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Abstract11

The current outbreak of COVID-19 is a major pandemic that has shaken up the entire world12

in a short time. South Africa has the highest number of COVID-19 cases in Africa and under-13

standing the country’s disease trajectory is important for government policy makers to plan the14

optimal COVID-19 intervention strategy. The number of cases is highly correlated with the15

number of COVID-19 tests undertaking. Thus, current methods of understanding the COVID-16

19 transmission process in the country based only on the number of cases can be misleading.17

In light of this, we propose to estimate both the probability of positive cases per tests conducted18

(the positive testing rate) and the rate in which the positive testing rate changes over time (its19

derivative) using a flexible semi-parametric model.20

We applied the method to the observed positive testing rate in South Africa with data obtained21

from March 5th to September 2nd 2020. We found that the positive testing rate was declining22

from early March when the disease was first observed until early May where it kept on in-23

creasing. In the month of July 2020, the infection reached its peak then its started to decrease24

again indicating that the intervention strategy is effective. From mid August, 2020, the rate of25

change of the positive testing rate indicates that decline in the positive testing rate is slowing26

down, suggesting that a less effective intervention is currently implemented.27

28

Keywords: COVID-19; South Africa; Number of tests; Infection rate; Positive testing rate;29

Smoothing Binary data.30
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1 Introduction31

Coronaviruses are a large family of viruses which may cause respiratory infections ranging from32

the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS)33

and Severe Acute Respiratory Syndrome (SARS). The ongoing outbreak of the novel coronavirus34

(SARS-CoV-2) was first detected on 31st December 2019 in Wuhan, China (World Health Or-35

agnisation, 2020). The virus has rapidly spread with a total of 37,423,660 confirmed cases and36

1,074,817 deaths as of 12th October 2020 (World Health Oragnisation, 2020).37

The first COVID-19 case in South Africa was reported on March 5th 2020. By October 12th,38

2020, South Africa had the highest burden of COVID-19 cases in the African region with 692,47139

reported cases and 17,780 confirmed COVID-19 related deaths(World Health Oragnisation, 2020).40

The South African government declared a national state of disaster on March 15th 2020 and com-41

menced a state of lockdown from March 26th 2020 in an effort to reduce COVID-19 transmission42

in the country(Reddy et al., 2020). During this period all international and inter-provincial borders43

were closed, as well as the education sector and several economic sectors in the country. As of44

June 2020, the country adopted a COVID-19 risk-adjusted strategy with a phased re-opening of45

selected economic sectors and schools.46

Modeling the number of COVID-19 cases and in particular producing a reliable short and long47

term prediction for the number of COVID-19 cases become a central tool for policy makers to de-48

sign innervation strategies in order to control the disease’s spread. Recently, (Reddy et al., 2020)49

proposed a robust model based approach, that does not require to make assumptions about the50

transmission process to model the number of COVID-19 cases and to provide a short term predic-51

tion for 5-10 days ahead. These non-linear epidemiological models have previously been applied52

to model other disease outbreaks such as Ebola (Chowell et al., 2019), Dengue (Hsieh and Chen,53

2009), Zika virus (Sebrango-Rodrı́guez et al., 2017) and, more recently, the COVID-19 pandemic54

(Roosa et al., 2020); (Shen, 2020); (Tariq et al., 2020). Specifically, Roosa et al. (2020) fitted the55

generalized logistic model, Richards’s model and a sub-epidemic model to the cumulative COVID-56

19 cases in the Hubei province of China and produced a short-term forecast of 5, 10 and 15 days57

ahead .The authors also expanded on this work for the province of Guandong. In the recent anal-58

2

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.11.20230250doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.11.20230250


ysis by Shen (2020), a similar approach was taken to estimate the key epidemic parameters for all59

11 provinces in China as well as 9 selected countries.60

All models discussed above made use of the daily or cumulative number of cases to estimate the61

models and the parameters of interest.In the context of COVID-19, this introduces a difficulty as62

seen in Figure 1, since in South Africa (and many other countries) the number of tests and number63

of cases are correlated (Reddy et al., 2020).64
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Figure 1: Panel a: Relationship between the daily number of tests and the daily number of positive
cases. Panel b:The total number of cases and total number of COVID-19 tests carried out between
the period March 7th 2020 and September 2nd 2020. Spearman’s rank correlation between the
number of tests to the number of cases is equal to 0.9632752, (p-value < 2.2e-16).

