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Abstract 

Objectives: Machine learning (ML) has been demonstrated to improve the prediction of 

functional outcome in patients with acute ischemic stroke. However, its value in a specific 

clinical use case has not been investigated. Aim of this study was to assess the clinical utility 

of ML models with respect to predicting functional impairment and severe disability or death 

considering its potential value as a decision-support tool in an acute stroke workflow. 

Materials and Methods: Patients (n=1317) from a retrospective, non-randomized observational 

registry treated with Mechanical Thrombectomy (MT) were included. The final dataset of 

patients who underwent successful recanalization (TICI ≥ 2b) (n=932) was split in order to 

develop ML-based prediction models using data of (n=745, 80%) patients. Subsequently, the 

models were tested on the remaining patient data (n=187, 20%). For comparison, baseline 

algorithms using majority class prediction, SPAN-100 score, PRE score, and Stroke-TPI score 

were implemented. The ML methods included eight different algorithms (e.g. Support Vector 

Machines and Random forests), stacked ensemble method and tabular neural networks. 

Prediction of modified Rankin Scale (mRS) 3–6 (primary analysis) and mRS 5–6 (secondary 

analysis) at 3 months was performed using 25 baseline variables available at patient 

admission. ML models were assessed with respect to their ability for discrimination, calibration 

and clinical utility (decision curve analysis). 

Results: Analyzed patients (n=932) showed a median age of 74.7 (IQR 62.7–82.4) years with 

(n=461, 49.5%) being female. ML methods performed better than clinical scores with stacked 

ensemble method providing the best overall performance including an F1-score of 0.75 ± 0.01, 

an ROC-AUC of 0.81 ± 0.00, AP score of 0.81 ± 0.01, MCC of 0.48 ± 0.02, and ECE of 0.06 ± 

0.01 for prediction of mRS 3–6, and an F1-score of 0.57 ± 0.02, an ROC-AUC of 0.79 ± 0.01, 

AP score of 0.54 ± 0.02, MCC of 0.39 ± 0.03, and ECE of 0.19 ± 0.01 for prediction of mRS 5–

6. Decision curve analyses suggested highest mean net benefit of 0.09 ± 0.02 at a-priori 

defined threshold (0.8) for the stacked ensemble method in primary analysis (mRS 3–6). 

Across all methods, higher mean net benefits were achieved for optimized probability 

thresholds but with considerably reduced certainty (threshold probabilities 0.24–0.47). For the 

secondary analysis (mRS 5–6), none of the ML models achieved a positive net benefit for the 

a-priori threshold probability 0.8. 

Conclusions: The clinical utility of ML prediction models in a decision-support scenario aimed 

at yielding a high certainty for prediction of functional dependency (mRS 3–6) is marginal and 

not evident for the prediction of severe disability or death (mRS 5–6). Hence, using those 

models for patient exclusion cannot be recommended and future research should evaluate 

utility gains after incorporating more advanced imaging parameters. 
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Introduction 

The HERMES data and recent late-time window thrombectomy studies suggested a low 

number needed to treat with mechanical thrombectomy for improving the functional status of 

patients with an acute ischemic stroke due to a large vessel occlusion (NNT=2.6 in HERMES)1. 

The inclusion criteria of trials included in the HERMES meta-analysis were relatively strict. 

However, the large effect sizes observed, promising results derived from observational data in 

borderline indication groups2–4, and a relatively low procedural complication risk1,5,6, have been 

put forward as a major argument widening the indication criteria for mechanical thrombectomy 

(MT). This is also reflected by statements from the recent ESO/ESMINT guidelines for 

borderline indications group, suggesting that MT may be reasonable in patients with e.g. low 

ASPECTS or low NIHSS scores, if inclusion into randomized trials is not possible7. 

Correspondingly, there was a considerable shift from carefully selecting patients to receive MT 

(rule in) towards treating the vast majority of patients, except for cases with convincing reasons 

to withhold MT (rule out). Such a paradigm shifts makes the treatment available for more 

patients8–10, but also inevitably comes with the risk of increasing futile interventions without a 

clinical benefit11–13. If one would be able to precisely determine which patient has a poor 

outcome despite a technically successful treatment, this can be used to assess the cost-benefit 

relationship of the treatment and enhance patient-oriented informed decision (e.g. withholding 

treatment in a patient with legally binding declaration of not wanting to live in moderate or 

severe dependency). 

