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Supplementary material – The effect of body image preoccupation on decision 

making in eating disorders 

 

Decision-making task and questionnaires 

Exclusion criteria 

A range of measures were implemented to exclude participant not taking part in the study 

in good faith. 

Firstly, we excluded any participants that took shorter than 1 minute to familiarise 

themselves with the instruction part of the task. We also excluded any participants, who despite 

selecting “female” in the pre-screening on Prolific, selected “male”, we allowed three subjects 

with answers “Other” or “Gender-fluid”. Furthermore, to be included in the study, the participant 

could only miss a maximum of 9 trials in each condition. The total reward received at the end of 

the task had to be higher than two standard deviations subtracted from the average total reward 

across all participants. At the end of the study, understanding of the structure of the task was 

tested. We excluded any participant that to the question “If you picked the pirate ship (with skull 

and cross bones on sails, on the right), which island would you most likely sail to?”, incorrectly 

answered “blue”.  Lastly, we excluded one HC participant with low questionnaire scores, whose 

model-based parameter was strongly characteristic of an ED group, suspecting completing the 

questionnaires in bad-faith. Applying the above criteria amounted to including 72 participants in 

total, 34 in the HC and 38 in the ED group. 
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Body types 

 

Figure S1. 18 different types of body that participants could select as most similar to their own. 
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Computational modelling 

Model fitting – negative log-likelihood  

Usually, we do not know the values of model parameters so they have to be estimated. 

This is done by minimising the negative log-likelihood (NLL) of the parameters for a sequence of 

choices the agent makes (𝐶), by extension this method finds the parameters that maximise the 

likelihood. We calculate the NLL as below: 

NLL =  − ∑ log (𝑝(𝑐))

𝑐∈𝐶

 

Using various available numerical optimisers, for example a gradient-based fminunc in 

MATLAB, we can find a set of model parameters that minimise the NLL for each participant. 

 

Fitting methods – Expectation Maximisation 

To fit the model parameters to the collected data, Expectation-Maximisation (EM) 

algorithm was used (Bishop, 2006; MacKay, 2003). The fitting procedure is inspired by the Huys 

et al. paper (2011), while the necessary tools were generously provided by Nathaniel Daw 

(2011). In summary, the parameters for each participant, and each condition were estimated by 

maximising the likelihood for the choice sequence. They were estimated accounting for the 

group-level distribution over ED or HC using the EM algorithm (Foerde et al., 2019; Gillan, 

Kosinski, Whelan, Phelps, & Daw, 2016). 

There are a few steps that make up the whole fitting procedure, as described below.  

Step 1 – Define parameter prior distribution and the likelihood.  

What we are looking for is the best-fitting set of five parameters (as in the Methods). For 

each subject i, we can write such set as a vector 𝐦i.To find this, we first need to describe some 

general set of parameters 𝐡i, which forms our Gaussian prior distribution p(𝐡i|𝛉), where 𝛉 =
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{𝛃, 𝚺} specify the group-level hyper-parameters of the Gaussian prior (mean, and covariance 

matrix). Moreover, we define the likelihood of a general set of parameters 𝐡i, given a sequence 

of choices 𝐂i for each participant i as: p(𝐂i|𝐡i).    

The likelihood assumes that actions are independent and can be factorised. The prior 

regularises the estimates to prevent the parameters from taking on extreme values. 

Step 2 – Maximum a posteriori estimate (MAP) of the parameters. 

 Given the likelihood function and the prior of general set of parameters 𝐡i, we compute 

maximum a posteriori estimate 𝐦i: 

𝐦i = argmax p(𝐂i|𝐡i)p(𝐡i|𝛉), 

which gives the best fitting set of parameters 𝐦i given some general set of hyper-parameters, 𝛉, 

of the prior p(𝐡i|𝛉) and data of choices. This is usually done with a use of an optimiser, in this 

case an 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 function from Optim.jl Julia package (Julia, n.d.) was used, based on an 

LBFGS algorithm. We minimise the NLL for the sequence of actions as in the previous section, 

and we minimise the NLL of the Gaussian distribution (see in the below EM steps).   