Positive testing rate, i.e., the probability of positive case among the total number of tests,65

has been seen as an important metrics in understanding the transmission of COVID-19 in the lit-66

erature (Our world in Data, 2020). Due to the correlation (dependence) of the number of cases on67

the number of tests conducted, no country knows the actual total number of people infected with68

COVID-19 but only the infection status of those who have been tested. Therefore, in countries69

with a high positive rate, the number of confirmed cases is more likely to represent only a small70

proportion of the true number of cases. However, when the positive rate increases it can suggest the71

virus is actually spreading faster than the growth seen in confirmed cases. On May 12, 2020 the72

World Health Organization (WHO) advised governments that before relaxing intervention mea-73

sures, rates of positively in testing should remain at 5% or lower for at least 14 days (John Hopkins74
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coronavirus resource center,2020, WHO, 2020).75

To overcome the problem that the number of cases depends on the number of tests, we propose an76

alternative modeling approach that focuses on COVID-19 positive testing rate, i.e., the probabil-77

ity of positive cases per tests conducted. In this paper we model the daily number of COVID-1978

cases among the number of tests carried out using a semi-parametric model in which the rate of79

change of the positive testing rate is estimated using a smooth function of time. In particular, we80

apply scatterplot smoothing techniques for binomial data using generalized additive models in or-81

der to obtain an estimate of the rate of change Ruppert et al. (2003). In Section 2 we describe the82

testing policy in South Africa from which the data used for the analysis presented in this paper83

was obtained. The modelling approach, the model formulation for the positive testing rate and the84

methodology to construct simaultenous confidence bands are discussed in Section 3. Section 485

contains the results, and the discussions and conclusions are in Section 5.86

2 Data87

2.1 Daily number of tests and confirmed cases88

The daily number of reported COVID-19 cases and tests for the period of March 7th 2020 to89

September 2nd 2020 is presented in Figure 2. The growth of COVID-19 infections in South Africa90

appears to be tri-phasic especially during the early phase when the cumulative cases were low with91

rapid growth until March 27th 2020. A total of 243 daily new cases were observed, followed by a92

sharp decline in the rate of new cases. From March 28th 2020 to April 6th 2020 the daily increase93

in cases was consistently below 100. From May 2020 onwards, a consistent increase of more than94

1000 cases per day were observed. The peak period was between of July 9th and 19th where more95

than 10,000 reported cases were reported on a daily basis. As of July, a total of 3726721 tests had96

been conducted, corresponding to a testing rate of 22.816 per 1000 population. Throughout this97

period, the proportion of infections increased until mid July when it started to decrease.98

4

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.11.20230250doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.11.20230250


0

20000

40000

Mar 2020 Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020

Type

Cases

Test

0.0

0.1

0.2

0.3

Mar 2020 Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020

P
ro

p
o

r
ti
o

n
Figure 2: Panel a: Daily number of cases and daily number of COVID-19 tests between March
7th, 2020 and September 2nd, 2020. Panel b: Positive testing rate.

2.2 Testing policy in South Africa99

A total of 3,245,087 tests for SARS-COV-2 were conducted between March 1st and August 29th100

2020. These tests were performed on individuals who satisfied the case definition for persons under101

investigation (PUI). The PUI definition, which was amended consistently included at least one of102

the following criteria: symptomatic individuals seeking testing, hospitalized individuals for whom103

testing was done, individuals in high-risk occupations (e.g health care workers), individuals in out-104

break settings, and individuals identified through community screening and testing programmes105

which were implemented between April and the middle of May 2020. The number of tests per-106

formed on a weekly basis increased from March 2020 until the third week of May and proceeded107

to decrease over the subsequent two weeks due to a limited supply of testing kits. The average108

time elapsed from specimen collection to testing was under two days in both the private and public109

sectors from August 22th to 29th August 2020.110
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3 Modeling COVID-19 infection rate in South Africa using Gen-111

eralized Linear Mixed Effects Model for Binary Data112

3.1 Model formulation for the positive testing rate113

The number of positive cases is assumed to be binomially distributed. Let πt be the daily positive114

testing rate per test, Y t be the daily number of cases and nt be the daily number of tests. Our aim is115

to model the probability πt and to produce a model-based estimate for its first derivative, i.e., the116

change in the positive testing rate over time. Semi-parametric regression model for binomial data117

was used to provide an estimate of the positive testing rate as a function of time. The relationship118

can be expressed as119

Yt ∼ Bin(nt ,πt), t = 1, . . . ,T,
logit(πt) = f (t).

