Additional File 1

1. S	uppler	nentary Methods	2
1.1	Ce	II homogeneity	2
1.2	Sta	atistical analysis	2
2. S	uppler	nentary Tables	3
2.1	Su	pplementary Table 1: Sample Characteristics	3
2.2	Su	pplementary Table 2: Patients for WGBS	3
2.3	Su	pplementary Table 3: Primer Sequences	4
2.4	Su	pplementary Table 4: WGBS descriptive information	6
2.5	Su	pplementary Table 5: DMRs in the PTSD cohort identified with camel	7
2.6	Su	pplementary Table 6: DMRs in the PTSD cohort identified with metilene	8
2.7	Su	pplementary Table 7: DMRs in the AN cohort identified with camel	9
2.8	Su	pplementary Table 8: DMRs in the AN cohort identified with metilene	10
2.9	Su	pplementary Table 9: Mean DNA methylation levels of the PTSD cohort	11
3. S	uppler	nentary Figures	12
3.1	Su	pplementary Figure 1: Principal component analysis	12
3.2	Su	pplementary Figure 2: Chromosomal location of analyzed regions of the PTSD cohort	13
3	.2.1	NR3C1	13
3	.2.2	SLC6A4	13
3	.2.3	OXTR	14
3	.2.4	FKBP5	14
3	.2.5	ADORA1	15
3	.2.6	TSPAN9	15
3	.2.7	RPS6KA2	16
3	.2.8	DMR-1	16
3.3 coh	Su ort 17	pplementary Figure 3: Correlations between symptom change and DNA methylation change ir	ו the PTSD
3.4	Su	pplementary Figure 4: Mean DNA Methylation of the PTSD cohort	18
3.5	Su	pplementary Figure 5: DNA methylation differences of the AN cohort	19

1. Supplementary Methods

1.1 Cell homogeneity

The homogeneity of the cells in the PTSD cohort was determined with the BD FACSCanto TM II Flow Cytometer (BD Biosciences, San Jose, CA, USA), and showed high purity ($98.3 \% \pm 2.4 \%$ (SD).

1.2 Statistical analysis

In the PTSD cohort, repeated measures analyses of variance (ANOVA) were performed to assess changes in DNA methylation from pre- to post intervention in selected candidate genes as well as WGBS nominated novel targets. Therapy response was included as an additional between-subject factor to check for therapy outcome-dependent changes in DNA methylation. Moreover, Pearson correlations were computed between percent DNA methylation change and PCL-5 symptom change to present a continuous measure of therapy response. P-values derived from both approaches, categorical and continuous, were supplemented with Bayes factors to quantify the evidence for the null hypothesis using the BayesFactor package (v0.9.12-4.2) in R (3.6.1) and non-informative default priors. The Bayes factor divides the likelihood of the data given a model without the effect of interest by the likelihood of the data given a model including the effect of interest. If the data is more likely under the null hypothesis, the Bayes factor becomes larger than 1. Classically, Bayes factors above 3 are interpreted to represent substantial evidence in factor of the null hypothesis, although this convention should be viewed as a rough guideline instead of a definitive cutoff.

Complementary to the Bayesian approach, we conducted equivalence tests to assess whether effect sizes in DNA methylation change are significantly smaller than the smallest biologically meaningful effect size. It has been argued that DNA methylation below 5% should be interpreted with extreme caution. We used the two one-tailed t-test procedure to check whether empirical effect sizes for methylation change are smaller than 5% or even a more conservative 1%. These tests were conducted for both the whole cohort and the subgroup of therapy-responders. This approach is useful here, as the Bayes factor approach only evaluates the evidence against the existence of a standardized effect size (e.g. Cohens d), which represent a ratio between signal and noise. If both signal and noise are small, i.e. when methylation is relatively stable over time, equivalence tests against an unstandardized theoretically meaningful effect size (i.e. percent methylation change) can be more powerful.