In the past, many different prediction approaches based on clinical variables at baseline have 

been introduced in patients with acute ischemic stroke, e.g. simple clinical scores such as the 

Pittsburgh Response to Endovascular (PRE) therapy score14, the Stroke-Thrombolytic 

Predictive Instrument (Stroke-TPI)15, and more recently prediction models based on Machine 

Learning16,17. Machine Learning (ML) methods showed potential to improve prediction 

performance when compared to clinical scores18. However, a recent systematic review19 has 

pointed out the following weaknesses of ML studies conducted so far: Small cohorts (median 

sample size is 475), no or only simple data imputation (e.g. median imputation), insufficient 

reporting of hyperparameter tuning, and a strong focus on discrimination with only three studies 

discussing calibration and no studies discussing clinical utility in context of a possible scenario-

based integration into acute stroke care20. 

Consequently, we set out to evaluate the performance of a wide variety of Machine Learning 

algorithms (including logistic regression, Support Vector Machines, Random forests) and 

tabular neural networks for predicting functional dependency and severe disability or death in 
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patients with successful reperfusion. A particular aim of this study was the assessment of ML 

models with respect to their clinical utility (i.e. excluding patients from MT based on high 

likelihood for futile reperfusion) in pre-interventional prediction of 3-months functional 

impairment. 

Methods 

Study Design 

We included patients (n=1317) of a single center from a retrospective, non-randomized 

observational registry purposed to investigate the safety and efficacy of second-generation 

market-released device for mechanical thrombectomy1. Details on the inclusion criteria of the 

registry were published previously21. We excluded patients with age below 18 years (n=4), 

patients with invalid values in clinical variables (n=2), patients who did not exhibit a proximal 

large vessel occlusion (n=121), patients with missing TICI score (n=1) and missing 3-months 

mRS (n=71). Furthermore, analysis was restricted to patients who were successfully 

recanalized (i.e. patients with TICI < 2b were excluded; n=186). Therefore, the developed 

models are purposed to predict 3-month functional impairment at baseline under the 

assumption of successful recanalization (TICI ≥ 2b). Figure 2 provides an overview on the 

intended use of the ML prediction in an acute stroke workflow. Approval by local ethics 

committee is available (Bernese/Swiss Stroke Registry: Kantonale Ethikkommission für die 

Forschung Bern, Bern, Switzerland, amendment access number: 231/2014 and BEYOND-

SWIFT registry, access number: 2018-00766). 

The final dataset (n=932) was split randomly into a training set (80%, n=745) used for model 

development and an internal test set (20%, n=187). The flow chart describing patient inclusion 

and study design is shown in Figure 1. 

 
1 For more details, see https://clinicaltrials.gov/ct2/show/NCT03496064. 
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Figure 1. Flow chart of patient inclusion and experimental study design. Model development was based on nested 
stratified 10-fold cross-validation (CV) using training data (N=745). Trained models were evaluated on separate test 
set (n=187). 

 

Figure 2. Intended use of ML prediction in a stroke workflow. The ML model outputs a probability (risk score) for 
mRS 5–6 based on variables available ahead of intervention. This information is provided to the treating 
physicians after selection of patient for EVT (indicated with green arrows) and could serve as a marker for futile 
recanalization. 

Baseline Variables 
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An initial set of 30 variables which are available on admission was included. Input variables 

(features) were dropped when more than 25% of the values were missing. Dropped features 

included risk due to coronary heart disease, systolic & diastolic blood pressure, admission 

international normalized ratio (INR), and admission platelet. 

Therefore, we considered a total of 25 features available on admission including age on 

admission (continuous, years), sex (binary), direct vs transfer (binary), pre stroke 

independence (binary), risk due to diabetes (binary), risk due to arterial hypertension (binary), 

risk due to dyslipidemia (binary), risk due to smoking (binary), risk due to previous stroke 

(binary), medication anticoagulation (categorical), medication antiplatelet (categorical), 

medication statin (binary), admission glucose (continuous, mmol/L), quality symptom onset 

(categorical), wake up stroke (binary), in hospital stroke (binary), IVT bridging (binary), type of 

admission imaging (binary), site of occlusion (categorical), ASPECTS (DWI/CT, treated as 

continuous), tandem occlusion (binary), dissection (binary), NIHSS on admission (treated as 

continuous), time symptom onset to admission (continuous, min), time admission to groin 

puncture (continuous, min). 

Functional Outcome 

Functional impairment was defined by the modified Rankin Scale (mRS) 3–6 at 3 months. The 

mRS was dichotomized to serve as binary target variable. The primary analysis included the 

prediction of mRS 3–6 at 3 months. Despite the fact that such a definition of futile reperfusion 

is highly debatable, the endpoint was chosen to make the results comparable to reported 

results from other studies. For the intended use case (Figure 2), a secondary analysis included 

prediction of mRS 5–6 at 3 months. This secondary endpoint more closely reflects true futile 

reperfusion, because quality of life may be substantial for patients with mRS grades 3 and 422, 

while five-year quality-adjusted-life-expectancy in stroke survivors with mRS 5 is overall low 

(0.06)22–24. 

