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SN.1 Mathematical formulations

Below we describe the model structure, as well as its equations. In essence, we distinguish different
phases of the infection dynamics by whether the virus is detectable, the individual is infectious and may
have symptoms. Notably, asymptomatic infections are also included. For asymptomatic individuals we
assume the same infection dynamics without displaying symptoms. The considered phases and their
attributes are depicted in Table SN.1.

Table SN.1. Phases of the underlying Markov model. +Asymptomatically infected individuals are
assumed to have the same infection dynamics without showing symptoms

j phase detectable infectious symptoms

1 pre-detection no no no
2 pre-symptomatic yes yes no
3 infectious (& symptomatic) yes yes (yes)+

4 post-infectious (& symptomatic) yes no (yes)+

5 post-detectable no no no

We then model the disease progression semi-mechanistically using a Markov jump process formalisms
(discrete state, continuous time). We use the Markov jump formalism, because it allows to model
inter-individual differences in disease progression. In this framework, an infected individual will progress
to the next phase of the disease after a random waiting time. We solve for all individuals with their
respective random waiting times simultaneously, deriving a probability distribution that evolves through
time. This allows to model inter-individual differences in e.g. time-to-detectability or
time-to-infectiousness. Overall, we will adjust the model, such that it accurately computes the probability
that patients are PCR-positive, infectious and symptomatic at any time t after infection.

SN.1.1 Model equations

We model the disease progression as a transit model with j = {1 . . . 5} phases as depicted above in
Table SN.1, each of which consists of i = {1 . . . nj} compartments. The rates of transition from one
compartment to the next within a phase are chosen to be identical, while the number of compartments
for each phase is fitted, so that the residence dynamics match clinically observed dynamics, as discussed
in the next subsection.
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Fig SN.1. Schematic of the model. The model of disease progression depicting the distinct phases.
Each phase consists of different sub-compartments.

The equations that model the probability that individuals are in phase j = 1...5 at time t is given by:

d

dt
pt(x1,1) = −r1 · pt(x1,1) (SN.1)

. . . = . . . (SN.2)

d

dt
pt(x1,n1

) = r1 · pt(x1,n1−1)− r1 · pt(x1,n1
) (SN.3)

d

dt
pt(x2,1) = r1 · pt(x1,n1)− r2 · pt(x2,1) (SN.4)

. . . = . . . (SN.5)

d

dt
pt(xm,1) = rm−1 · pt(xm−1,nm−1), (SN.6)

where pt(xj) =
∑nj
i=1 pt(xj,i) and the last state (“post-detection phase”) is an absorbing state. In matrix

notation, the model is given by

d

dt
pt(x) = A · pt(x) (SN.7)

with e.g.:

A(SCR) =



−r1 0 · · · · · · 0

r1 −r1

...
0 r1 −r2

...
. . .

. . .

(1− fs · SCR) · r2 −r3

. . .
. . .

... rm−1 −rm−1

...
0 · · · · · · 0 rm−1 0


(SN.8)

where fs is the ’fraction symptomatic’ (user input) and SCR is a boolean variable that defines whether
‘symptom screening’ is performed. Therefore, the system can be solved analytically with

pt(x) = et·A · pt0(x) (SN.9)

where et·A denotes the matrix exponential defined as

eA =

∞∑
k=0

1

k!
Ak (SN.10)

and pt0(x) denotes the initial condition of the system.
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SN.1.2 Parameters & model structure

As mentioned above, we assume that the transition rates between compartments i = {1 . . . nj} of the
same phase are identical, rj,i = rj . The mean residence time τj (= average duration that an infected
individual stays in a phase) is then trivially related to the transition rate in this phase:

rj =
nj
τj
. (SN.11)

Conversely, τj =
nj
rj

.