Step 3 - Find the hyper-parameters of the prior. 

The key step is to also find the hyper-parameters, 𝛉, of the prior that would provide an 

even better fit. This is achieved by setting the parameters of the prior to the maximum likelihood 

estimate given the choices from all the subjects (ℂ): 

𝛉̂ =  argmax p(ℂ|𝛉) = argmax(∏ ∫ p(𝐂i|𝐡i)p(𝐡i|𝛉)d𝑁

N

i=1

𝐡i 

Here, an EM algorithm was used to iteratively compute 𝛉̂ estimate. The algorithm 

consists in two main steps, Step E (Expectation), and Step M (Maximisation).   
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Step 4a - Initialise EM algorithm.  

Firstly, we need to create a design matrix of explanatory variables, in this case we do not 

have any extra variables, but a list of subjects. Therefore, the design matrix, X, takes a form: X =

[1, … , 1]T, with the N × N where N is the number of subjects.   

Before we iterate the algorithm, we need to initialise the hyper-parameters 𝜽: 𝜽(1) =

{𝜷(1), Σ(1)} = {[0.01, … , 0.01], 0.01 × 𝕀𝑝}, where 𝜷(1) is of size 1 × 𝑝 (number of parameters, 

𝑝 = 5) and 𝕀𝑝 is an identity matrix of size 𝑝 × 𝑝. We also initialise, for each subject, the model 

parameters that we want to find the optimum of: 𝐦i
(1)

. 

Step 4b - Expectation, Step E.  

Using a group-level 𝜽(1) we perform Step 2 as above to compute MAP estimate 𝐦i for 

each subject. For the data likelihood, NLL𝑑𝑎𝑡𝑎, we follow the instructions from the previous 

section. For the prior part, we compute the NLL of the Gaussian (Bishop, 2006):  

NLL𝑝𝑟𝑖𝑜𝑟 = −
𝑝

2
× log(2𝜋) −

log(det(𝚺(1)))

2
− (𝒎𝑖

(1)
− 𝜷(1))

𝑇
(𝚺(1))

−1
(𝒎𝑖

(1)
− 𝜷(1)), 

to then obtain the MAP estimate, 𝒎𝑖
(2)

, by minimising the total NLL𝑡𝑜𝑡𝑎𝑙 = NLL𝑑𝑎𝑡𝑎 + NLL𝑝𝑟𝑖𝑜𝑟. 

We also calculate the inverse hessian (𝑯𝑖
(2)

)−1 for each subject to approximate the variance of 

the model parameters such that the posterior distribution of the model parameters p(𝐡i|𝐂i) has 

approximately Gaussian distribution with the mean 𝒎𝑖
(2)

 and covariance matrix (𝑯𝑖
(2)

)−1. 

Step 4c - Maximisation, Step M.  

In this step, we estimate the hyper-parameters, 𝜽(2), of the prior distribution as follows:  

𝛃(2) = (XTX)−1XT𝐦(𝟐) 

𝚺(2) = 𝐦(𝟐)(𝕀𝑁 − 𝑋(𝑋𝑇𝑋)−1𝑋𝑇)𝐦(2) +
1

𝑁
∑(𝑯𝑖

(2)
)−1 

𝑵

𝑖=1
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Now, with new 𝜽(2) = {𝜷(2), Σ(2)}, we repeat the steps 4b-c iteratively 𝑘 times, until the 

relative difference between [𝜷(𝑘), {Σ𝑗,𝑗
(𝑘)

}
𝑗=1

𝑝
] and [𝜷(𝑘−1), {Σ𝑗,𝑗

(𝑘−1)
}

𝑗=1

𝑝
] is < 0.001. 

 

Alternative models 

Two other models were considered before collecting the data. In the model reliability 

procedure, we compared model 2 from the paper by Gillan et al. (2016) and model 3 from the 

paper by Daw et al. (2011). The alternative models follow a similar structure to model 1 in order 

to capture model-based and model-free contribution, but differ in the parametrisation.    