Therefore, prediction of 3-months functional impairment based on clinical variables available 

at baseline was regarded as a binary classification problem (mRS ≤ 2 vs. mRS > 2 and mRS 

< 5 vs. mRS ≥ 5, respectively). The classes in the primary analysis (mRS ≤ 2 vs. mRS > 2) 

were roughly balanced (n=480, 51.5% mRS > 2), whereas classes in the secondary analysis 

(mRS < 5 vs. mRS ≥ 5) were imbalanced (n=245, 26.3% mRS ≥ 5). 

Machine Learning Methods 

Missing values for input features were imputed using k-Nearest Neighbor (k-NN) imputer with 

k=15 neighbors on normalized feature data of the training and testing data separately. 

Categorical variables were one-hot encoded for all ML methods except the tabular neural 
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network which relied on categorical embeddings. Feature values were normalized to [0,1] 

interval using min-max normalization. 

Four baseline algorithms including Majority classifier, SPAN-100 score25 (age on admission + 

NIHSS on admission), PRE score14 (function of age on admission, NIHSS on admission and 

ASPECTS) and Stroke-TPI score15 were implemented. Stroke-TPI corresponds to a logistic 

regression on age on admission, NIHSS on admission, ASPECTS, and admission glucose. 

Eight baseline ML algorithms including k-NN classifier using Manhattan distance, linear soft-

margin SVM based on liblinear, linear soft-margin SVM based on libsvm, non-linear SVM with 

Radial Basis Function (RBF) kernel, regularized logistic regression with interaction terms, 

Gradient Boosting (XGBoost classifer), random forest (RF), and Multi-layer Perceptron (MLP) 

were implemented using Python’s (3.7.7) scikit learn26 (0.22.1), xgboost27 (1.2.0, for XGBoost 

classifier), and imbalanced-learn28 (0.6.2, for random forest) modules. Class imbalance was 

tackled using class weights for models in scikit learn and majority class undersampling of each 

bootstrap sample for the random forest. Calibration of the SVM models was improved using 

Platt’s scaling29. 

The input features included both continuous and categorical (binary) variables. Therefore, we 

propose an ensemble method which includes a dedicated ML algorithm for each type of 

variable. In particular, a linear soft-margin SVM is used to process continuous variables only, 

a Boolean soft-margin SVM using a Tanimoto kernel function30 is employed to process the 

one-hot encoded categorical variables and a random forest is used to operate on all variables. 

The rationale is that by treating continuous variables and categorical variables separately, we 

obtain feature spaces with less distorted geometries and thus may potentially improve 

discrimination between classes for SVMs. The role of the RF is to capture non-linear 

relationships between features and target variable as well as interactions between input 

features. The three models (linear SVM, Boolean SVM, and RF) are combined in an ensemble 

by stacking their probabilistic outputs using a logistic regression model with l2-regularization 

(to prevent one model from dominating the final decision). Class imbalance was tackled using 

class weights on the level of the individual models and the stacking method. 

Finally, we implemented a tabular neural network based on fast.ai’s tabular learner using 

categorical embeddings31. The architecture of the neural network is presented in the 

Supplementary Materials (Section Hyperparameter Optimization). The loss function was cross 

entropy with label smoothing to improve the calibration of the final model32. Class weights were 

used in the loss function computation to tackle class imbalance. The model was trained for 80 

epochs using Ranger optimizer33 with a learning rate of 4e-03 (based on learning rate finder) 
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and flat cosine annealing34. Early stopping35 based on the f1-score in the validation set was 

employed to prevent overfitting. 

Machine Learning Model Development & Testing 

We used a nested, stratified 10-fold cross-validation strategy for model development. In the 

outer CV loop, the training dataset was split into 10 equally sized subsets. Nine out of the ten 

subsets were used for training and one for testing. In the inner loop, hyperparameter 

optimization was performed based on maximization of f1-score in a 10-fold randomized 

gridsearch using the data of the previously formed nine folds. A detailed overview on the 

hyperparameters of the ML algorithms is shown in the Supplementary Table 1. 

For model testing, we trained ML algorithms using the setting of the nested CV’s inner loop on 

the complete training data (10-fold randomized grid search) and applied the resulting ML model 

to separate test data (n=187). We repeated this process 20 times using a different random 

seed for algorithm initialization in each run. It has been shown that performance of Deep 

Learning methods varies considerably depending on the choice of random seed36, and thus 

our intention was to capture this aspect. 