(1)

Here, f (t) is a smooth function of the time t. Smoothing splines are commonly used for this120

purpose (Ruppert et al. (2003)). A general spline model of degree d with K knots can be written121

as follows:122

logit(πt) = β0 +β1xi + · · ·+βdxd
i +

K

∑
k=1

uksk(xi), (2)

where sk(x) is a set of spline basis functions.123

To avoid overfitting, the spline model is typically estimated by considering penalized max-124

imum likelihood estimation, with a penalty term of the form λ ∑k u2
k . Ruppert et al. (2003) showed125

that the penalized regression problem can be expressed as an equivalent generalized linear mixed-126

effects model (GLMM):127

logit(π) = Xβ +Zu, (3)

with π = [π1,π2, . . . ,πT ]
T , β = [β0,β1, . . . ,βd]

T , and u = [u1,u2, . . . ,uK]
T . Note that β and u are128

vectors of the fixed and random effects, respectively, with uk ∼N (0,σ2
u ) where σ2

u acts as the129

smoothing parameter. This representation has the advantage that the degree of smoothing can be130

estimated from the data using standard mixed-model software (e.g., Ruppert et al. (2003), chapter131
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4). The design matrices X and Z are defined as follows:132

X =


1 x1 . . . xd

1

1 x2 . . . xd
2

...
... . . . ...

1 xT . . . xd
T


and133

Z =


s1(x1) s2(x1) . . . sK(x1)

s1(x2) s2(x2) . . . sK(x2)
...

... . . . ...
s1(xT ) s2(xT ) . . . sK(xT )

 .
The estimation of the model (3) is performed by means of penalized quasi-likelihood (PQL). Initial134

estimates for β and u are used to calculate the pseudo-data y∗:135

y∗ = XXXβββ +ZZZuuu+WWW−1(y−πππ)))≡ XXXβββ +ZZZuuu+ εεε
∗, (4)

where WWW is a diagonal matrix with variances of yi on the diagonal. The pseudo-error εεε∗136

has a variance-covariance matrix RRR =WWW−1
φ , where φ is the dispersion parameter, equal to one for137

the standard binomial model family. Equation (4) resembles a linear mixed-effects model (LMM)138

formulation for y∗. Thus, an LMM is fitted to the pseudo-data, yielding updated estimates of βββ ,139

uuu, σ2
u , and φ . The procedure of calculating pseudo-data and re-fitting the LMM is repeated until140

convergence.141

3.2 Estimating the derivative for πt142

Once the positive testing rate, πt , is estimated according to Equation (1) we can estimate the rate143

of change in the positive testing rate over time using the derivative of πt given by144

π
′
t =

π(t)−π(t−1)

∆(t)
. (5)

Note that if the number of tests is constant over time and applied to a random sample of the145

population, π ′t can give an indication to the change in the virus’ transmission in the population146

(since in this case, it is gives the change in transmission probability). However, it is unlikely to147

7

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.11.20230250doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.11.20230250


assume that the number of tests will be constant nor that the tests will be applied to random sample148

from the population. Also in this case, the derivative can provides a good indication about the149

general trend of the virus’ transmission for the tested population and can be used as a tool to asses150

the success of an implemented intervention strategy.151

3.3 Construction of pointwise confidence band152

According to Ruppert et al. (2003), an approximate 100(1-α)% pointwise confidence band for an153

estimated penalized spline in the GLMM framework, f̂ (x), is given by:154

f̂ (x)± z1−α/2× ŝt.dev{ f̂ (x)− f (x)}, (6)

where155

ŝt.dev
{

f̂ (x)− f (x)
}
=

√
CxQ̂CT

x , (7)

with Cx =
(

1 x . . . xd s1(x) . . . sK(x)
)

