doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207951
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2) Based on plausible ranges for the involved compartment parameters and the initial state of the com-
partment model, fit the contact intensity model with regard to the cumulative number of infections
during {1, ..., T}.

In order to derive the secondary attack rate w from the contact rates λab given in van de Kassteele et
al. (2017), we fit the proposed compartment model to the reported cases during a timespan {1, ..., T} of
no lockdown. This step is necessary, because the social contact rates λab do not incorporate the specific
transmission characteristics of SARS-CoV-2, such as the average length of the infectious period and
average infection probability per contact. We assume that w is not specific to age or sex. We employ

Q(w) :=
T∑
t=1

(Îcum(t|w)− Icum(t))2

as a least-squares criterion function in order to determine the optimal value ŵ := argminw>0Q(w),

where Icum are the observed cumulative infections, and Îcum(t|w) are the estimated cumulative infections
based on the epidemiological model given w. Hence, ŵ is the scalar parameter for which the cumulative
infections are best predicted retrospectively. Note that the observed cumulative number of infections is
usually recorded for each day, while the step size ∆t in the model may be different. Thus, appropriate
matching of observed and estimated values is necessary.
This fitting method requires that the number of infections for the geographical region considered is
sufficiently large, such that the mechanics of the compartment model are plausible. Note that potential
under-ascertainment may not substantially change the optimal value of w as long as the proportion of
detected cases does not strongly vary over time. Furthermore, the suggested fitting method is based on
the assumption that the probability of virus transmission is independent of age and sex, given that a
contact has occurred. If different propensities of virus transmission are allowed for, the contact matrix
may be correspondingly adjusted along introduced parameters w1, ..., wab for each group combination or
w1, ..., wa, if the probability of transmission only depends on the contact group. The criterion function
is likewise extended as (w1, ..., wab) 7→ Q(w1, ..., wab). However, optimisation in this extended model
requires a sufficiently large number of transmissions and detailed information on the recorded infections,
and may lead to unpractically vague estimates otherwise. Therefore, we suggest to employ the simpler
model with univariate w first.

3.2 Sensitivity analysis and parameter uncertainty

In order to account for parameter uncertainty, we develop uncertainty intervals for the number of people in
each compartment. As a cautionary remark, note that these intervals are not to be equated to confidence
intervals in the classical sense. Though the resulting intervals are conceptually comparable to Bayesian
credibility intervals, they are to be distinguished in that no prior distribution is explicitly assumed here.
Note that these intervals do not reflect uncertainty in terms of the underlying infection data.
We predict the number of cases in each age-specific compartment using a Monte Carlo simulation method.
For each simulated run, all parameters are independently drawn from their respective range, yielding
an instance of a hypothetical parameter setup. Given these parameters, the SEIRD ODE model is
approximated using the Forward Euler Method and known initial states, as described above. After
NR of such simulated runs, the prediction intervals for all relevant values are construed based on the
pseudo-empirical trajectories of the compartment model. Furthermore, prediction intervals are derived
as point-wise quantile ranges for each t. For instance, an 80% prediction interval for the number of
infectious people in group a at time t is [Ia,10%(t), Ia,90%(t)].

4 Analytical approach and scenarios

First, we fitted the model to observed COVID-19 infections using transition rates from literature as
described under Section 2 for the period 21 February to 13 March 2020. We estimated the model
parameter w, also termed secondary attack rate, which reflects the probability of infection per contact,
by least squares between observed and predicted values, as described in Section 3.1. Second, we developed
four scenarios starting our projections on 15 August 2020 and, using quarter-days as base time, ending
on 31 October 2020. The first scenario, which is our baseline scenario, assumed that the age- and sex-
specific contacts are down by 80%, i.e. only 20% of the contacts estimated by van de Kassteele et al.
(2017) were realized between start and end of the projection. This applied to all age groups and to
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both sexes. This scenario should reflect continuous distancing measures as were present in mid-August.
The second scenario assumed that contacts at working ages 30–59 were increased by 5 percentage points
(PP), and among those aged 60–69 by 2.5 PP, equaling a decline of 76% and 78% respectively. All other
ages remained at 80% contact reduction. This should reflect the return from home office settings, the
opening of shops, cafes, restaurants, etc. The third scenario considers an additional increase in contact
rates among ages 10–29 by 5 PP, which should reflect the opening of schools and venues mainly visited by
young individuals. Scenario 4 explores the impact of sex-specific contacts by aligning the female contacts
to the level of male contacts. We explored the following age-specific outcomes:

