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Abstract. Automatic segmentation is an essential but challenging step
for extracting quantitative imaging bio-markers for characterizing head
and neck tumor in tumor detection, diagnosis, prognosis, treatment plan-
ning and assessment. The HEad and neCK TumOR Segmentation Chal-
lenge 2020 (HECKTOR 2020) provides a common platform for compar-
ing different automatic algorithms for segmentation the primary gross
target volume (GTV) in the oropharynx region on FDG-PET and CT
images. We participated in the image segmentation challenge by devel-
oping a fully automatic segmentation network based on encoder-decoder
architecture. In order to better integrate information across different
scales, we proposed a dynamic scale attention mechanism that incor-
porates low-level details with high-level semantics from feature maps at
different scales. Our framework was trained using the 201 challenge train-
ing cases provided by HECKTOR 2020, and achieved an average Dice
Similarity Coefficient (DSC) of 0.7505 with cross validation. By testing
on the 53 testing cases, our model achieved an average DSC, precision
and recall of 0.7318, 0.7851, and 0.7319 respectively, which ranked our
method in the fourth place in the challenge (id: deepX).

1 Introduction

Head and Neck (H&N) cancers are among the most common cancers worldwide
(the 5th leading cancer by incidence) [1]. Radiotherapy (RT) combined with
chemotherapy is the standard treatment for patients with inoperable H&N can-
cers [2]. However, studies showed that locoregional failures occur in up to 40%
of patients in the first two years after the treatment [3]. In order to identify
patients with a worse prognosis before treatment, several radiomic studies have
been recently proposed to leverage the massive quantitative features extracted
from high-dimensional imaging data acquired during diagnosis and treatment.
While these studies showed promising results, their generalization performance
needs to be further validated on large patient cohorts. However, the primary tu-
mors and nodal metastases are currently delineated by oncologists by reviewing
both PET and CT images simultaneously, which is impractical and error-prone
when scaling up to a massive patient population. In addition, radiation oncol-
ogists also need to manually delineate the treatment targets and the organs at

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.11.20230185doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.11.11.20230185
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Y. Yuan

risk (OARs) when designing a treatment plan for radiotherapy, which is time-
consuming and suffers from inter- and intra-operator variations [4]. As a result,
automated segmentation methods have been of great demand to assist clinicians
for better detection, diagnosis, prognosis, treatment planing as well as assess-
ment of H&N cancers.

The HEad and neCK TumOR segmentation challenge (HECKTOR) [5, 6]
aims to accelerate the research and development of reliable methods for auto-
matic H&N primary tumor segmentation on oropharyngeal cancers by providing
a large PET/CT dataset that includes 201 cases for model training and 53 cases
for testing, as an example shown in Fig. 1. For training cases, the ground truth
was annotated by multiple radiation oncologists, either directly on the CT of
the PET/CT study (31% of the patients) or on a different CT scan dedicated to
treatment planning (69%) where the planning CT was registered to the PET/CT
scans [7]. While the testing cases were directly annotated on the PET/CT im-
ages. The cases were collected from five different institutions where four of them
(CHGJ, CHMR, CHUM and CHUS) will be used for training and the remaining
one (CHUV) will be used for testing. Each case includes a co-registered PET-CT
set as well as the primary Gross Tumor Volume (GTVt) annotation. A bounding
box was also provided to enable the segmentation algorithms focus on the volume
of interest (VOI) near GTVt [8]. These images were resampled to 1× 1× 1 mm
isotropic resolution and then cropped to a volume size of 144× 144× 144. The
evaluation will be based on Dice Similarity Coefficient (DSC), which is computed
only within these bounding boxes at the original CT resolution.