Given a mean residence time, i.e. the average duration of a phase τj , it is therefore possible to change
the shape (skewness) of the transitioning times by adjusting for the number of compartments in that
phase until the model reflects the clinical time course accurately enough. An example is shown in
Fig. SN.2 below, where addition of compartments introduces a “shoulder” without affecting the mean
duration of that phase. In the following, we will estimate model parameters from clinical time course

Fig SN.2. Illustration of how introducing compartments can alter the shape of the
residence time without affecting its mean. Example with τ = 5 days. Dashed line: one
sub-compartment with rate r = 1/5. Solid line: five sub-compartments with rates r = 5/5 = 1.

data, by estimating nj and τj simultaneously. Moreover, we will discuss our model parameters τj in the
context of published data.

SN.1.3 Calculation of relative risk and risk reduction

Quarantine, testing and isolation are intended to decrease the risk that an infected individual is able to
spread the disease. Mathematically, the residual risk is therefore related to the duration- and extent of
infectiousness of an individual who is released from quarantine/isolation. The relative risk denotes the
reduction in that risk relative to ‘no intervention’, akin to [1, 2]:

relative risk(t) =

∫∞
t
Ps(inf|NPI) ds∫∞

0
Ps(inf|∅) ds

(SN.12)

where t refers to the duration of a quarantine or isolation period and Ps(inf|NPI) and Ps(inf|∅) refer to
the probability of being infectious at time s under a non-pharmaceutical intervention (NPI) vs. ‘no
intervention’ ∅ (or a reference intervention’). Incomplete adherence to the NPI with fraction w is

computed as relative risk(t) =
w·
∫∞
t
Ps(inf|NPI) ds+(1−w)·

∫∞
0
Ps(inf|∅) ds∫∞

0
Ps(inf|∅) ds .

The denominator of eq. (SN.12) can easily be computed by e.g. augmenting the matrix A, such that

Ã =
A 0

...
0 y 0 0
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with yj,· = 1 in the last row of the matrix for all ’infectious states’ (compare Table SN.1). Then one can
solve for

p∞(x̃|∅) = es·Ã(∅) ·
(
pt0(x)

0

)
; s→∞, (SN.13)

where the pre-intervention risk can be user-defined or be calculated using the “prevalence estimator”
functionality of the software and Ã(∅) defines the augmented A matrix without symptom screening. The
risk in the ’no-intervention case’ is the last entry of the derived vector, i.e. p∞(x̃N+1|∅).

Likewise, the risk after the non-pharmaceutical intervention strategy can be solved by
(i) first determining pt(x|NPI) for the intervention:

pt(x|NPI) =

(∏
i

diag
(
FOR(x)

)
·e∆ti·A(SCR)

)
· e(tend−tn)·A(SCR) · pt0(x) (SN.14)

where ∆ti ∈ [t1, t2 − t1, . . . tn − tn−1] denotes the time spans between the start of the
quarantine/isolation and the first test at time t1 and between any consecutive tests until tn (last test)
and A(SCR) denotes the A matrix for- or without symptom screening. Parameter tend denotes the end
of the quarantine/isolation. The matrix diag

(
FOR(x)

)
is defined

diag
(
FOR(x)

)
=


. . .

FOR(xj,i)
. . .

 (SN.15)

is a matrix with the the state-dependent false omission rates as its diagonal entries.
(ii) the risk is determined by computing:

p∞(x̃|NPI) = es·Ã(∅) ·
(
pt(x|NPI)

0

)
; s→∞ (SN.16)

and given in the last entry of the derived vector, i.e. p∞(x̃N+1|NPI).
The fold risk reduction(t) is calculated

fold risk reduction(t) =
1

relative risk(t)
, (SN.17)

SN.1.4 Prevalence estimation

In the software we provide a tool to estimate the prevalence from the recent incidence history. This
setting is used to evaluate testing and quarantine strategies for incoming travellers. In doing so, we
assume that an incoming traveller is exposed to the same infection risks that are present in the country
where the person is travelling from. This allows to a) calculate the pre-test risk and b) to assess whether
an individual is more likely to have acquired the infection recently or in the past (compare Fig. 4 in the
main manuscript). Regarding the latter, we distinguish settings where there is an increasing trend in
infections, vs. those ones where there is a current decline in infections. In the model, incoming travellers
from the former setting are more likely to have acquired an infection recently, compared to travellers
coming from the latter setting.