1. Number of active infections which were defined as the number of individuals in compartment I by
age and sex,

2. Cumulative number of deaths out of compartment I by age and sex,

3. Excess number of deaths in scenarios 2, 3 and 4 in comparison to scenario 1 by age and sex,

4. Sex ratio of incidence defined as male/female ratio of the number of new COVID-19 cases divided
by the total population (Sa)

5. Sex ratio of mortality rate defined as male/female ratio of the number of deaths out of compartment
I divided by the total population (Sa).

5 Results

Fitting our model to COVID-19 infections observed during our fitting period (21 Feb – 31 March 2020)
results in an estimate of the secondary attack rate w ≈ 13%. We started with 10,572 active infections
on 15 August 2020 and under Scenario 1 this figure increased to approximately 20,115 (Figure 3) (men:
9,960; women: 10,155). The number of active infections was highest at ages 30–39 (men: 1,705; women:
1,885), followed by ages 10–19 (men: 1,676; women: 1,770), and ages 40–49 (men: 1,628; women: 1,619).
The cumulative number of deaths increased from 9,258 to 9,687 with 5,416 men and 4,271 women. By
31 October 2020, infection rates (Table 1) were highest among the 10–19-year old (men 43.4 and women
48.5 per 1000 individuals) followed by ages 30 to 49 (above 30 for both genders), and ages 0–9 (around
30 for both genders). At ages above 50, infection rates declined rapidly, almost halving from individuals
in their fifties (men: 24.0; women: 20.4) to those in their sixties (men: 13.5; women: 11.2), while at older
ages the decline followed at a much lower pace (ages 70–79: men: 7.7; women: 8.1; ages 80+: men: 6.2;
women: 5.3). Sex ratios of infections were below 1 in the age interval 10 to 49, indicating a higher risk
of infections among women. From age 50 onwards they were generally above 1 (with the exception of
ages 70–79), thus turning the disadvantage towards men. As expected, death rates (Table 1) increased
exponentially with age. They were more than twice to three times as high among men than women.
Scenario 2 assumed increased contacts at working ages and arrived at 31,800 active infections by 31
October 2020 and therefore 11,685 active infections more than in scenario 1 (men 5,730; women 5,955).
These additional infections stemmed from all ages, even if the risk of infections increased most among the
working ages. Sex ratios of infection rates turned toward the disadvantage of men from age 30 onwards.
The additional infections translated into an additional 104 deaths (men: 73; women: 31); among women,
61% of these deaths resulted at ages 70 and above; among men, 53%, reflecting their higher mortality
already at younger ages. Also the sex ratios of death rates turned towards the disadvantage of men.
Scenario 3 with increased contacts at young and working ages resulted in 51,521 active infections and
thus 31,406 more than in Scenario 1 (men: 15,894; women: 15,512) which translated into an additional
236 deaths with the majority resulting from ages 70 and above (men: 57%; women: 63%). Sex ratios,
both in infections and deaths, became even more unfavourable for men.
Scenario 4 used similar assumptions as scenario 3 but the contact rates of women were lowered to those
of men. This translated into 42,838 active infections which are 22,723 more than in scenario 1, but 8,683
less than in scenario 3. More infections were spared among men (-4,960) than among women (-3,725).
While the number of excess deaths was still higher than in scenario 1 (men: 122; women 39), it was lower
than in scenario 3 (men: 122−159 = −37; women: 39−77 = −38). Thus, in absolute terms men profited
as much as women.
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6 Discussion