Model 2 has an extra parameter 𝛽𝑀𝐹0 that breaks down the model free component as: 

𝛽𝑀𝐹 = 𝛽𝑀𝐹0 + 𝛼𝛽𝑀𝐹1, where 𝛽𝑀𝐹1 corresponds to 𝛽𝑀𝐹 in model 1. Similarly to model 1, 

increased/decreased 𝛽𝑀𝐹 indicate increased/decreased contribution of model-free learning. In 

total, model 2 has six parameters: 𝛽𝑀𝐵, 𝛽𝑀𝐹0, 𝛽𝑀𝐹1, 𝛽2, 𝛼, 𝜌. 

Model 3 re-parametrises the model-based and model-free contribution with a single 

parameter 𝑤 ∈ (0,1), such that 𝛽𝑀𝐵 = 𝛽1𝑤 and 𝛽𝑀𝐹 = 𝛽1(1 − 𝑤), where 𝛽1 is the inverse 

temperature for the softmax at stage one. This setup captures the trade-off between model-based 

and model-free learning. Moreover, model 3 has two learning rates 𝛼𝑖, each for a different stage 

𝑖 ∈ {1,2}. Finally, an extra parameter 𝜆 is used to carry reward information from second stage to 

the first stage (eligibility trace). Higher values of the parameter 𝑤 indicates using more model-

based learning at the expense of model-free learning, which is noted as (1 − 𝑤). In total, model 

3 has seven parameters: 𝑤, 𝛼1, 𝛼2, 𝜆, 𝛽1, 𝛽2, 𝜌. 

The exact model details can be found in the original papers (Daw et al., 2011; Gillan et 

al., 2016).  
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Model reliability analysis  

Model reliability analysis was performed (Wilson & Collins, 2019). This consists of pre-

hoc: parameter recovery and model recovery, but also of post-hoc: model-comparison, parameter 

recovery and model recovery. Pre-hoc analysis uses parameter values based on past studies (Daw 

et al., 2011; Gillan et al., 2016), while the post-hoc analysis uses parameter values fitted to the 

collected data in the neutral condition across both groups. Such an analysis ensures that the best 

model is selected as well as that the results are meaningful.   

Apart from the model described above, eventually used in the study (model 1), different 

models were considered: model 2 (Gillan et al., 2016) and model 3 (Daw et al., 2011) in the 

model reliability analysis. These are briefly described above.   

Parameter recovery. 

To ensure reliable parameter estimates, it is advisable to perform parameter recovery 

before actually collecting data (Wilson & Collins, 2019). In parameter recovery, we first simulate 

some fake data using our model and a set of parameters drawn from a distribution. Then, we try 

to recover the parameters that generated the fake data using our model fitting technique. To see 

how reliable the modelling process is, we compare the original parameters (𝑋) with the 

recovered 𝑌 ones by calculating the Pearson correlation coefficient (PCC), 𝜌: 𝜌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋,𝜎𝑌
, where 

𝑐𝑜𝑣(𝑋, 𝑌) is the covariance between two sets of parameters and 𝜎 is the standard deviation. The 

higher 𝜌, the better and more reliable our methods are. 

Model recovery.  

To ensure that the model comparison is reliable and meaningful, model recovery is 

performed. This involves generating the task dataset using each model and then trying to fit each 

dataset using each model and see which model fits data the best (based on AIC or BIC). Ideally, 
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if we generate data with model 1, we want model 1 to best fit the data (Wilson & Collins, 2019). 

The process is repeated multiple times. Hence, if we create a confusion matrix that records a 

frequency of best fits of data from each model, we would want to achieve a diagonal matrix of 

ones, as below in Table S1. The procedure ensures that model fitting and model comparison yield 

meaningful results.   

Table S1 

A perfect confusion matrix.  

  Fit model 

S
im

u
la

te
d

  Model 1 Model 2 Model 3 

Model 1 1 0 0 

Model 2 0 1 0 

Model 3 0 0 1 

Note. Data generated by model 𝑋 is always best fit by model 𝑋 where 𝑋 ∈ {1,2,3}. 

 

Model comparison. 

In post-hoc analysis, an extra step involves comparing models to find the best-fitting one. 