To calculate the pre-test risk, we use the infection dynamics model from eq. (SN.9) together with the
incidence reports that the user supplies and the probability of case detection/reporting P (detect) for the
country of interest. Using these ingredients we can calculate the pre-test risk as:

pt0(x) =

t0∑
s=−T

e(t0−s)·A(∅) · ps(x), (SN.18)
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where (−T ) is the time horizon before the current date. In the software we evaluate the preceding 5
weeks. The initial condition ps(x) for day s prior to today is computed from the incidence reports for the
country of interest. For example, if s ∈ week 3 prior to this week, then∑

j

ps(xj) =
π−∆t3(infect)

7 · P (detect)
(SN.19)

where π−∆t3(infect) denotes the number of reported cases per week and 100,000 inhabitants (the
incidence) in week 3 prior to this week. The individual probabilities assigned to the different phases are
computed according to

ps(xj)∑
j ps(xj)

=
τj∑
j τj

, (SN.20)

where τj denotes the mean residence time in each phase. The initial probabilities within the
sub-compartments of each phase are uniformly distributed.
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SN.2 Estimation of default parameters from published data

SN.2.1 Set up

We estimate the default model parameters nj (number of sub-compartments for phase j) and τj (mean
residence time in phase j) in three steps, based on different types of clinical studies:

• Step 1: First, parameters for the incubation phase (= pre-detection + pre-symptomatic, compare
Fig. SN.1) of the model (j = 1, 2) are fitted. For this, we use a meta-analysis by Wei et al. [3] that
encompasses fifty-six studies on the incubation period of SARS-CoV2.

• Step 2: The optimal parameters for the symptomatic phase of the model (j = 3) are estimated
independently of Step 1. We estimate the parameters based on the consensus of five studies that
report on viral load, Ct values and relative infectivity, three of which are published [4–6], in
addition to in-house data and data that has been kindly provided to us by the consiliary lab for
Corona viruses Germany (Drosten Lab Charite Berlin)) [7].

• Step 3: Lastly, the parameters of the post-infectious phase of the model (j = 4) are estimated. We
fix the estimated parameters for the proceeding three phases j = 1, 2, 3 and fit the total model to
the time-dependent PCR sensitivity profile reported by Kucirca et al. [8], effectively estimating the
mean residence time in the post-symptomatic phase.

Table SN.2. Table depicting the three steps in the estimation procedure to derive default parameters
from available clinical data. Estimated parameters for the respective step are indicated as “estim.”,
whereas fixed parameters are denoted as “fixed”. Parameters that are carried forward from the
proceeding estimation step are highlighted by checkmarks (X). ∗fixed to 1.

pre-detection pre-symptomatic infectious post-infectious
n1 τ1 n2 τ2 n3 τ3 n4 τ4

Step 1 estim. estim. fixed∗ estim.
Step 2 estim. estim.
Step 3 X X X X X X fixed∗ estim.

SN.2.2 Incubation (time to symptom onset)

We first estimate the parameters of the incubation phase based on the cumulative distribution of the
time-to-symptom onset for general transmissions reported by Wei et al. [3].

We extract the mean cumulative distribution yt to which we fit our model in the temporal range
t ∈ [0, 30] days post infection. We then optimise the arguments n1, τ1 and τ2 by minimising the squared
deviation of our model predictions pt(xj) in the following sense:

n∗1, τ
∗
1 , τ
∗
2 = argmin

n1,τ1,τ2

yt −
1−

2∑
j=1

pt(xj)

2

, (SN.21)

with initial conditions pt0(x1,1) = 1 and pt0(xj,i) = 0 for all (j, i) 6= (1, 1). Fixing n2 = 1 (compare
Table SN.2), we obtain the optimal parameters: n∗1 = 5, τ∗1 = 2.86 and τ∗2 = 3.91 days.

