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S1. Model Equations

The ordinary differential equations describing the model are shown below for group i. The positive test
group is denoted with the ‘4’ sign.
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m1(t) and mo(t) are defined as follows (ts:4,+ is When testing starts, on November 1, 2020):

my (t) _ 1 t< tstart
0t 2 tstart

Mo (t) _ 0 t< tstaTt
1t Z tstart

The force of infection A(t) for the i-th group is a function of the number of social contacts for age group ¢ with
each subgroup j at time ¢ (x; ;(t)), the probability of infection given contact (¢), the number of infections
in each group at time t (infec;(t)), and the population size of each group at time ¢ (n;(¢)). The overall

equation for \;(t) is shown below:
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1 and j take values of ch (children age 0-19 years), ad (adults age 20-65 years who are not working or
working from home), el (older adults 65+ years of age), rc (adults at work in ’reduced-contact’ occupations,
where they have fewer contacts than pre-pandemic), fc (adults as work in full contact occupations, where
they have the same number of contacts as pre-pandemic).

The number of infectious individuals by age group and test status is equal to the sum of documented (symp-
tomatic) cases and a fraction of the undocumented (asymptomatic) cases, where this fraction asy corre-
sponds to the relative infectiousness of undocumented cases. This is shown below for children:

infecten(t) = asylycn + Is,cn

S3



S$2. Model parameters

We defined the three metropolitan areas in the same way as Havers et al [1]. For Washington Puget Sound
metropolitan region, we included death data from King, Snohomish, Pierce, Kitsap and Grays Harbor coun-
ties. For the New York City metropolitan region, we included data from Manhattan, Bronx, Queens, Kings,
and Nassau Counties. For the South Florida metropolitan region, we included data from Miami-Dade,
Broward, Palm Beach, and Martin counties. These same counties were also used to derive age-specific
population sizes for each region.

Parameters used in the model simulations are shown in Table We assume that the size of the working
population is stable over the duration of the simulation. Although this may not be the case as unemployment
increases throughout the pandemic, the rate at which unemployment has changed so far has been time-
varying and its future trajectory is unknown.

Where possible, parameters were taken from prior literature. However, data from the initial stages of the
outbreak were fitted for the probability of infection per contact (¢), the fraction of infections symptomatic
(p), the initial intensity of social distancing for workplace contacts (p,equceq) and for other contacts (sdo¢ner)-
These parameters were fitted to initial outbreak dynamics from each of the three metropolitan locations.
While ¢ does not vary with time, we acknowledge that some control measures such as masking may result
in changes in the probability of infection given contact over the course of the pandemic. In our model,
changes in the contact matrix based on both the initial strength of social distancing (p,equced and sdotper)
and its strength after reopening captures the contribution of both reducing the number of social contacts and
changes in the likelihood of transmission from those contacts based on mask use and physical distancing.

We used the dates that stay-at-home orders were enacted, and later lifted, in each location and the dates
corresponding to when local schools opened for at least partial in-person instruction in each location to
inform dates of reopening in the model.