Statistical analysis 

Univariate associations of clinical variables with functional outcome were assessed using 

Mann-Whitney U-test for continuous variables and Chi-square test for categorical variables (for 

primary analysis only). The statistical analysis of the different ML methods investigated model 

discrimination, calibration and clinical utility. Discrimination refers to the ability of the ML 

method to separate the two classes. Calibration refers to the ability of the ML model to provide 

accurate probability estimates. Finally, clinical utility can be regarded as a combination of 

discrimination and calibration with added clinical context in form of an a-priori defined threshold 

on predicted risk of functional impairment. In order to assess the ML models ability to 

discriminate at the threshold of p=0.5, we employed accuracy, balanced accuracy, precision, 

recall, f-1 score, specificity, and Matthew’s correlation coefficient (MCC). In addition, the Area 

Under the Curve (AUC) of the Receiver operating characteristic and the Average Precision 

(AP) score are reported as measures across all possible thresholds. The calibration of ML 

models was quantified using the Brier score and Expected Calibration Error (ECE) based on 

10 bins. Feature importance was computed for all methods using the permutation method37 on 

the test set. We defined permutation feature importance through the decrease in f1-score when 

the values of a single feature are randomly shuffled. Decision curve analysis38 was employed 

to quantify the clinical utility of the ML models on test data. In particular, we defined a-priori a 

probability threshold of p=0.8 for risk of functional impairment (mRS 3–6) and severe disability 

or death (mRS 5–6) to assess net benefit (=difference between fraction of true positives and 
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false positives, in which the latter are weighted by odds of probability threshold). In addition, 

we determined optimal probability thresholds for all models during model development to 

maximize f1-score. Net benefit for f1-optimized probability thresholds was reported as well. 

Results are reported as mean ± 1 standard deviation based on the stratified 10-fold cross-

validation for model development. Performance on test data was reported as mean ± 1 

standard deviation over 20 runs with different random seeds for algorithm initialization. 

Results 

Baseline characteristics 

The median age of included patients (N=932) was 74.7 (62.7–82.4) years with (n=461, 49.5%) 

being female. Baseline characteristics of patients in training and test set are shown in Table 1. 

Univariate associations of clinical variables with functional outcome was assessed for both 

training and test data. For training data, age on admission, admission glucose, NIHSS on 

admission, ASPECTS, time symptom onset to admission, pre stroke independence, risk factor 

diabetes, risk factor arterial hypertension, risk factor smoking, anticoagulation medication, 

antiplatelet medication, IVT bridging, type of imaging, and site of occlusion were significantly 

different between patients with mRS ≤ 2 and patients with mRS > 2 (P < 0.01). For the test 

data, significant associations of ASPECTS, time symptom onset to admission, risk factor 

arterial hypertension, risk factor smoking, anticoagulation medication, antiplatelet medication, 

IVT bridging and site of occlusion were not present. However, time admission to groin puncture 

was significantly different between patients mRS ≤ 2 and patients with mRS > 2 (P < 0.01). 

Table 1. Baseline characteristics of all included patients (shown for primary analysis). Continuous variables were 
reported as median and interquartile range (IQR). Categorical variables were reported as counts (proportions). 

 Training data (n=745) Test data (n=187) 

 mRS ≤ 2 

(n=361) 

mRS > 2 

(n=384) 

P-value mRS ≤ 2 

(n=91) 

mRS > 2 

(n=96) 

P-value 

Age on admission 68.8 (57.8–

77.4) 

79.2 (68.9–

85.4) 

P < 0.01 72 (57.4–

77.3) 

80.8 (74.2–

85.1) 

P < 0.01 

Sex, female 178 (49.3%) 184 (47.9%) P = 0.759 39 

(42.9%) 

60 (62.5%) P = 0.01 

Admission glucose (mmol/L) 6.3 (5.7–7.2) 7.0 (6–8.4) P < 0.01 6 (5.5–

7.1) 

7.3 (6.3–

8.3) 

P < 0.01 

NIHSS on admission 12 (8–17) 17 (12–21) P < 0.01 14 (7–17) 19 (12–21) P < 0.01 

ASPECTS (DWI/CT) 8 (7–9) 7 (5–9) P < 0.01 8 (7–9) 8 (7–9) P=0.186 

Time symptom onset to admission 

(min) 

122 (70–243) 161 (85–273) P < 0.01 124 (67–

240) 

159 (85–

254) 

P=0.152 

Time admission to groin puncture 

(min) 

87 (62–104) 87 (65–106) P=0.394 91 (71–
125) 

83 (53–
102) 

 P < 0.01 

Transfer from another hospital 111 (30.7%) 125 (32.6%) P=0.653 23 

(25.3%) 

35 (36.5%) P=0.135 

Pre stroke independence 350 (97%) 312 (81.2%) P < 0.01 88 
(96.7%) 

78 (81.2%) P < 0.01 

Risk Factor: Diabetes 38 (10.5%) 79 (20.6%) P < 0.01 7 (7.7%) 22 (22.9%) P < 0.01 

Risk Factor: Arterial 

Hypertension 

231 (64%) 296 (77.1%) P < 0.01 58 
(63.7%) 