To estimate lower and upper extreme values for τ1 and τ2, we fix n1 = 5, as well as the ratio between
the residence time of the pre-detection phase and the total incubation period, τ1 = 0.422 · (τ1 + τ2). We

then optimize τ
upper/lower
1 and τ

upper/lower
2 for the minimum least squares deviation between our

prediction and respectively the lower- and upper bounds reported in Wei et al. [3]. From this we obtain

τ
upper/lower
1 = (2.38, 3.37) and τ

upper/lower
2 = (3.27, 4.62) days. The corresponding fits are depicted in

Fig. SN.3
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Fig SN.3. Fitting of the incubation period. Data reported by Wei et al. [3] (meta-analysis of 56
studies) is depicted by the grey shaded areas. Model predictions with optimal parameters n1 = 5, n2 = 1,
τ1 = 2.86 (2.38, 3.37) days and τ2 = 3.91 (3.27, 4.62) days are shown as black lines: Dashed line:
predicted mean duration of the incubation period. Dashed line: upper/lower bounds.

SN.2.3 Infectiousness after symptom onset

Next, we estimate parameters of the infectious phase after symptom onset (or peak virus load) from viral
load kinetics by Ejima et al., van Kampen et al., Jones et al. [4, 5, 7], in-house data and based on the
relationship between culture positivity and time since symptom onset reported by Singanaygam et al. [6].

The in-house Ct values are transformed to viral kinetics using the methods exemplified in
section SN.3. For each data set, we then fit a linear equation to the reported viral kinetics. We first use
a sliding window technique (window size of 30 consecutive data points) to extract the average slope of
the log10 viral load values to which we then fit a linear equation by minimizing the least squares
deviation, similar to the method exemplified in section SN.3. For each fit, the slope a and intercept b are
used to simulate viral load data in the temporal range t ∈ [0, 21] using

log10

(
V L(t)

)
= −t · a+ b+ ε, (SN.22)

where ε ∼ N
(
0, σ2

)
is an additive error.

The simulated viral loads in turn are used to construct relative infectivity profiles based on the attack
rate curve as exemplified in section SN.3, using the optimal parameters for the attack rate curve zt
reported therein.

We fit the infectious phase of the model to each relative infectivity data set separately. We enforce
one global n3 parameter (number of sub-compartments) for all data sets, while allowing distinct values
for τ3 (mean residence time) for each individual data set.

Using initial conditions pt0(x3,1) = 1 and pt0(xj,i) = 0 for all (j, i) 6= (3, 1), we minimise the sum of
weighted squared deviations:

n∗3, τ
∗
3 = argmin

n3,τ3

∑
S

(
zt − pt(x3)

)2
NS

, (SN.23)

where NS is the number of observations in the respective study S. We obtain optimal parameters
n3 = 13 and τ3 = 7.5 (taken to be the median of the five fitted values for the individual studies).

To estimate lower and upper extreme values for τ3, we fix n3 = 13 and use the same method
minimizing the least squares deviation for the lower and upper bounds of the error range of all five data
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sets combined. From this, we estimate τ
upper/lower
3 = (2.79, 11.47). In Fig. SN.4A, we show the

optimisation of parameter n3, whereas Fig. SN.4B depicts the fits to the individual studies and
Fig. SN.4C shows the the summary of all data together with model predictions using the default
parameters n3 = 13 and τ3 = 7.5 (2.79, 11.47).
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Fig SN.4. Fitting of the infectious phase post symptom-onset. A. Fit to the individual data
sets. Areas denote the reported ranges of the relative infectiousness. Lines represent the respective
model predictions. B. The plot depicts the infectiousness time courses from all data sets used in the
estimation procedure as shaded areas. The solid and dashed lines depict model predictions using the
final default parameters n3 = 13 and τ3 = 7.50 (2.79, 11.47) days.C. Estimation of the optimal number
of sub compartments for the infectious phase. The optimum n3 = 13 is marked by a red cross.
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SN.2.4 Time-dependent assay sensitivity and detection probability: PCR

Currently, PCR-based diagnostic tests are the gold standard to detect a SARS-CoV2 infection. Since the
utilised primers are highly specific for SARS-CoV2, we set the default specificity to Spec = 0.999 to
account for errors such as mislabeling of samples. The PCR also has an analytical sensitivity of nearly
100% if sufficient viral material is contained in the sample. The clinical sensitivity, however, depends on
time since infection [8] and is capped at a maximum sensitivity

Sensmax = max
t

[
Pt(PCR+|SARSCoV2+)

]
≈ 80%.