S$3. Model fitting

Initial Conditions

We first calculate the number of weeks between the first death and the first week where the cumulative
death toll exceeds 10. For example, in the South Florida region, the first death was reported the week
of March 18, 2020. The two subsequent weeks saw the death toll rise to 6 and 42. Using region-specific
conditions (population demographics, stay-at-home order and lift dates, and deaths data), we initialize an
epidemic consisting of a single exposed adult («0). We use baseline estimates for the parameters we aim
to fit later (¢ = 0.0451, ¢ = 1, symptomatic_fraction = 0.14, sdother = 0.25, Preduced = 0.1). Note that
symptomatic_fraction is equivalent to p in Table 2. We forward simulate a single-origin epidemic until
the modeled number of deaths exceeds the number of deaths reported in the second week after the first
death (in South Florida, 42 deaths), then use the distribution two weeks prior as our initial conditions. For
MCMC fits, we additionally allow an error term, initsqq;e, Such that the calculated distribution was scaled by
(1 4 initseqie) for each chain iteration. For fitting, we constrained ¢ to [0,0.07] and initscqie to [0, inf). All
other parameters were constrained to [0, 1].
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Parameter Code Value Units Source(s)
Natural history
Latent period Ye 1/3 1/days 21
Recovery rate, asymptomatic infections Ya 1/7 1/days 131
Recovery rate, symptomatic infections Vs 1/7 1/days 131
Recovery rate, hospitalized cases Yhs 1/5 1/days 41
Recovery rate, critical care cases Vhe 1/7 1/days 41
Relative infectiousness of asymptomatic infections asy 0.55 - (5 6]
Hospitalization
Probability of hospitalization 171
Children Hospen 0.061 -
Adults Hospaq 0.182 -
Elderly Hospe; 0.417 -
Probability of requiring critical care 171
Children Criten 0 -
Adults Critcgq 0.063 -
Elderly Crity 0.173 -
Probability of death among critical care patients
Children Diegy, 0 - 181
Adults Diegq 0.5 - 50
Elderly Dieg; 0.5 - 51
Test features
Sensitivity se 1.00 - [91
Specificity sp 0.998 (0.5, 0.998) - 91
Population features
Population size [10]
New York City 9.43e6 people
South Florida 6.17e6 people
Washington Puget Sound 4.06e6 people
Baseline contact rates by age Ti see matrices [11]]
Adult working population segments, size [12]
Exclusive work from home occupations Nhome 0.316 X ngguit people
Reduced contact occupations Nreduced 0.628 X Ngquit people
Full contact occupations N full 0.057 X Nadult people
Fraction of adult population (20-65 years) 1.0 assumption
in workforce
Intervention parameters
Shielding o 0,9 per contact varied
Fraction tested test;(t) (0, 0.03) proportion per day varied

Table S1: Fixed parameters across locations used in model simulations. Values shown in parentheses repre-

sent a range, used to perform sensitivity analysis.
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Figure S1: Gelman-Rubin diagnostics plot. We calculate Gelman-Rubin R values for chain convergence
among all 10 chains for New York City and South Florida. We excluded chain 3 for Washington because it
did not converge. R values for all parameters were below 1.1, with the majority under the 1.01 convergence
threshold. [[17]

MCMC

Using Markov Chain Monte Carlo (MCMC) we estimate the six model parameters listed in Table We
checked for chain convergence using the Gelman-Rubin diagnostic (Figure[SI)). Figures and [S8|show
the resulting trace plots, and Figures and [S9 show the resulting joint distributions.
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Figure S2: New York City Post-burn-in MCMC Traceplots. Y-axis ranges are limited to show parameter search
space constraints. Ry traces are calculated from ¢ and symptomatic_fraction traces.
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Figure S3: New York City Pairwise Parameter Correlations. Joint posterior distributions for pairs of parame-
ters fitted to data from the New York City region for weekly reported deaths and seroprevalence estimates.
Represented is the chain initialized with a minsearch algorithm.
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Figure S4: New York City Model Fits. We forward simulate a model using the maximum likelihood estimates
of each parameter (red) and 100 random parameter set draws from the posterior distribution (gray). Cu-
mulative deaths are plotted (blue squares), in addition to seroprevalence estimates (orange squares) in each
location. Each column corresponds to an MCMC chain, with the first column corresponds to a chain which
was initially seeded using a constrained 'minsearch’ algorithm. Columns 2-11 correspond to MCMC chains

1-10, which are seeded randomly.
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Figure S5: South Florida Post-burn-in MCMC Traceplots. Y-axis ranges are limited to show parameter search

space constraints. R traces are calculated from q and symptomatic_fraction traces.
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Figure S6: South Florida Pairwise Parameter Correlations. Joint posterior distributions for pairs of parame-
ters fitted to data from the New York City region for weekly reported deaths and seroprevalence estimates.
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Figure S7: South Florida Model Fits. We forward simulate a model using the maximum likelihood estimates
of each parameter (red) and 100 random parameter set draws from the posterior distribution (gray). Cu-
mulative deaths are plotted (blue squares), in addition to seroprevalence estimates (orange squares) in each
location. Each column corresponds to an MCMC chain, with the first column corresponds to a chain which

was initially seeded using a constrained 'minsearch’ algorithm. Columns 2-11 correspond to MCMC chains
1-10, which are seeded randomly.