74 (77.1%) P=0.066 

Risk Factor: Dyslipidemia 208 (57.6%) 217 (56.5%) P=0.817 57 

(62.6%) 

48 (50%) P=0.111 

Risk Factor: Smoking 123 (34.1%) 67 (17.4%) P < 0.01 23 
(25.3%) 

14 (14.6%) P=0.099 

Risk Factor: Previous CVI 36 (10%) 53 (13.8%) P=0.134 9 (9.9%) 14 (14.6%) P=0.451 
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Statin 99 (27.4%) 121 (31.5%) P=0.254 22 

(24.2% 

20 (20.8%) P=0.71 

Anticoagulation 

− None 

− VKA 

− NOAC 

 
316 (87.5%) 

27 (7.5%) 

18 (5%) 

 
301 (78.4%) 

48 (12.5%) 

35 (9.1%) 

P < 0.01  
84 

(92.3%) 

3 (3.3%) 
4 (4.4%) 

 
78 (81.3%) 

12 (12.5%) 

6 (6.3%) 

P=0.053 

Antiplatelet 

− None 

− Mono 

− Double 

 

256 (71%) 

94 (26%) 
11 (3%) 

 

240 (62.5%) 

137 (35.7%) 
7 (1.8%) 

P < 0.01  

63 

(69.2%) 
27 

(29.7%) 
1 (1.1%) 

 

62 (64.6%) 

34 (35.4%) 
0 (0%) 

P=0.432 

IVT Bridging 168 (46.5%) 137 (35.7%) P < 0.01 42 

(46.2%) 

35 (36.5%) P=0.231 

Type of Imaging (CT vs. MRI) 137 (38%) 218 (56.8%) P < 0.01 26 
(28.6%) 

62 (64.6%) P < 0.01 

Site of Occlusion 

− ICA 

− ICA T/L 

− M1 

− M2 

 

13 (3.6%) 

59 (16.3%) 

227 (62.9%) 

62 (17.2%) 

 

21 (5.5%) 

100 (26%) 

207 (53.9%) 

56 (14.6%) 

P < 0.01  

3 (3.3%) 

19 

(20.9%) 

52 

(57.1%) 
17 

(18.7%) 

 

2 (2%) 

30 (31.3%) 

50 (52.1%) 

14 (14.6%) 

P=0.413 

Tandem occlusion 48 (13.3%) 49 (12.8%) P=0.914 6 (6.6%) 16 (16.7%) P=0.056 

Dissection 16 (4.4%) 13 (3.4%) P=0.583 2 (2.2%) 1 (1%) P=0.963 

Quality of symptom onset 

− Noticed 

− Last seen well 

− Unknown 

 

283 (78.4%) 

55 (15.2%) 
23 (6.4%) 

 

279 (72.7%) 

75 (19.5%) 
30 (7.8%) 

P=0.19  

70 

(37.4%) 
16 

(8.6%) 

5 (2.7%) 

 

71 (38%) 

17 (9.1%) 
8 (4.3%) 

P=0.742 

In hospital stroke 7 (1.9%) 12 (3.1%) P=0.427 3 (3.3%) 4 (4.2%) P=0.942 

Wake up stroke 43 (11.9%) 55 (14.3%) P=0.387 14 

(15.4%) 

9 (9.4%) P=0.304 

 

Prediction of Functional Impairment and Severe Disability or Death 

Discrimination of ML methods (except for k-NN classifier) for prediction of mRS 3–6 at 3 

months was superior when compared to naïve baseline algorithms (majority classifier, SPAN-

100 score, PRE score, Stroke-TPI score). Performance of all ML methods (except for k-NN 

classifier) was in a similar range. An overview of the results is provided in Table 2 (full data 

presented in Supplementary Table 2). Best overall performance on test data was achieved by 

the stacked ensemble method with F1-score of 0.75 ± 0.01, ROC-AUC of 0.81 ± 0.00, AP 

score of 0.81 ± 0.01, MCC of 0.48, and ECE of 0.06 ± 0.01. Computation of permutation 

importance revealed that among all methods (except k-NN classifier) the most important 

features included age on admission, NIHSS on admission, and pre stroke independence. The 

feature importance of the stacked ensemble method are shown in Figure 3 (see 

Supplementary Figures 1 & 2 for other methods and for secondary analysis). 