While the former is a result of the viral dynamics, the latter has to do with the pre-analytics, i.e.
whether the health personal is able to get hold of sufficient virus material during swab sampling.
Because the software is developed primary for comparing NPI strategies for the public, samples for PCR
tests are assumed to be from the upper respiratory tract.

In the software, the maximum sensitivity is an input parameter, while the mean residence time in the
post-infectious phase τ4 is chosen, such that the temporal change in the false omission rate, as reported
in Kucirca et al. [8], as well as the decrease of detection probability from symptom onset, as reported in
Borremans et al. [9], are captured accurately (compare Fig. SN.5 below).

To estimate the optimal τ4 value, we fix the optimal parameters for all previous phases and set
n4 = 1. The time-dependent assay false omission rate is computed as:

FORt = Spec · pt(x1) + (1− Sensmax) ·
4∑
j=2

pt(xj) (SN.24)

with pt0(x1,1) = 1 and pt0(xj,i) = 0 for all (j, i) 6= (1, 1). The relative detection probability from
symptom onset is computed as:

Pt(detect) =

(
1− diag

(
FOR(x)

))
· et·A · pt0(x)(

1− diag
(
FOR(x)

))
· et0·A · pt0(x)

(SN.25)

with pt0(x3,1) = 1 and pt0(xj,i) = 0 for all (j, i) 6= (3, 1). We estimate τ4 by simultaneously fitting
Pt(detect) to the detection probability profile for the upper respiratory tract from Borremans et al. [9],
and FORt to the temporal PCR false omission rate profile published by Kucruca et al. [8]. This gives us
τ4 = 8 days. We fit no upper and lower bounds for τ4.

The model predicted FORt and Pt(detect) together with the published data from Kucirca et al. [8],
respectively Borremans et al. [9] is shown in Fig. SN.5.

SN.2.5 Antigen-based rapid diagnostic tests (RDT)

Rapid diagnostic testing (RDT) through antigen detection is currently in development. Early validation
results from two commercially available products compared their analytic performance with PCR [10]. In
summary, the antigen tests show a comparable sensitivity with respect to PCR for samples with low CT
values (large number of virus material) and appear to be less sensitive at high CT values (low virus
content in sample). Overall, sensitivities of P (RDT+|PCR+) = 85–89% with respect to PCR were
reported for the two evaluated testing systems. Specificity was 99.7–100% with respect to PCR. Since no
data about the temporal changes of this relative sensitivity is available to date, we assumed it to be
comparable to the PCR and set the default parameter for the maximum sensitivity of RDT assays to

Sensmax = max
t

[
Pt(RDT+|SARSCoV2+)

]
= max

t

[
P (RDT+|PCR+) · Pt(PCR+|SARSCoV2+)

+P (RDT+|PCR−) · Pt(PCR−|SARSCoV2+)
]

≈ 70% (SN.26)
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Fig SN.5. Fitting of the temporal PCR sensitivity and detection probability. A. The grey
ranges show the temporal false omission rate derived by Kucirca et al. [8], whereas the solid and dashed
lines indicate the predicted profile using the mean- and upper/lower parameter estimate. B
Time-dependent PCR sensitivity after symptom onset from Borremans et al. [9] (error bars) together
with model simulated PCR sensitivity with optimal parameters (solid line) and extreme parameters
(dashed lines).

SN.2.6 Summary of default parameters

While residence times in each phase τj can be changed arbitrarily in the software, the number of
sub-compartments nj for each phase remains fixed. Table SN.3 summarises all model default parameters
of the model.