We used a whole dataset (HC&ED) from the neutral condition to estimate the parameters with 

three models. Having estimated the three different sets of best fitting parameters from each 

model, we calculated a Laplace approximation to the log marginal likelihood LML in Eq. S1, 

marginalised over the subject level parameters (Ruli, Sartori, & Ventura, 2016), which is further 

corrected in the calculation of AIC and BIC criterions. 

LML = −
𝑝

2
× log(2𝜋) × 𝑁 + ∑ NLL𝑖

𝑁

𝑖=1

− ∑
log(det(𝑯𝑖))

2
                          (𝑆1)

𝑁

𝑖=1

 

where 𝑁 is the number of subjects and 𝑝 is the number of parameters in the model. The best 

fitting model is the one with lowest AIC or BIC scores (Wilson & Collins, 2019).  
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Gaussian random walk 

The reward probabilities evolved according to a Gaussian random walk. In the first 

condition the participants were faced with, the reward probabilities were initialised in a range 

(for each chest from left to right: 𝑝11, 𝑝12, 𝑝21, 𝑝22): 

[0.58,0.72], [0.31,0.45], [0.31,0.45], [0.58,0.72]. 

In the second condition, the initialisation of reward probabilities was: 

[0.31,0.45], [0.58,0.72], [0.58,0.72], [0.31,0.45]. 

The practice stage was initialised differently as: 

[0.31,0.45], [0.58,0.72], [0.31,0.45], [0.58,0.72]. 

The general formula of a Gaussian random walk takes a form: 

𝑝(𝑡+1) = 𝑝(𝑡) + 𝜎 × 𝒩(0,1), 

where 𝑝(𝑡) is a reward probability at a current trial 𝑡, 𝜎 is the standard deviation of the random 

walk, 𝒩(0,1) is a random variable from a standard normal distribution.   

To make sure the reward probabilities always stay within a (0.25,0.75) range, any 

resulting value that was above or below the range was transformed:  

𝑝(𝑡) = 2 × 𝑟ℎ𝑖/𝑙𝑜 − 𝑝(𝑡), 

where 𝑟ℎ𝑖/𝑙𝑜 0.25 or 0.75.   

 

Random effects linear regression and AIC 

Condition and group (model 𝑚1) (with age and BMI as a larger model 𝑚2) were taken as 

fixed effects per subject in an intercept random effects linear regression model using R's lmer 

package as below.   

𝑚1: lmer(𝛽𝑀𝐵 ∼ group×condition+age+bmi+(1|sub)) 
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𝑚2: lmer(𝛽𝑀𝐵 ∼ group×condition+(1|sub)) 

Akaike information criterion (AIC) was calculated for each model to estimate an out-of-

sample prediction error to see which model is better (Akaike, 1974). Lower AIC indicates a 

better fitting model.   

 

AIC and BIC  

To select best models, Akaike information criterion (AIC) (Akaike, 1974) and Bayesian 

information criterion (BIC) (Schwarz, 1978) criteria were used defined as below:  

AIC = 2 × NLL + 2 × 𝑝  

BIC = 2 × NLL + 𝑝 × log(𝑛), 

where NLL is the negative log likelihood (or negative marginalised log-likelihood LML can be 

used instead), 𝑝 is the number of parameters in the model, 𝑛 is the number of data points. 

 

Supplementary results 

Task performance 

Table S2 

Summary of model-independent task performance measures for two groups (HC and ED)  

 HC (n=34) 

Mean ±SD 

ED (n=38) 

Mean ±SD t value p value 

reward: neutral  82.15 ± 9.23 77.66 ± 9.50 2.03 0.0463* 

reward: BID  76.94 ± 9.38 78.26 ± 9.38 -0.60 0.5524 

total reward  159.09 ± 12.56 155.92 ± 14.35 0.99 0.3251 

RT1: all  0.28 ± 0.09 0.3 ± 0.09 -1.02 0.3117 

RT2: all  0.39 ± 0.12 0.41 ± 0.14 -1.00 0.3226 

RT: all  0.34 ± 0.10 0.36 ± 0.11 -1.08 0.2824 

RT1: neutral  0.29 ± 0.08 0.30 ± 0.07 -0.76 0.4523 

RT2: neutral 0.39 ± 0.11 0.42 ± 0.13 -1.12 0.2656 

RT: neutral 0.34 ± 0.09 0.36 ± 0.10 -1.05 0.2952 

RT1: BID  0.29 ± 0.08 0.31 ± 0.08 -1.05 0.2987 
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 HC (n=34) 