Incorporating age- and sex-specific contact rates in a COVID-19 compartment model permits exploration
of the effects of changes in mitigation measures on the two genders. We developed four scenarios which
assumed ongoing distancing measures versus easing of contact restrictions in working ages, and among
adolescents and young adults. Our projections do not set out to forecast the actual number of COVID-19
infections in a time span of about two months, they rather assess the effect of increased contacts on the
infection and mortality risks of the two genders and the various age groups. The fit of our model to the
baseline period in February and March results in an estimated secondary attack rate w ≈ 13%, putting
our findings in close agreement with the rates reported in Ghangdou, where the household w varied
between 12% and 17%, and the non-household w between 6% and 9% (Jing et al. (2020)), although
higher attack rates of up to 35% have been reported e.g. for meals and holiday visits (Liu et al. (2020b)).
Three important lessons can be learned from our scenarios.
First, even a small change in contact rates has a large impact on infections and deaths. In our projections
we assumed an increase ranging from 5 to 2.5 PP. This reflects the fact that without non-pharmaceutical
mitigation measures (NPMM) such as masks, physical distance between individuals, better air ventilation
and hygiene, and without contact tracing, the infection rates would return to the initial exponential
increase. This was reflected in a reproduction rate of 3.3 to 3.8, as observed at the beginning of the
pandemic (Lin et al. (2020), Liu et al. (2020) and Alimohamadi et al. (2020), RKI (2020)). However, the
presence of NPMM also mitigates the effect of the increase in contacts due to the return to office, opening
of shops, restaurants, as well as schools, and venues visited by young adults, leaving it far from the initial
impact. In our present scenarios, both effects, the change of contact rates and the change of their impact,
are captured in the reduction matrix (mab), which is multiplied with the matrix of the contact rates. One
alternative approach would be to develop separate scenarios for changes in the secondary attack rate w
due to NPMM and changes in the contact rates (mab), which is one possibility to modify this analysis
further. At any rate, our scenarios show that small changes already have large impacts on infections and
deaths. This implies that the impact of contacts must be diminished considerably to allow increases in
contacts without returning to exponential growth of infections, hence underlining the high importance of
the NPMM in the current phase of the pandemic.
Second, due to intergenerational contacts, any easing of measures in working and young ages will in-
evitably lead to an increase in infections and deaths at all ages. People at old ages will suffer most with
elderly men being at a particular high risk of death due to increased contacts. Most interestingly, this
increased mortality is also transmitted by the higher contact rates of women, as shown in our scenario
4. Mortality may have changed over the course of the pandemic because of better treatment options of
critically severe COVID-19 cases using, e.g., dexamethasone (Cain and Cidlowski (2020)). Our mortality
rates based on Pastor-Barriuso et al. (2020) are based on Spanish data from 27 April – 22 June 2020,
which already should reflect a possible decline. Our results emphasise that increases in contacts need to
be accompanied by special measures protecting the elderly from death, without negative physical and
mental health consequences due to quarantine and isolation measures (Galea et al. (2020)). Contrary to
deaths, infections will mainly increase at young and middle ages with a lower risk of severe COVID-19
symptoms or even asymptotic disease courses.
Third, small increases in contact rates change the sex ratios in infections and deaths towards the disad-
vantage of men. At all ages, men will have more than twice the mortality risk from COVID-19, while
the risk of infections is more frequent among working age women than men. At old ages, men have
higher infection risk. Note that, in absolute numbers, more women are diagnosed with COVID-19 at
old age due to their higher life expectancy. Here a more substantial question arises, namely whether
COVID-19 infection rates are indeed gender-specific. German COVID-19 infection rates, as in any other
country, are biased by the time-lag of reporting and by differential availability of PCR tests over time
and to subgroups of the population (RKI (2020)). Gender-specific diagnoses in favour of women may
reflect that higher contact intensities of women may have led to a higher rate of conducted PCR tests
and therefore to a smaller number of undiagnosed cases. In addition, women are more health-conscious
than men (Oksuzyan et al. (2020)), may have sought PCR testing to a higher degree even when pre-
sented with weaker symptoms, and are more adherent to NPMM (Galasso et al. (2020)). On the other
hand, Takahashi et al. (2020) found sex-specific differences in immune response to COVID-19 infections.
For a further discussion of potential sex-specific mechanisms modulating the course of disease, see also
(Gebhard et al. (2020)). Thus, we can conclude that both biological and social factors contribute to sex-
and gender-specific infection and mortality rates.
A sizeable proportion of infections and deaths is transmitted through the higher contact rates of women,