and156

Q̂ = ĉov

[
β̂

û−u

]
=
(
CT R̂−1C+1/σ̂

2
u D
)−1

, (8)

where C = [XZ] and D≡ diag([0T
d+1,1

T
K])157

Pointwise confidence bands, however, need to be corrected for multiplicity. Also, they158

ignore serial correlation. Therefore, we make use of simultaneous confidence bands implemented159

in Claesen1 et al. (2013), which allow to make joint statements on multiple locations of the fitted160

curve. A 100(1-α)% simultaneous confidence band for f̂x is defined as:161

f̂x± c1−α × ŝt.dev{ f̂ (x)− f (x)} (9)

where the critical value, c1−α , is the (1- α) quantile of the random variable162

supx∈χ

∣∣∣∣∣ f̂ (x)− f (x)}
ŝt.dev{ f̂ (x)− f (x)}

∣∣∣∣∣≈ max
1≤l≤M

∣∣∣∣∣∣∣∣∣∣

(
Cx

[
β̂ββ −βββ

û−u

])
l

ŝt.dev{ f̂ (xl)− f (xl)}

∣∣∣∣∣∣∣∣∣∣
,

which can be found by simulating from an approximate multivariate normal distribution163
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4 Application to the data164

A generalized additive model was fitted to the data with the time component was used as the165

smooth term.The model was fitted using the gam() function of the mgcv (Wood, 2017) library in R166

(R Core Team, 2020). Figure 3,shows that the estimated positive testing rate peaked on July 19th,167

2020, at the same time that the number of tests was at its highest level. From that time onward,168

both number of tests and the positive testing rate declined. This could be a result of a reduction of169

the virus’ transmission in the population or a result of a change in the population to which the tests170

were applied.171
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Figure 3: Observed proportion of infection over time, the estimated probability and the 7 days
moving average of positive testing rate.

A commonly used measure in understanding COVID-19 transmission rate is the moving172

average. A 7 days moving average for the positive testing rate was also estimated and this gave a173

similar evolution pattern as the estimated positive testing rate.174
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Figure 4: Upper panel: Estimated positive testing rate with 95% simultaneous confidence band.
Middle panel: The linear predictor of the smoother with 95% simultaneous confidence band.
Lower panel: The derivative of the estimated probability with 95% simultaneous confidence band.

From July 19 onward, the change in positive testing rate (the derivative plot presented in175

upper part of Figure 4) is negative (indicating decline in the positive testing rate) but from August,176

11, 2020, the derivative begins to increase. This could suggest a change in the transmission trend177

and an increasing number of positive cases.178
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5 Discussion179

In view of the existing healthcare challenges in South Africa, reliable and accurate knowledge180

about the positive testing rate of COVID-19 is important to ensure prediction of the disease tra-181

jectory, optimal resource allocation and better understanding of the transmission process. In the182

current study we modelled the COVID 19 cases out of the number of tests as a function of time183

using semi-parametric approach. This approach allows us to adjust for or take into account the184

number of tests performed, which when ignored may lead to erroneous conclusions. Also, this185

method allows us to overcome the problem to modelling the number of cases alone and to take186

into account the strong relationship between the number of cases and the number of tests which187

can lead to a misleading result and therefore affect government policy regarding measures and188

precautions needed.189

The positive testing rate decreased from early March when the disease was first observed190

until early May when it kept on increasing. In July, the infection reached its peak and then consis-191

tently decreased, indicating that the intervention strategy was effective. From mid August, 2020,192

the rate of change of the positive testing rate indicates the decline in the positive testing rate is193

slowing down suggesting that a less effective intervention is currently implemented. The moving194

average is another measure that can be used to understand the rate of infection, but unlike the pos-195

itive testing rate, the moving average commonly uses partial information since there is always loss196

of information on both tails. In our case, the same result was obtained using both measures.197

The rate of infection can be used as an indicator for the evolution of the outbreak over time198

and to reveal new trends in the outbreak. One could also extend our approach by modeling jointly199

the number of tests and number of positive cases. These results need to be interpreted under the200

background of changing COVID-19 testing strategies in the country. When the positive testing rate201

is tracked in real time, it can provide useful guidance to policy makers202
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