Mean ±SD 

ED (n=38) 

Mean ±SD t value p value 

RT2: BID  0.38 ± 0.12 0.42 ± 0.15 -0.70 0.4869 

RT: BID  0.34 ± 0.10 0.36 ± 0.11 -0.91 0.3660 

Note. Average total reward during the neutral and BID conditions, average total reward after a 

whole task, mean reaction time in the first and second stage and overall (RT1, RT2, RT) in the 

neutral, BID, and across both conditions. T- and p-values of the two-sample t-tests for difference 

in performance between groups are included. 

 

Model reliability  

Before data was collected we performed pre-hoc parameter recovery and model recovery 

procedures using parameter values based on a previous studies (Daw et al., 2011; Gillan et al., 

2016). Pre-hoc analysis revealed that data can be safely collected. Further, we performed post-

hoc analysis, using newly estimated parameters, to select the best fitting and most reliable model. 

The results of the reliability analysis can be found below.   

Pre-hoc parameter recovery.  

To compare the reliability of the model fitting before data was collected, pre-hoc 

parameter recovery was performed for all three models. We allowed for 100 iterations of the EM 

algorithm and 10 runs of the procedure, each with a different seed. The results can be found in 

Tables S3-S5.   

Model 1.  

Table S3 

Model 1 pre-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD βMB βMF β2 α ρ 

PCC (model 1) 0.74±0.07  0.65± 0.12  0.68±0.11  0.99±0.00  0.56±0.13  
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Model 2.  

Table S4 

Model 2 pre-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD βMB βMF0 β𝑀𝐹1 β2 α ρ 

PCC (model 2) 

0.67  
± 
0.07 

0.53 
±  
0.12 

0.68  
±  
0.12 

0.73  
±  
0.08 

0.99  
±  
0.00 

0.49  
±  
0.1 

 

Model 3.  

Table S5 

Model 3 pre-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD w β1 β2 α1 α2 𝜆 ρ 

PCC (model 3) 

0.67  
±  
0.10 

0.59  
±  
0.16 

0.63  
±  
0.16 

0.64  
±  
0.10 

0.91  
±  
0.05 

0.58  
±  
0.10 

0.93  
±  
0.08 

 

Parameter are recovered fairly well, therefore, the models could be used to fit the data. 

Pre-hoc model recovery. 

To ensure a meaningful comparison of models before data collection, we first performed 

a pre-hoc model recovery to see how well the models are recovered. Results can be found Table 

S6.  

Table S6 

Confusion matrix from a pre-hoc model recovery procedure for model 1-3  

  Fit model 

S
im

u
la

te
d

  Model 1 Model 2 Model 3 

Model 1 1 0 0 

Model 2 0 1 0 

Model 3 0 0 1 
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Note. Y-axis indicates which model the data was generated with, while the x-axis shows which 

model best fits the data based both on AIC and BIC. Cells indicate the frequency of best fits after 

10 runs of the procedure, with 100 EM iterations. 

 

The results suggest that model comparison will be meaningful, as each model is well 

recovered.    

Post-hoc parameter recovery. 

To compare the reliability of the model fitting after data was collected, testing the actual 

parameter range, post-hoc parameter recovery was performed for all three models. We allowed 

for 100 iterations of the EM algorithm and 10 runs of the procedure, each with a different seed. 

The results can be found in Tables S7-S9.   

Model 1.  

Table S7 

Model 1 post-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD βMB βMF β2 α ρ 

PCC (model 1) 0.71±0.07  0.81± 0.07  0.90±0.03  0.93±0.03  0.89±0.03  

 

Model 2.  

Table S8 

Model 2 post-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD βMB βMF0 β𝑀𝐹1 β2 α ρ 

PCC (model 2) 

0.70  
± 
0.12 

0.45 
±  
0.11 

0.86  
±  
0.07 

0.87  
±  
0.05 

0.89  
±  
0.07 

0.93  
±  
0.04 
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Model 3.  