Fig. 1. An example of PET/CT used in HECKTOR 2020 challenge

2 Related work

While convolutional neural networks have been successfully applied in various
biomedical image segmentation tasks, only few studies have been conducted in
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the applications of deep convolutional neural networks (DCNNs) in automated
segmentation of tumors in PET/CT images. In [9], Moe et al. presented a PET-
CT segmentation algorithm based on 2D U-Net architecture to delineate the
primary tumor as well as metastatic lymph nodes. Their model was trained with
152 patients and tested on 40 patients. Andrearczyk et al. [5] expanded this work
by investigating several segmentation strategies based on V-Net architecture on
a publicly available dataset with 202 patients. Zhao et al. [10] employed a
multi-modality fully convolutional network (FCN) for tumor co-segmentation in
PET-CT images on a clinic dataset of 84 patients with lung cancer, and Zhong et
al. [11] proposed a segmentation method that consists of two coupled 3D U-Nets
for simultaneously co-segmenting tumors in PET/CT images for 60 non-small
cell lung cancer (NSCLC) patients.

The success of U-Net [13] and its variants in automatic PET-CT segmenta-
tion is largely contributed to the skip connection design that allows high res-
olution features in the encoding pathway be used as additional inputs to the
convolutional layers in the decoding pathway, and thus recovers fine details for
image segmentation. While intuitive, the current U-Net architecture restricts the
feature fusion at the same scale when multiple scale feature maps are available
in the encoding pathway. Studies have shown feature maps in different scales
usually carry distinctive information in that low-level features represent detailed
spatial information while high-level features capture semantic information such
as target position, therefore, the full-scale information may not be fully employed
with the scale-wise feature fusion in the current U-Net architecture.

To make full use of the multi-scale information, we propose a novel encoder-
decoder network architecture named scale attention networks (SA-Net), where
we re-design the inter-connections between the encoding and decoding pathways
by replacing the scale-wise skip connections in U-Net with full-scale skip connec-
tions. This allows SA-Net to incorporate low-level fine details with the high-level
semantic information into a unified framework. In order to highlight the impor-
tant scales, we introduce the attention mechanism [14, 15] into SA-Net such that
when the model learns, the weight on each scale for each feature channel will be
adaptively tuned to emphasize the important scales while suppressing the less
important ones. Figure 2 shows the overall architecture of SA-Net.

3 Methods

3.1 Overall network structure

SA-Net follows a typical encoding-decoding architecture with an asymmetrically
larger encoding pathway to learn representative features and a smaller decoding
pathway to recover the segmentation mask in the original resolution. The outputs
of encoding blocks at different scales are merged to the scale attention blocks
(SA-block) to learn and select features with full-scale information. Due to the
limit of GPU memory, we convert the input image from 144 × 144 × 144 to
128 × 128 × 128, and concatenate PET and CT images of each patient into a
two channel tensor to yield an input to SA-Net with the dimension of 2× 128×
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Fig. 2. Architecture of SA-Net. Input is a 2 × 128 × 128 × 128 tensor followed by one
ResSE block with 24 filters. Here ResSE stands for a squeeze-and-excitation block em-
bedded in a residual module [14]. By progressively halving the feature map dimension
while doubling the feature width at each scale, the endpoint of the encoding pathway
has a dimension of 384×8×8×8. The output of the encoding pathway has one channel
with the same spatial size as the input, i.e., 1 × 128 × 128 × 128.

128× 128. The network output is a map with size of 1× 128× 128× 128 where
each voxel value represents the probability that the corresponding voxel belongs
to the tumor target.

3.2 Encoding pathway

The encoding pathway is built upon ResNet [16] blocks, where each block con-
sists of two Convolution-Normalization-ReLU layers followed by additive identity
skip connection. We keep the batch size to 1 in our study to allocate more GPU
memory resource to the depth and width of the model, therefore, we use in-
stance normalization, i.e., group normalization [21] with one feature channel in
each group, which has been demonstrated with better performance than batch
normalization when batch size is small. In order to further improve the represen-
tative capability of the model, we add a squeeze-and-excitation module [14] into
each residual block with reduction ratio r = 4 to form a ResSE block. The initial
scale includes one ResSE block with the initial number of features (width) of 24.
We then progressively halve the feature map dimension while doubling the fea-
ture width using a strided (stride=2) convolution at the first convolution layer of
the first ResSE block in the adjacent scale level. All the remaining scales include
two ResSE blocks and the endpoint of the encoding pathway has a dimension of
384× 8× 8× 8.
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3.3 Decoding pathway