Table SN.3. Summary of the model’s default parameters. τj and nj denote the mean residence time
(and interval) in phase j in days and the number of sub-compartments respectively.

pre-detection pre-symptomatic infectious post-infectious
τ1 n1 τ2 n2 τ3 n3 τ4 n4

2.86 (2.38;3.37) 5 3.91 (3.27; 4.62) 1 7.5 (2.79; 11.47) 13 8 1
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SN.3 Analysis of infectivity profiles

We will first pursue a mechanistic modelling which allows to put viral kinetics, as well as immune-related
virus neutralisation into context. We fit this model to in house data that reports viral kinetics, as well as
culture-positivity. Using the mechanistic modelling, we are then enabled to deduce an attack rate curve
zt from viral load profiles, for studies that do not report infectivity explicitly (inputing some parameters
learned from the in house data).

The mechanistic model is then used to derive the attack rate curve zt for each considered data set
where this curve is not explicitly stated and used for deriving default parameters for our Markov model
(Fig. SN.1) as outlined in section SN.2.

SN.3.1 Mechanistic modelling

We will model the attack rate as a function of the viral kinetics in the potential transmitter, as well as
virus neutralisation within the host. Under the reasonable assumption of statistical independence the
probability of infection (attack rate) can be written as

zt = 1− c
(
VeI(t)

)
1 (SN.27)

where 0 << c1 < 1 is the probability of non-infection after exposure to a single infectious virus. The
exposure with infectious virus VeI(t) can be thought of as a Bernulli process (compare below) and hence
is a binomially distributed random number. The expected exposure to infectious virus is then
E
(
VeI(t)

)
= FI(t) · Ve(t), which we will use henceforth.

SN.3.1.1 Virus exposure Ve(t)

The virus exposure Ve(t) can be assumed to be a function of the viral load V L(t) in the upper
respiratory tract of an infected individual. Viral kinetics have been elaborated in several studies,
e.g. [4, 7]. Typically, the viral titers increase exponentially, reaching a set point at about symptom onset
and decrease exponentially thereafter. Viral exposure Ve(t) emanating from an infected individual can be
thought of as being a fraction of the viral load in the upper respiratory tract. This can be modelled, akin
to [11], as a Bernulli Process, hence,

Ve(t) ∼ B(p, V L(t)) (SN.28)

where B is the binomial distribution and p the success probability (fraction of virus load that is exposed
to the recipient). The binomial distribution has expectation value E

(
Ve(t)

)
= p · V L(t), which we will use

henceforth.

SN.3.1.2 Fraction of infectious virus FI(t)

It has been shown in several studies [5, 6, 12] that the infectiousness of virus from patient samples
decreases as a function of the time since symptom onset. This is generally believed to be a result of
neutralization by antibodies [13,14]. Notably, neutralisation in the upper respiratory tract may occur
before it is detectable in the blood plasma. Let us assume that the immune system response IR(t)
increases exponentially after infection. Then, the fraction of infectious virus FI(t) can be modelled by
Emax kinetics [15]

FI(t) =
1

1 + ÎR(t)
(SN.29)

where ÎR(t) is proportional to the immune response. An interpretation would be ÎR(t) = Ab(t)/IC50

(concentration of neutralising antibodies divided by their fifty percent inhibitory concentration).
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SN.3.2 The shape of the attack rate curve

In case of an exponential increase of the immune response, ÎR(te) = ÎR(t0,e) · e
(
te·c3

)
, where t0,e is the

time of exposure and te is the time after exposure and hence te = t+ τinc.

zt = 1− c
(
VeI(t)

)
1 = 1− cp·V L(t)·FI(t)

1 (SN.30)

zt = 1− c
p

 V L(t)

1+

(
ÎR(t0,e)·e

((t+τinc)·c3)
)

1 (SN.31)

= 1− c
p

[
V L(t)

1+g(c3)·e(t·c3)

]
1 (SN.32)

where g(c3) =
(
ÎR(te0)

)
·e(τinc·c3).