When looking at the performance for prediction of mRS 5–6 at 3 months (secondary analysis) 

a considerable drop in performance for all ML methods can be observed. The stacked 

ensemble method achieved F1-score of 0.57 ± 0.02, ROC-AUC of 0.79 ± 0.01, AP score of 

0.54 ± 0.02, MCC of 0.39 ± 0.03, and ECE of 0.19 ± 0.01 on the test set. An overview of the 

results for the secondary analysis can be found in the Supplementary Table 3. 
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Table 2. Performance for mRS 3–6 prediction. Values are reported as mean ± std. Brier score and ECE are 
reported for ML algorithms only. (for results of 10-fold cross-validation on training data, see Supplementary Table 
2) 

Dataset Method Accuracy Precision Recall F1-

Score 

Specificity ROC-

AUC 

AP Matthews 

corr. 

Brier 

score 

ECE 

Test 

data 

Majority 

Classifier 

0.51 0.51 1.0 0.68 0.0 0.50 0.51 0.0 - - 

Test 

data 

SPAN100 

Score 

0.69 0.91 0.44 0.59 0.96 0.79 0.81 0.46 - - 

Test 

data 

PRE Score 0.57 0.68 0.31 0.43 0.85 0.73 0.72 0.19 - - 

Test 

data 

Stroke-TPI 

Score 

0.70 0.70 0.73 0.71 0.67 0.78 0.78 0.40 - - 

Test 

data 

K-NN 

Classifier 

0.66 ± 

0.01 

0.67 ± 

0.01 

0.66 ± 

0.01 

0.67 ± 

0.01 

0.65 ± 0.01 0.72 

± 

0.02 

0.70 

± 

0.02 

0.32 ± 

0.01 

0.22 

± 

0.01 

0.06 

± 

0.01 

Test 

data 

Linear SVM 

(liblinear) 

0.71 ± 

0.02 

0.69 ± 

0.02 

0.80 ± 

0.01 

0.74 ± 

0.02 

0.63 ± 0.03 0.80 

± 

0.00 

0.79 

± 

0.01 

0.43 ± 

0.04 

0.19 

± 

0.00 

0.08 

± 

0.01 

Test 

data 

Linear SVM 

(libsvm) 

0.72 ± 

0.02 

0.70 ± 

0.02 

0.79 ± 

0.02 

0.74 ± 

0.02 

0.64 ± 0.02 0.80 

± 

0.01 

0.79 

± 

0.01 

0.44 ± 

0.03 

0.18 

± 

0.00 

0.08 

± 

0.01 

Test 

data 

Non-linear 

SVM 

0.73 ± 

0.01 

0.71 ± 

0.01 

0.80 ± 

0.00 

0.75 ± 

0.01 

0.65 ± 0.02 0.80 

± 

0.01 

0.80 

± 

0.01 

0.48 ± 

0.02 

0.18 

± 

0.00 

0.09 

± 

0.00 

Test 

data 

Regularized 

Logistic 

Regression 

0.70 ± 

0.01 

0.68 ± 

0.01 

0.79 ± 

0.01 

0.73 ± 

0.01 

0.61 ± 0.02 0.79 

± 

0.00 

0.79 

± 

0.01 

0.41 ± 

0.03 

0.19 

± 

0.00 

0.10 

± 

0.01 

Test 

data 

XGBoost 0.72 ± 

0.01 

0.70 ± 

0.02 

0.78 ± 

0.02 

0.74 ± 

0.01 

0.65 ± 0.04 0.80 

± 

0.01 

0.80 

± 

0.01 

0.44 ± 

0.03 

0.19 

± 

0.01 

0.09 

± 

0.02 

Test 

data 

Balanced 

RF 

0.73 ± 

0.01 

0.70 ± 

0.01 

0.82 ± 

0.01 

0.75 ± 

0.01 

0.63 ± 0.02 0.81 

± 

0.01 

0.80 

± 

0.01 

0.46 ± 

0.02 

0.19 

± 

0.00 

0.10 

± 

0.01 

Test 

data 

MLP 0.73 ± 

0.01 

0.71 ± 

0.02 

0.78 ± 

0.02 

0.75 ± 

0.01 

0.66 ± 0.03 0.80 

± 

0.01 

0.81 

± 

0.01 

0.45 ± 

0.02 

0.19 

± 

0.01 

0.09 

± 

0.02 

Test 

data 

Ensemble 

(Stacking) 

0.74 ± 

0.01 

0.74 ± 

0.02 

0.76 ± 

0.02 

0.75 ± 

0.01 

0.72 ± 0.02 0.81 

± 

0.00 

0.81 

± 

0.01 

0.48 ± 

0.02 

0.18 

± 

0.01 

0.06 

± 

0.01 
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Test 

data 

Tabular 

Neural 

Network 

0.73 ± 

0.03 

0.73 ± 

0.03 

0.75 ± 

0.03 

0.74 ± 

0.02 

0.71 ± 0.05 0.80 

± 

0.02 

0.79 

± 

0.03 

0.46 ± 

0.05 

0.18 

± 

0.02 

0.08 

± 

0.03 

 

 

Figure 3. Permutation feature importance computed for the stacked ensemble method (mean values of 10 feature 
permutations and 20 random initializations). 