The decoding pathway follows the reverse pattern of the encoding one, but with
a single ResSE block in each spatial scale. At the beginning of each scale, we use
a transpose convolution with stride of 2 to double the feature map dimension
and reduce the feature width by 2. The upsampled feature maps are then added
to the output of SA-block. Here we use summation instead of concatenation for
information fusion between the encoding and decoding pathways to reduce GPU
memory consumption and facilitate the information flowing. The endpoint of the
decoding pathway has the same spatial dimension as the original input tensor
and its feature width is reduced to 1 after a 1× 1× 1 convolution and a sigmoid
function.

In order to regularize the model training and enforce the low- and middle-
level blocks to learn discriminative features, we introduce deep supervision at
each intermediate scale level of the decoding pathway. Each deep supervision
subnet employs a 1× 1× 1 convolution for feature width reduction, followed by
a trilinear upsampling layer such that they have the same spatial dimension as
the output, then applies a sigmoid function to obtain extra dense predictions.
These deep supervision subnets are directly connected to the loss function in
order to further improve gradient flow propagation.

3.4 Scale attention block

The proposed scale attention block consists of full-scale skip connections from
the encoding pathway to the decoding pathway, where each decoding layer in-
corporates the output feature maps from all the encoding layers to capture fine-
grained details and coarse-grained semantics simultaneously in full scales. As
an example illustrated in Fig. 3, the first stage of the SA-block is to add the
input feature maps at different scales from the encoding pathway, represented as
{Se, e = 1, ..., N} where N is the number of total scales in the encoding pathway
except the last block (N = 4 in this work), after transforming them to the fea-
ture maps with the same dimensions, i.e., Sd =

∑
fed(Se). Here e and d are the

scale level at the encoding and decoding pathways, respectively. The transform
function fed(Se) is determined as follows. If e < d, fed(Se) downsamples Se by
2(d−e) times by maxpooling followed by a Conv-Norm-ReLU block; if e = d,
fed(Se) = Se; and if e > d, fed(Se) upsamples Se through tri-linear upsamping
after a Conv-Norm-ReLU block for channel number adjustment. For Sd, a spa-
tial pooling is used to average each feature to form an information embedding
tensor Gd ∈ RCd , where Cd is the number of feature channels in scale d. Then
a 1 − to − N Squeeze-Excitation is performed in which the global feature em-
bedding Gd is squeezed to a compact feature gd ∈ RCd/r by passing through a
fully connected layer with a reduction ratio of r, then another N fully connected
layers with sigmoid function are applied for each scale excitation to recalibrate
the feature channels on that scale. Finally, the contribution of each scale in each
feature channel is normalized with a softmax function, yielding a scale-specific
weight vector for each channel as we ∈ RCd , and the final output of the scale
attention block is S̃d =

∑
we · fed(Se).
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Fig. 3. Scale attention block. Here S1, S2, S3 and S4 represent the input feature maps
at different scales from the encoding pathway.

3.5 Implementation

Our framework was implemented with Python using Pytorch package. All the
following steps were performed on the volumes of interest (VOIs) within the
given bounding boxes. As for pre-processing, we truncated the CT numbers to
[-125, 225] HU to eliminate the irrelevant information, then normalized the CT
images with the mean and standard deviation of the HU values within GTVs in
the entire training dataset. For PET images, we simply normalized each patient
independently by subtracting the mean and dividing by the standard deviation of
the image within the body. The model was trained with a patch size of 128×128×
128 voxels and batch size of 1. We used Jaccard distance, which we developed
in our previous studies [17–20], as the loss function in this work. It is defined as:

L = 1−

∑
i,j,k

(tijk · pijk) + ε∑
i,j,k

(t2ijk + p2ijk − tijk · pijk) + ε
, (1)

where tijk ∈ {0, 1} is the actual class of a voxelxijk with tijk = 1 for tumor and
tijk = 0 for background, and pijk is the corresponding output from SA-Net. ε is
used to ensure the stability of numerical computations.