S12



q © symptomatic_fraction

1.00- 1.00-
0.06-
0.75- 0.75-
0.041 0.50- 0.50-
0.02- 0.25- 0.25-
0'OO_I Ll l Ll 1 1 O'OO_I ll l 1 1 1 0'OO_I 1 1 1 ll ll
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 i_chain
socialDistancing_other p_reduced Initial_Condition_Scale 1
1.00- 1.00- 1.00- 2
0.75- 0.75- 0.75- 4
3 5
2 050- 0.50- 0.50-
> 6
0.25- 0.25- 0.25- 7
0.00-, y y y y . 0.00-, g . ! ! , 0.00- : : : ; : 8
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 9
RO 10
1.80-
1.78-
1.76-
1.74-, d d d J J
0 1000 2000 3000 4000 5000
iterations

Figure S8: Washington Puget Sound Post-burn-in MCMC Traceplots. Y-axis ranges are limited to show
parameter search space constraints. Ry traces are calculated from ¢ and symptomatic_fraction traces. Note
that chain 3, which did not converge, was excluded from analyses.
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Figure S9: Washington Pairwise Parameter Correlations. Joint posterior distributions for pairs of parameters
fitted to data from the New York City region for weekly reported deaths and seroprevalence estimates.
Represented is the chain initialized with a minsearch algorithm.
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Figure S10: Washington Model Fits. We forward simulate a model using the maximum likelihood estimates
of each parameter (red) and 100 random parameter set draws from the posterior distribution (gray). Cu-
mulative deaths are plotted (blue squares), in addition to seroprevalence estimates (orange squares) in each
location. Each column corresponds to an MCMC chain, with the first column corresponds to a chain which
was initially seeded using a constrained 'minsearch’ algorithm. Columns 2-11 correspond to MCMC chains
1-10, which are seeded randomly. Given that chain 3 (column 4) is a poor fit to the data and all other chains
seemed to yield reasonable fits, we exclude chain 3 from further analyses.
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Credible intervals width

The overall width of credible intervals (as shown in the main text) was determined by the value of ¢ (Fig-
ure [S11). As shown in the trace plots, the value of ¢ was not identifiable from our model simulations,
particularly for Washington and New York City, with a wide variety of initial values matching the initial dy-
namics. In South Florida, the fitted value of ¢ was more constrained, yet model predictions still in large part
depended on the ongoing level of social distancing. In part, this issue arose because the relaxation of social
distancing in these two locations began after the first wave of the epidemic was largely complete (main text
Figure 3), and thus there were few cases shortly after reopening with which to calibrate the dynamics. How-
ever, as the outbreak continued, this parameter was crucial for determining the number of deaths by the time
shielding was implemented, and hence its ultimate impact. While adding to the length of the time series
of deaths used to fit the model might have improved identifiability, ultimately the level of ongoing social
distancing is likely to be highly time-varying. The width of the credible interval thus reflects the importance
of ongoing social distancing to determine both the trajectory of the United States epidemic and the potential
impact of any other control interventions.
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Figure S11: Number of deaths expected after 1 year (y-axis) for each setting (panels) without testing as a
function of the degree of relaxation of social distancing (given by ¢, shown on the x-axis) and initial social
distancing strength (colors indicate the value of p,cguced)-

S4. R, Estimation

The dynamics of the system and R, are determined by how the outbreak would proceed at time zero in the
absence of any interventions, and therefore depends on the fitted values of p and ¢, but not on any of the
other fitted parameters. Therefore, we assume no testing at time 0, no social distancing, and no differences
in worker contact levels (i.e., all groups mix at the population-average level prior to the outbreak). In this
situation, there are only 3 population subgroups at time zero:
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dE.p,