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as shown in our scenario 4. This higher number of contacts may primarily result from care obligations
where women are the main care providers. By mid-July, among the COVID-19 infection cases reportedly
cared for or working in medical facilities, 72% were women and 28% men with a median age of 41 years
(RKI (2020)). Since women have a higher untapped work-from-home capacity than men (Alipour et al.
(2020)) better exploitation of their work-from-home potential may safe infections and lives.
We focused on the practical emulation of the dynamic behaviour and process of the spreading of COVID-
19 while incorporating specific epidemiological information on the virus and disease. To achieve this aim
we used a compartment modeling framework, which has become a standard approach in epidemiology due
to its flexibility and accessibility. The main advantage of this modeling framework is that a considerable
amount of demographic and epidemiological information can be incorporated while the essential model
structure and implementation remain relatively simple. Similarly, it is possible to extend the model to
incorporate parameter uncertainty, as described above. Furthermore, we want to emphasize the Markov-
like property of compartment modeling in the sense that current compartment sizes on a specific date
are sufficient for deducing the subsequent behaviour of the epidemiological process, which makes the
framework particularly attractive for forecasting and investigating hypothetical scenarios. However, there
is one drawback to compartment modelling that it is inherently based on an averaging rationale which
treats population groups homogenously and the average number of contacts in each group is a determining
parameter. In contrast to truly stochastic models (such as agent-based models), no random or systematic
individual deviations from the fundamental contact patterns are taken into consideration. Likewise,
compartment modeling is not suitable for assessing local dynamic behaviour, such as the notions of
infection clusters and superspreading events. In addition, geographical and spatial information are not
explicitly considered in compartment modeling, and this further limits the scope of the forecasting results.
In general, assessing the impact of introducing or easing different lockdown measures is remarkably
difficult, especially because several aspects are usually changed simultaneously and the general behaviour
of the population may change dynamically at the same time. Some efforts have been made to address
these issues in the literature, however we advise against using the proposed model for such purposes. One
main reason is that the initial state for forecasting and fitting of the model relies primarily on available
data sources, which are in the form of reported count data. In addition to the general limited validity of
observational data, there is still insufficient knowledge on the specific characteristics of COVID-19 and
the actual current spread of the virus. Naturally, other modeling approaches face the same issues of data
quality.
In our COVID-19 forecasts, the number of infections and the number of deaths differ only slightly from
models which do not differentiate by sex (data not shown). However, age- and sex-specific models provide
better insight into the risk populations of infections and mortality. This helps to target health policy
measures under scarce resources, such as who should be tested and vaccinated first. Both biological
sex and social gender appear to affect COVID-19 infection rates and their outcomes; this needs to be
acknowledged in health policy decisions and medical treatment. To further explore social factors on
COVID-19 transmission, more information that includes socio-demographic data is needed.
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Oksuzyan, A., Gumà and Doblhammer, G. (2020): Sex Differences in Health and Survival, In: Doblham-
mer and Gumà (editors): A Demographic Perspective on Gender, Family and Health in Europe, pages
65–100; ISBN: 978-3-319-72355-6, doi: https://doi.org/10.1007/978-3-319-72356-3 5
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Figure 5: Scenario 1: Ongoing lockdown measures comparable to mid-August (solid orange line: mean
number of active infections at time t, solid red line: mean cumulative number of deaths until time t,
intervals represent 80% range due to parameter uncertainty, dashed line: male/female ratio of infections
at time t).
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Figure 6: Scenario 2: Infection numbers for different age groups (solid orange line: mean active infections
at time t, solid red line: mean cumulative number of deaths until time t, intervals represent 80% range
due to parameter uncertainty, dashed line: male/female ratio of infections at time t).
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Figure 7: Scenario 3: Infection numbers for different age groups (solid orange line: mean active infections
at time t, solid red line: mean cumulative number of deaths until time t, intervals represent 80% range
due to parameter uncertainty, dashed line: male/female ratio of infections at time t).
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Figure 8: Scenario 4: Infection numbers for different age groups (solid orange line: mean active infections
at time t, solid red line: mean cumulative number of deaths until time t, intervals represent 80% range
due to parameter uncertainty, dashed line: male/female ratio of infections at time t).