Table S9 

Model 3 post-hoc parameter recovery with a mean and standard deviation (SD) PCC 

mean ±SD w β1 β2 α1 α2 𝜆 ρ 

PCC (model 3) 

0.56  
±  
0.09 

0.41  
±  
0.19 

0.74  
±  
0.09 

0.56  
±  
0.14 

0.75  
±  
0.12 

0.51  
±  
0.13 

0.93  
±  
0.08 

 

Model 1-2 have a fairly good parameter recovery, whereas model 3 parameter recovery 

results suggest some issues in the modelling procedure. Hence model 3 could be excluded.   

Post-hoc model recovery.  

In addition, to ensure a meaningful comparison of all models once they are fitted to the 

actual data, we performed a post-hoc model recovery to see how well the models are recovered 

within the actual parameter range from the dataset. Results can be found Table S10. 

Table S10 

Confusion matrix from a post-hoc model recovery procedure for model 1-3 

  Fit model 

S
im

u
la

te
d

  Model 1 Model 2 Model 3 

Model 1 1 0 0 

Model 2 0 1 0 

Model 3 0 0 1 

Note. Y-axis indicates which model the data was generated with, while the x-axis shows which 

model best fits the data based both on AIC and BIC. Cells indicate the frequency of best fits after 

10 runs of the procedure, using 100 EM iterations.  

 

The results suggest that model comparison will be meaningful, as each model is well 

recovered.   
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Post-hoc model comparison.  

Finally, model comparison procedure was performed to find the model that best fits the 

data from the two step decision-making task used in this study (Table S11). We used a combined 

dataset over groups in the neutral condition to compare models. We allowed for sufficient 

number of EM iterations to achieve a complete fit. As a result, we identified that the best fit to 

the data is provided by model 1 as it has lowest combined BIC that corrects for the number of 

data points (which we place more significance on than the AIC results) as well as relatively low 

AIC score (compared to model 3). 

Table S11 

Results of model comparison with AIC and BIC scores 

 Model 1 Model 2 Model 3 

BIC 9930.83 9933.97  10160.17 

AIC 9894.43 9890.28 10109.20  

  

Choosing the best model.  

The results from the pre- and post-hoc parameter recovery shows that model 1 provides 

the most reliable parameter estimates. Moreover, the overall good pre- and post-hoc model 

recovery suggests that the model comparison provides meaningful results. Finally, when 

comparing models as in Table S11, model 1 provides the best fit to the data based on BIC. As 

such, model 1 is chosen for further data analysis. 

 

Comparison of 𝝆 between groups and conditions 

Results from two-sample t-tests. 

Table S12 

Comparison of estimated model parameter, ρ, in HC between two conditions  
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HC (n=34) 

 neutral 

Mean ±SD 

BID 

Mean ±SD t value p value 

𝜌 0.76 ± 0.40 0.64 ± 0.37 1.25 0.2165 

Note. Includes two-sample t-tests (including t- and p-values). 

 

Table S13 

Comparison of estimated model parameter, ρ, in ED between two conditions 

ED (n=38) 

 neutral 

Mean ±SD 

BID 

Mean ±SD t value p value 

𝜌 0.89 ± 0.94 0.78 ± 1.05 0.50 0.6203 

Note. Includes two-sample t-tests (including t- and p-values). 

 

Table S14 

Difference in model parameter, 𝜌, in a neutral and BID condition between two groups 

 neutral HC vs neutral ED BID HC vs BID ED 

 t value p value t value p value 

𝜌 0.80 0.4284 0.75 0.4577 

Note. Includes two-sample t-tests (including t- and p-values). 

 

Results from two-sample t-tests 𝚫𝝆. 

Table S15 

Comparison of model parameter difference 𝛥𝜌 between groups  

 HC (n=34) ED (n=38) 

 Mean ± SD Mean ±SD t value p value 

Δρ 0.12 ± 0.36 0.11 ± 0.59 0.98 -0.0211 

Note. Includes associated two-sample t tests, including t- and p-values. 
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