= )\chsch - ’YeEch

dt

dl;f" = YeEenp — Ysls.ch

dl;fh = YeEen(1 = ) = Yalu,ch
dlf;c” = YsIs,cn(Hospey, — CritDiecy,) — YnsHosps ch
dbﬁ;ﬂ’l = Yol nCritDiee, — YneHospe.cn

dfljtad = MadSad — VeFad

% = YeEadpP — Vs1s,ad

% = YeBaa(1 = p) = Yala,ad
dI{;ad = Y5l qa(H0Spoq — CritDieqq) — YnsHOSPs ad
d}flctv“d = VsIs,0aaCritDieqaq — Yhe Hospe,ad

dzel = Ae1Sel — Ve Eer

% = YeEep — vsls,el

% =YeEei(1 =p) = Yalael
de?el = YsIs,ci(Hosper — CritDiec) — Yhs Hosps el
% = vs15,e1CritDiec; — Yhe Hospe el

The \; for each group is defined as follows.

_ qxch7ch(a5y1a,ch + Is,ch) qxch,ad(asyla,ad + Is,ad)
)\ch - + +
Nch Nad
qzch,el(asyfa,el + Is,el)

Nel

_ qxad,ch(afsyla,ch + Is,ch) qxad,ad(asyla,ad + Is,ad)
)\ad = + +
Nech Nad
qTad,el (asyja,el + Is,el)

Nel
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qet,ch(asyla,ch + Iscn) . 4% el,ad(a8Yla,ad + Is,ad)
Neh Nad

qTel,el (asy-[a,el + Is,el)

Nel

)\el = +

The matrices F and V corresponding to these equations are:
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To derive an expression for Ry we inverted the V matrix and multiplied by F. The dominant eigenvalues
of this matrix can be computed, but are very complex and are therefore not shown here. It is notable that
because hospitalized cases do not contribute to the force of infection, the value of Ry does not depend on
Yns OF vne. We calculated the value of Ry for each of the three locations based on the fitted values of p and ¢
and the other relevant parameters.

S5. Contact matrices

Baseline contacts

Baseline contact matrices for ‘work’ contacts, ‘school’ contacts, ‘home’ contacts, and ‘other’ contacts were
taken from [11]. To expand these baseline matrices to the 5 population groups in our model (separating the
adult population into fc, rc, and h classes), we multiplied all contacts with adults z; 4 by the proportion of
the adult population falling into each class. We define the fraction of the population falling in each working
group as follows:

Nhome
f.home =
Nhome + Nreduced + N full
Nred d

f.reduced = recuee
Nhome + Nreduced + T full

N full

fofull = Ju

Nhome + Nreduced + T full

For baseline contact matrix values based on [11]], we have:

Tch,ch  Lch,ad Tch,el
Tij = [Zad,ch ZLad,ad Lad,el

Tel,ch  Lel,ad Lel,el

For simplicity, we assume that baseline interactions between worker subgroups are only assortative with
respect to age (and not with respect to occupation type). To expand this matrix to a 5x5 matrix we use the
following notation, where rows 2, 3, and 4 correspond to the work from home, reduced contact, and full
contact occupation groups, respectively:

Lch,ch xch,adf-home mch,adf-redUCEd xch,adf-fu” Lch,el
Tad,ch  Tad,adf-home  Taqeaf.reduced Toqaaf.full Tenel
Zij = |Zad,ch Tad,adf-home Taqqeaf.reduced xoqaaf . full Tepel
Tad,ch xn,d,adf-home xad,adf-reduced xad,adf~fu” Lch,el

Tel,ch xel,adf-home xel,adf-reduced xel,adf-fu” Lch,el

Based on these proportions, we define z; 5, ; ., and x; . as follows:
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Tih = Tjqqf.-home
Tire = Tjqadf-reduced

Ti fe = xi,adf'fu”

Contacts under social distancing

After social distancing has begun, we assume that:

e Home contacts remain the same.

Schools and daycares close.