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.10.06.20207951doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207951
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Mean infection rates, death rates (in %) and male/female ratio. The infection rates are with
respect to projected active infections on 31 Oct 2020. The death rates are with respect to the considered
timespan 15 Aug 2020 to 31 Oct 2020, and are scaled to annual rates.
Mean infection rates on Oct 31 (in %)

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80+
Scenario 1 female 0.0299 0.0485 0.0276 0.0356 0.0324 0.0204 0.0112 0.0081 0.0053

male 0.0313 0.0434 0.0200 0.0304 0.0321 0.0240 0.0135 0.0077 0.0062
ratio 1.05 0.89 0.73 0.86 0.99 1.18 1.21 0.94 1.17

Scenario 2 female 0.0419 0.0644 0.0405 0.0616 0.0550 0.0354 0.0179 0.0119 0.0077
male 0.0438 0.0572 0.0294 0.0546 0.0564 0.0424 0.0222 0.0114 0.0092
ratio 1.04 0.89 0.73 0.89 1.03 1.20 1.24 0.96 1.20

Scenario 3 female 0.0604 0.1379 0.0726 0.0922 0.0864 0.0544 0.0262 0.0180 0.0120
male 0.0626 0.1147 0.0526 0.0813 0.0868 0.0657 0.0324 0.0170 0.0141
ratio 1.04 0.83 0.73 0.88 1.00 1.21 1.24 0.95 1.17

Scenario 4 female 0.0487 0.1052 0.0501 0.0753 0.0747 0.0505 0.0229 0.0116 0.0088
male 0.0535 0.0967 0.0442 0.0697 0.0746 0.0565 0.0280 0.0145 0.0120
ratio 1.10 0.92 0.88 0.93 1.00 1.12 1.22 1.24 1.37

Mean death rates until Oct 31 (in %)
0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80+

Scenario 1 female 0.0000 0.000 0.0001 0.0003 0.0003 0.0009 0.0015 0.0048 0.0086
male 0.0000 0.000 0.0000 0.0001 0.0006 0.0020 0.0049 0.0111 0.0246
ratio – – 0.4000 0.3800 1.8900 2.2300 3.2600 2.3200 2.8500

Scenario 2 female 0.0000 0.000 0.0001 0.0004 0.0005 0.0013 0.0020 0.0058 0.0100
male 0.0000 0.000 0.0000 0.0002 0.0009 0.0029 0.0065 0.0134 0.0293
ratio – – 0.3900 0.3900 1.9400 2.2700 3.3300 2.3400 2.9200

Scenario 3 female 0.0000 0.000 0.0001 0.0005 0.0006 0.0016 0.0024 0.0072 0.0125
male 0.0000 0.000 0.0000 0.0002 0.0012 0.0037 0.0081 0.0165 0.0360
ratio – – 0.3800 0.3800 1.9100 2.2900 3.3400 2.3000 2.8900

Scenario 4 female 0.0000 0.000 0.0001 0.0004 0.0006 0.0016 0.0023 0.0052 0.0102
male 0.0000 0.000 0.0000 0.0002 0.0011 0.0034 0.0074 0.0151 0.0331
ratio – – 0.4600 0.4000 1.9000 2.1400 3.2900 2.9200 3.2500

Table 2: Mean excess number of deaths in Scenarios 2–4 in comparison to Scenario 1 until 31 Oct 2020.
0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80+ Total

Scenario 2 female 0 0 0 1 1 5 5 8 11 31
male 0 0 0 1 3 12 18 17 22 73

Scenario 3 female 0 0 0 3 3 10 11 20 29 77
male 0 0 0 1 6 24 35 38 54 159

Scenario 4 female 0 0 0 2 2 10 9 3 12 39
male 0 0 0 1 5 20 28 28 40 122
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Figure 9: Incidence of active infections for different sex and age groups in scenarios 1–4 (scale is in % per
sex and age group).

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.10.06.20207951doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207951
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Contact modeling
	Group-specific system of ODEs

	Numerical implementation
	Model fitting
	Sensitivity analysis and parameter uncertainty

	Analytical approach and scenarios
	Results
	Discussion