 

Clinical Utility of Machine Learning Models 

Decision curve analysis was performed for Stroke-TPI score and all ML methods. It included 

the mean net benefit for optimized probability thresholds (maximum F1-score) and mean net 

benefit for a-priori defined probability threshold of p=0.8. The results of the primary analysis 

(mRS 3–6) are shown in Table 3. Exemplary decision curves for regularized logistic regression, 

stacked ensemble method, and tabular neural network are shown in Figures 4–6 (decision 

curves of all methods are displayed in the Supplementary Figure 3). Highest mean net benefit 

of 0.09 ± 0.02 for p=0.8 was achieved by the stacked ensemble method. Optimized probability 

thresholds provided higher mean net benefits across all methods but with considerably 

reduced probability thresholds (p=0.24–0.47). For the secondary analysis (mRS 5–6), none of 

the ML models achieved a positive net benefit for the threshold p=0.8 (see Supplementary 

Table 2). Similarly to the primary analysis, the optimized thresholds provided improved mean 

net benefits for lower probability threshold values (p=0.22–0.57). Detailed results of secondary 

analysis are provided in the Supplementary Materials (Supplementary Table 4 and 

Supplementary Figure 4). 
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Table 3. Results of decision curve analyses for different ML algorithms (and Stroke-TPI score) in case of mRS 3–
6 prediction reported for the f1-optimized probability thresholds and the a-priori defined clinically relevant 
threshold of p=0.8. 

Method Mean Net Benefit for F1-

optimized threshold 

Mean Net Benefit for p=0.8 

Stroke-TPI score 0.28 ± 0.00 for p=0.40 0.04 ± 0.00 

k-NN Classifier 0.36 ± 0.00 for p=0.24 -0.02 ± 0.03 

Linear SVM (liblinear) 0.26 ± 0.01 for p=0.46 0.00 ± 0.02 

Linear SVM (libsvm) 0.27 ± 0.01 for p=0.45 0.05 ± 0.01 

Non-linear SVM 0.29 ± 0.00 for p=0.38 0.03 ± 0.02 

Regularized Logistic 

Regression 

0.26 ± 0.01 for p=0.45 0.01 ± 0.02 

XGBoost 0.30 ± 0.01 for p=0.40 0.06 ± 0.03 

Balanced Random Forest 0.26 ± 0.01 for p=0.47 0.06 ± 0.02 

MLP 0.31 ± 0.01 for p=0.37 0.01 ± 0.05 

Ensemble (Stacking) 0.30 ± 0.01 for p=0.4 0.09 ± 0.02 

Tabular Neural Network 0.27 ± 0.04 for p=0.44 0.06 ± 0.04 

 

 

 

 

Figure 4. Decision curve analysis for regularized logistic regression. The blue line indicates the mean and the gray 
shaded region indicates ± 1 std. band over 20 random initializations. The rug plot shows the samples used for 
computation of the decision curve. ‘No risk’ denotes the trivial strategy of always predicting mRS 0–2, and ‘All Risk’ 

denotes the strategy of always predicting mRS 3–6. 
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Figure 5. Decision curve analysis for stacked ensemble method. The blue line indicates the mean and the gray 
shaded region indicates ± 1 std. band over 20 random initializations. The rug plot shows the samples used for 
computation of the decision curve. ‘No risk’ denotes the trivial strategy of always predicting mRS 0–2, and ‘All Risk’ 

denotes the strategy of always predicting mRS 3–6. 

 

 

Figure 6. Decision curve analysis for tabular neural network. The blue line indicates the mean and the gray shaded 
region indicates ± 1 std. band over 20 random initializations. The rug plot shows the samples used for computation 
of the decision curve. ‘No risk’ denotes the trivial strategy of always predicting mRS 0–2, and ‘All Risk’ denotes the 

strategy of always predicting mRS 3–6. 

 

Discussion 

While the ability of ML methods to discriminate between good and poor functional outcome 

looks promising (ROC-AUC ~0.8), clinical utility in a decision-support scenario aimed at 
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yielding high certainty for prediction of functional dependency (mRS 3–6) is marginal and not 

evident for the prediction of severe disability or death (mRS 5 and 6). In the latter, observed 

negative net benefits may even indicate potential harm. Net benefit can be improved when 

using probability thresholds optimized for F1-scores, suggesting that they may have benefits 

for other clinical scenarios, in which rating of false-positives and false-negative is more 

balanced (e.g. information gain for patients or next kin). 