Only working age adults continue to work. Baseline workplace contacts for children and young adults
under 20 years of age are nearly zero (average 0.84 contacts/day) and the average workplace contacts
for the elderly is 0, so this does not appreciably impact our results.

All working adults who are able work from home.
e Adults continuing to work outside the home reduce their workplace contacts by constant p,.cquced-
e Other contacts are reduced by scalar constant sdpe--

The revised contact matrix for work contacts then becomes:

0 0 0 0 0
0 0 0 0 0
CMyori, = ZTad,chPreduced Lh,hPreduced Th,rcPreduced Th,fcPreduced Lch,elPreduced
T fe,ch Tfch Tfere Tfc, fe Lch,el
0 0 0 0 0

The revised contact matrix for other contacts becomes:

Lch,ch  Tch,h  Lch,re Lch,fc Tch,el
Th,ch Th.h Th,re Th,fc Lch,el
CMother =sd.other x Tre,ch Tre,h Lreyre Lre, f Lch,el

LTfeech  Lfe,h Lfere Lfe,fe  Lchyel
Lel,ch Tel,h Tel,rc Tel,fc  Lch,el
Contacts during initial relaxing of social distancing
When stay at home orders are initially lifted, we assume that:
e Home contacts remain the same.

e Adults who were working from home continue to work from home.
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Workers in reduced contact occupations increase their workplace contacts based on the intensity of
social distancing maintained.

Schools remain closed until September 1, 2020 in South Florida and until October 1, 2020 in New York
City and Washington, after which time they reopen at 50% capacity.

Other contacts continue to be reduced based on the intensity of social distancing maintained.

Contacts after testing begins

When testing begins, we assume that:

Test-positive individuals move to the test positive group.

Home contacts remain the same, but their distribution by test status is driven by the proportion of
test-positives in the general population.

Adults who were working from home may return to work if they test positive. Upon returning to work,
their workplace contacts are assortative with respect to test status (but not with respect to occupation

type).

Workers in reduced contact occupations increase their workplace contacts based on the intensity of
social distancing maintained. Work contacts are preferentially with test-positive individuals, as deter-
mined by «, or shielding strength.

Other contacts are increased for test positive individuals to their pre-pandemic levels. Other contacts
continue to be reduced for test negative/untested individuals based on the intensity of social distancing
maintained. Other contacts are preferentially with test-positive individuals, as determined by «, or
shielding strength.

After testing has begun, all contact matrices are dependent on the proportion of the population that has

tested positive and been released from social distancing at time t. We define this proportion as r;(t), where

(1 —r;(t)) is the fraction of the population who has not yet tested positive.

We assume that social distancing parameters are relaxed from their initial values as follows:

Dreduced = 1 — (Sdoth,er X C)

Preduced = 1- (preduced X C)

For contact matrices of work and ’other’ contacts, we implement shielding factor «, which increases the

probability of contacting a test-positive individual according to their prevalence in the population (achieved

by multiplying expected contact rates due to prevalence by scaling factor o+ 1). To account for the fact that,

when prevalence is high, (a + 1)r;(¢) may exceed 1, we introduce a variable s;(¢):

(a+Dri(t) (a+1)ri(t) <1
1 (a+Dri(t) > 1

si(t) = {
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This shielding structure is similar to ‘fixed shielding’, previously described by Weitz et al [18] in that it
preserves the baseline number of contacts and increases contacts for test positive individuals by 1 + «, as
shown below:

To = Io’l’i(t) + Io(l — Tz(t))
xo =71;(t)(a+ 1)zo + (xo — (a + 1)7;(t)z0)

The structure of all three matrices (home, work, and other) is given by CM:
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S6.

Overall contact reductions by location

Location Reduction in work Reduction in other Reduction in total contacts
contacts for adults | contacts for all groups | Children Adults Elderly

New York City 52.3% 43.9% 33.8% 37.6% 25.5%
South Florida 70.2% 78.4% 45.8% 56.1% 44.8%
Washington 32.1% 10.5% 21.9% 18.6% 6.9%

Table S3: Steady state reduction in contacts by location after stay-at-home orders are lifted and schools

reopen
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