2. Supplementary Tables

2.1 Supplementary Table 1: Sample Characteristics

PTBS cohort	N	Min	Max	Mean	SD
Age [years]	60	20	60	40	11.86
BMI [kg/m²]	60	17.8	45.5	30.1	7.26
treatment duration [days]	60	20	69	45.35	9.87
PTSD symptoms pre (PCL-5)	58	22	77	55.87	11.53
PTSD symptoms post (PCL-5)	59	5	80	40.37	16.92
Leukocytes pre [cells/nl]	59	3.5	16.3	7.8	2.52
Leukocytes post [cells/nl]	54	3.7	13.1	7.3	2.03
Platelets pre [cells/nl]	59	125	524	282.85	79.72
Platelets post [cells/nl]	57	172	469	284.37	76.43
		Yes	No		
Smoking	59	33	26		
psychotropic medication (pre)	57	48	9		
psychotropic medication (post)	60	56	4		
Diagnosis of PTSD	60	60	0		
Diagnosis of depression	60	57	3		
other psychological comorbidities	60	31	29		
somatic comorbidities	60	26	34		
	1		1	1	
AN Cohort	Ν	First quartile	Third quartile	Median	
Age	3	15	17	16	
Height at admission	3	160.2 cm	167.7 cm	162.3 cm	
Weight at admission	3	37.6 kg	46.7 kg	40.2 kg	
BMI at admission	3	14.8 kg/m²	16.1 kg/m²	15.2 kg/m²	
treatment duration (days)	3	69 days	99 days	94 days	
Age	3	15.6 years	17.3 years	16.4 years	
Height after treatment	3	160.2 cm	167.7 cm	162.5 cm	
Weight after treatment	3	44.0 kg	52.6 kg	46.0 kg	
BMI after treatment	3	17.5 kg/m²	17.8 kg/m²	17.5 kg/m²	

2.2 Supplementary Table 2: Patients for WGBS

PTBS	Age [years]	BMI [kg/m²]	treatment duration [days]	Smoking	PCL-5 pre	PCL-5 post	Diagnosis
ID 43	48	22.1	41	No	25	14	F43.1; F33.1
ID 47	31	20.4	41	No	60	17	F43.1; F33.1

2.3 Supplementary Table 3: Primer Sequences

All genome positions given correspond to hg19/GRCh37.

PCRs in the AN cohort were performed as described in Leitão et al. 2018. PCRs in the PTSD cohort are described below.

<u>1.PCR</u>: The first round PCR reaction contained 1 µl of bisulfite-converted DNA. 0.125 µM primers and 5.5 µl GoTaq® G2 Hot Start Master Mixes (Promega. Fitchburg. WI. USA) in a total volume of 11 µl. The standard amplification protocol included an initial denaturation step for 2 min at 95 °C. followed by 50 cycles of melting at 94 °C for 30 s. annealing at 54.7-61.5 °C for 45 s and extension at 72 °C for 45 s. Followed by an additional extension at 72 °C for 10 min at the end of the 50 cycles. All PCRs included nontemplate controls. The primer sequences are depicted in the table. The red sequence is a tag and used as a template for the second round PCR.

DMR/	Chromosomal location	Length	Annealing	Analyzed		
Gene				Target	Temp. [°C]	CpGs
				[bp]		
PTSD cohort	:				•	
NR3C1	obr5:142 782 541 142 782 011	forward	CTTGCTTCCTGGCACGAGGGGGGGGGGAGATTTGGTTTTT	371	56.9	42
	6110.142.705.541-142.705.911	reverse	CAGGAAACAGCTATGACTCCCTTCCCTAAAACCTC			
SLC6A4	chr17:28 562 030 28 563 283	forward	CTTGCTTCCTGGCACGAGTAGGAGGGGAGGGATTTT	345	59.4	23
Promoter	CIII 17.20.302.939-20.303.203	reverse	CAGGAAACAGCTATGACAAACCTCTAAACTAAACTCACATC			
	chr17:28 562 574 28 562 052	forward	CTTGCTTCCTGGCACGAGGGGAAGAAGGTTTGGAAAGA	379	59.4	42
	CHI 17.20.302.374-28.302.932	reverse	CAGGAAACAGCTATGACTCCCTCCCTCCTAACTCTAA			
	abr17:29 562 229 29 562 692	forward	CTTGCTTCCTGGCACGAGTTTTTAAGGGGTTTTTAAGAGGTTGTAAAGT	355	60.0	17
	CHI 17.20.302.320-20.302.002	reverse	CAGGAAACAGCTATGACAAACCAACCCCCCTACCCAACCC			
OXTR	chr3:8.799.262-8.799.615	forward	CTTGCTTCCTGGCACGAGTTGTGGGTAGGAGTAGGATTTTA	354	59.4	5
Enhancer		reverse	CAGGAAACAGCTATGACTTCTCATCCTAAATCTAAAAATCACTT			
	chr3:8 800 371 8 800 730	forward	CTTGCTTCCTGGCACGAG AGTGTAAGGTTTGGGTGAA	369	54.7	11
	CIII 3.8.800.37 1-8.800.739	reverse	CAGGAAACAGCTATGACATCTAAAATAAAACCCCAAAAATT			
FKBP5	chr6:35 558 322 35 558 503 272	forward	CTTGCTTCCTGGCACGAGTTTTGGGTTGAGGATAGAAAGG	272	56	5
	CIII0.33.330.322-33.330.393 272	reverse	CAGGAAACAGCTATGACATCCAAAACAACTAACAAATTCTCT			
DMR-4	chr1:203 007 582 203 007 833	forward	CTTGCTTCCTGGCACGAG TTGTGTATAGGGGTGGGTAGA	252	61.5	7
ADORA1	Chi 1.203.097.302-203.097.033	reverse	CAGGAAACAGCTATGACACCCTATAATATATCCCACTTATCAC			
DMR-21	chr12:3 370 787 3 371 002	forward	CTTGCTTCCTGGCACGAGAATGGGGATGTTTAGTTAGTGTTATTTAG	306	61.5	6
TSPAN9	Chi 12.3.370.707-3.371.092	reverse	CAGGAAACAGCTATGACACACACAAAAAATAAACCTACTACTTTC			
DMR-10	chr6:166 006 725 166 007 045	forward	CTTGCTTCCTGGCACGAGTGGGGGAATTTTGGTGTAGATATGA	321	61.5	8
RPS6KA2	6110.100.990.725-100.997.045	reverse	CAGGAAACAGCTATGACCACTACCTCATCCAAAACCCTAAT			