In our model, we assessed basic variables available at patient admission, which facilitates the 

transfer of the developed ML methods to other clinical centers. We verified the result by Nishi 

et al.18 that ML methods can improve prediction of functional outcome when compared to 

clinical scores. More importantly, we found that most ML methods (with exception of k-NN 

classifier) provide similar discrimination and calibration performances. Results of primary 

analysis suggest that the stacked ensemble method performs best with regards to 

discrimination, calibration and clinical utility. In accordance with previous feature importance 

analyses reported by Ramos et al.39 for ML-based prediction of poor outcome (mRS 5–6) and 

the analysis by Xu et al.40 on predictors of futile recanalization, we found age on admission, 

NIHSS on admission, and pre stroke independence to be most predictive. In the secondary 

analysis, all methods showed a considerable drop in performance when used to predict mRS 

5-6. This may be attributed to lack of information in baseline variables which differentiate 

patients with mRS 3–4 from mRS 5–6 patients. 

In this study, we aimed at filling the lack of evidence regarding studies on clinical utility of ML 

models to predict functional outcome in stroke patients. Notably, there is a study available on 

clinical utility for ML-based outcome prediction in patients with acute ischemic stroke41. Jang 

et al. aimed to compare the clinical utility of ML and logistic regression models for the prediction 

of functional outcome in a general population of stroke patients. In contrast, the purpose of our 

study was to investigate the clinical utility of ML models when integrated in an acute stroke 

workflow to solve a specific task—the prediction of functional dependency and severe disability 

or death despite successful recanalization (TICI ≥ 2b). The restriction to successfully 

recanalized patients provided us with a more homogenous patient cohort for model training 

and provides a potential user with outcome estimates when optimistically assuming that the 

envisaged intervention is technically successful. Considering a rate of unsuccessful 

interventions of 15–20%1,42,  a decision-support algorithm with a cut-off of 80% for predicting 

poor outcome in successfully reperfusion patients would imply that there is a very high overall 

chance that the intervention is either not successful or futile (83%–84%, depending on the rate 

of unsuccessful reperfusion). The 80% cut-off is arbitrary but data on what constitute a 

sufficiently high certainty for excluding patients from acute stroke reperfusion regimens is not 

standardized. Certainly, the cut-off needs to be well above 50% (standard cut-off used for 
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reporting on discrimination), to ensure that false positive (classifying patients as potential futile 

reperfusion, despite they gain functional independence or mRS<5) are weighted more than 

false negative classifications. Furthermore, our results also show that for more confident cut-

offs above 80% the achieved net benefit is further decreasing even resulting in potential harm 

(negative net benefit). The exact cut-off deemed useful in a clinical scenario may also depend 

on other factors including health care resources, cultural perception and available information 

on the patients good will. In summary, the appealing ROC-AUC reported here and by 

others39,43, should thus be handled cautiously with regards to the clinical utility in excluding 

patients from reperfusion therapies. 

We computed a variety of evaluation metrics to provide a detailed description of the ML 

methods’ performances. In literature, the most frequently reported metric for binary 

classification problems is the AUC of the ROC curve. However, the ROC-AUC alone can be 

misleading in case of large class imbalances (i.e. in presence of majority of negative 

examples). This is also evident in our secondary analysis in which most of the methods 

achieved similarly good ROC-AUC values as in primary analysis (~ 0.8) but exhibited a 

considerably reduced net benefit across all probability thresholds. In addition, the AUC is 

usually computed over the whole ROC curve taking into account regions which may never be 

used in practice44, whereas the decision curve analysis must be interpreted with respect to 

clinically relevant thresholds. 

The intended use of our ML models is clearly limited to patients selected for treatment with 

EVT. It is possible that prediction of functional impairment in a more diverse population of 

patients, which particularly includes individuals not selected for treatment with EVT, may be 

improved. Nevertheless, the identification of futile recanalization ahead of treatment is of great 

importance11 and we think that our proposed methodology (Figure 2) may serve as a starting 

point. 

In the future, prediction of functional impairment based on patient data available on admission 

may be improved by incorporation of more elaborate information from laboratory analysis45,46 

and admission imaging within ML models. The only imaging parameter considered in our 

feature set was ASPECTS. Several imaging biomarkers have proven to be independently 

associated with 3-months functional outcome including brain regions affected by the acute 

lesion47, growth of ischemic lesion volume between baseline and 24-hours CT48, final infarct 

volume (based on follow-up CT, 18–36 hours), brain volume49, and white matter hyperintensity 

volume (based on MRI)50. In particular, lesion outcome volumes could be predicted ahead of 

intervention using dedicated deep learning methods51 and be incorporated in our proposed ML 

models. 
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In conclusion, the clinical utility of ML methods for prediction of functional dependency and 

severe disability or death despite successful recanalization is marginal when using baseline 

variables and when considering a clinical decision-support scenario. Further research should 

be concentrated on the extraction of more elaborate imaging features from admission imaging 

and incorporation of such in ML prediction models. 
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