SN.3.3 Estimation of infectivity profiles from in house data

SN.3.3.1 Viral dynamics

We first estimate the viral decay kinetics based on the Ct values. The data is depicted below in
Fig. SN.6, left. We first use a sliding window technique to extract the average slope of the Ct values
(blue line) to which we then fit a linear equation in the temporal range t ∈ [0 20] by minimizing the least
squares deviation.

yt = m · t+ y0 (SN.33)

with (SN.34)

Ct(t) = yt + ε (SN.35)

with optimal parameter m∗ = 0.43. We assumed an additive error (which justified the least squares
regression) and estimated ε ∼ N

(
0, σ2

)
, where σ2 = 4.44. The resulting simulated Ct values are depicted

in Fig. SN.6, middle.
As illustrated by [16], Ct values are linearly correlated with log10 viral loads (genome

equivalents/µL), i.e.:

−c · log10(V L(t)) + k = Ct(t) (SN.36)

log10(V L(t)) =
1

c
Ct(t) +

k

c
(SN.37)

For the in house PCR assay we have c = 3.35 for the Charité E protein primers used in our study,
Fig. SN.1 and therefore 1

c is very close to the idealised value of 1
log2(10) ≈ 0.3.

Finally, the slope parameter for the viral loads (combining the Ct(t) slope and the linear regression
parameter) is m̃ = m/c = 0.133 (day−1). Similarly, the variance gets scaled to σ̃2 = 4.44/c = 1.32, now
being an exponential error, i.e. ε ∼ N

(
0, 1.32

)
. The actual viral loads depend on the intercept, which in

turn depends on the extraction of viral samples, as well as on the assay equipment. We therefore chose
to set the average viral loads to published values [12], i.e. E

(
V L(t0)

)
≈ 6 · 107 (copies/swab)⇒ ỹ0 = 7.77.

SN.3.3.2 Attack rate

We use the equation for the attack rate (compare eq.(SN.32)).

zt = 1− c1
p

[
V L(t)

1+g(c3)·e(t·c3)

]
(SN.38)

where g(c3) = ÎR(te0) · e(τinc·c3). We will set ÎR(te0) = 0.01.
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Fig SN.6. Own data and data fitting. Left: Ct values from Sars-CoV2 infected individuals after
symptom onset. black dots denote culture negative- and red dots culture positive samples. The solid
blue line denotes the sliding average and and the dashed green line is a fitted increase in Ct with slope
0.4 (day−1) and intercept 24. Middle: Simulated Ct values. Right: Simulated genome equivalents/mL.

This leaves us with three free parameters: 10−6 < p < 0.01 and 0.01 < c3 < 3 and 0.99 ≤ c1 < 0.9999.
We now minimize

{p∗, c∗3, c∗1} = argmin

((
ψ · w − zt

)2)
, (SN.39)

where ψ ∈ [0, 1] denotes the data (culture negative or culture positive). We assessed different values for
the hyperparameter (weight) w, see below in Fig. SN.7. The weighing parameter w is intended to put
more importance on the culture positive samples, as there may be false negative cultures due to
transportation and storage of samples. This also puts more emphasis on increasing the sensitivity of the
method (less false negative predictions), as it increases the methods’ safety margin. After hyper
parameter scan we selected w = 3.

SN.3.3.3 Summary and optimal parameters.

Using the methods described above, we get the following optimal parameters: p = 0.01, c3 = 0.741,
c1 = 0.99. Using these values the model has a sensitivity of sens = 96% and a specificity of
spec = 0.57%.

Sensitivity was computed as:

sens. = P (pred. positive|culture positive) =
A(t)|culture pos.

#culture pos.
(SN.40)

Specificity was computed using

spec. = P (pred. negative|culture negative) = 1− A(t)|culture neg.

#culture neg.
(SN.41)
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Fig SN.7. Fitting to in house data. Upper Left: Predicted relative infectivity based on sampled
viral loads (compare Fig. SN.6 and estimated parameters (eq. (SN.39)). Blue dots: Samples infectivity
values, red line and error bars: mean infectivity ± standard deviation. Upper Right: Scanning of
hyper parameters (weights). Red cross: chosen weight. Lower Left: Sensitivity and specificity for
different hyper parameters. Lower Middle: Predicted attack rate vs. positive culture. Lower Right:
Predicted fraction of infectious virus, using 1

1+g(c3)·e(t·c3) .
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