Training the entire network took 300 iterations from scratch using Adam
stochastic optimization method. The initial learning rate was set to 0.003, and
learning rate decay and early stopping strategies were utilized when validation
loss stopped decreasing. In particular, we kept monitoring the validation loss
(L(valid)) in each iteration. We kept the learning rate unchanged at the first
150 iterations, but dropped the learning rate by a factor of 0.3 when L(valid)

stopped improving within the last 30 iterations. The model that yielded the
best L(valid)was recorded for model inference.
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In order to reduce overfitting, we randomly flipped the input volume in
left/right, superior/inferior, and anterior/posterior directions on the fly with
a probability of 0.5 for data augmentation. Other geometric augmentations in-
cluded rotating input images by a random angle between [-10, 10] degrees and
scaling them by a factor randomly selected from [0.9, 1.1]. We also adjusted the
contrast in each image input channel by a factor randomly selected from [0.9,
1.1]. We used 5-fold cross validation to evaluate the performance of our model on
the training dataset, in which a few hyper-parameters such as the feature width
and input dimension were also experimentally determined. All the experiments
were conducted on Nvidia GTX 1080 TI GPU with 11 GB memory.

We employed two different strategies to convert the 144 × 144 × 144 VOIs
into 128×128×128 patches. In the first approach, we simply resized the original
VOIs during the training and testing phases, in which image data were resampled
isotropically using linear interpolation while the binary mark resampled with
near neighbor interpolation. In the other approach, we randomly extracted a
patch with a size of 128 × 128 × 128 from the VOIs during the training, and
applied the sliding window to extract 8 patches from the VOI (2 windows in
each dimension) and averaged the model outputs in the overlapping regions
before applying a threshold of 0.5 to obtain a binary mask.

4 Results

We trained SA-Net with the training set provided by the HECKTOR 2020 chal-
lenge, and evaluated its performance on the training set via 5-fold cross valida-
tion. Table 1 shows the segmentation results in terms of DSC for each fold. As
compared to the results in table 2 that were obtained from a model using the
standard U-Net skip connections, the proposed SA-Net improved segmentation
performance by 3.2% in patching and 1.3% in resizing, respectively.

Table 1. Segmentation results (DSC) of SA-Net in 5-fold cross validation using the
training image dataset.

fold-1 fold-2 fold-3 fold-4 fold-5 Average

Patching 0.772 0.722 0.751 0.759 0.743 0.749
Resizing 0.761 0.730 0.759 0.763 0.745 0.752

Table 2. Segmentation results (DSC) of U-Net in 5-fold cross validation using the
training image dataset.

fold-1 fold-2 fold-3 fold-4 fold-5 Average

Patching 0.731 0.712 0.752 0.704 0.723 0.725
Resizing 0.760 0.719 0.741 0.755 0.734 0.742
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When applying the trained models on the 53 challenge testing cases, a bagging-
type ensemble strategy was implemented to combine the outputs of these ten
models to further improve the segmentation performance, achieving an average
of DSC, precision and recall of 0.7318, 0.7851 and 0.7319 respectively, which
ranked our method as the fourth place in the challenge.

5 Summary

In this work, we presented a fully automated segmentation model for head and
neck tumor segmentation from PET and CT images. Our SA-Net replaces the
long-range skip connections between the same scale in the vanilla U-Net with
full-scale skip connections in order to make maximum use of feature maps in full
scales for accurate segmentation. Attention mechanism is introduced to adap-
tively adjust the weights of each scale feature to emphasize the important scales
while suppressing the less important ones. As compared to the vanilla U-Net
structure with scale-wise skip connection and feature concatenation, the pro-
posed scale attention block not only improved the segmentation performance by
2.25%, but also reduced the number of trainable parameters from 17.8M (U-
Net) to 16.5M (SA-Net), which allowed it to achieve a top performance with
limited GPU resource in this challenge. In addition, the proposed SA-Net can
be easily extended to other segmentation tasks. Without bells and whistles, it
has achieved the 3rd place in Brain Tumor Segmentation (BraTS) Challenge
20201.
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