DMR-1	chr1:140 223 222 140 223 624	forward	CTTGCTTCCTGGCACGAGTGAAGTTTTTTTGTAGGTTATAGGGAAGGG	303	61.5	14
	6111.149.233.322-149.233.024	reverse	CAGGAAACAGCTATGACCTACCCAATCTTTCTCTTTCTTAAT			
AN cohort						
DMR-1	chr2.220 107 940-220 108 293	forward	CTTGCTTCCTGGCACGAGGAAAGTAGTGTAGGTTGTTAGA	354	55	22
GLB1L	CIII 2.220.107.540-220.108.255	reverse	CAGGAAACAGCTATGACAACTCCCAAAAAACTATCC			
DMR-3	chr2.06 405 502-06 405 821	forward	CTTGCTTCCTGGCACGAGAAAAGGTTTTAATGTAGAATAAAAAT	230	52	28
	0113.50.455.552-50.455.821	reverse	CAGGAAACAGCTATGACTAACAAAAAAATTATACAAACTCC			
DMR-7	chr6.2 840 048 2 850 102	forward	CTTGCTTCCTGGCACGAGGAGGYGTAGAGTTGAGTATTTTT	246	56	19
FAM50B	1110.3.849.948-3.830.193	reverse	CAGGAAACAGCTATGACAAAACCTCTTATCCACCTA			
DMR-11	chr7: 130.132.730-130.133.038	forward	CTTGCTTCCTGGCACGAGTGTAGGATTTTTAGAATTTTAGT	309	56	22
MEST		reverse	CAGGAAACAGCTATGACCAACATAACAATTTAATCACATC			
DMR-13	chr8.27 605 428-27 605 657	forward	CTTGCTTCCTGGCACGAGTAGTAGTAGTATATATGGAGGGGTTTTT	230	50	16
ERLIN2	Ciii 8.37.003.428-37.003.037	reverse	CAGGAAACAGCTATGACTAAAAAATATTAATAAATACCATTTAAAATA			
DMR-16	chr0.140 211 084-140 212 240	forward	CTTGCTTCCTGGCACGAGGGGTTTTGGTAGTTTTTTT	357	56	44
EXD3	CIII 9.140.311.984-140.312.340	reverse	CAGGAAACAGCTATGACACTCCTCAAATCCTCAAACTCTATC			
DMR-22	chr15:25 200 594-25 200 895	forward	CTTGCTTCCTGGCACGAGGGGGATTAGTGTATAGGGATTTTAGG	302	60	19
SNURF/SNRPN	11113.23.200.394-23.200.895	reverse	CAGGAAACAGCTATGACCTTCCCCCTACCTCCCAA			
DMR-28	chr20:3 732 639-3 732 992	forward	CTTGCTTCCTGGCACGAGGTTTAGTTTYGAGTTTGAGTT	354	55	41
HSPA12B	chr20:3.732.639-3.732.992	reverse	CAGGAAACAGCTATGACCAATCTCTAAATATATCCCCACC			

Length of the amplicons is stated without tags.

<u>2.PCR</u>: The second round PCR reaction contained 1 µl of PCR product of the first round. 0.2 µM primers and 5 µl GoTaq® G2 Hot Start Master Mixes (Promega. Fitchburg. WI. USA) in a total volume of 10 µl. The standard amplification protocol included an initial denaturation step for 2 min at 95 °C. followed by 35 cycles of melting at 94 °C for 30 s. annealing and extension at 72 °C for 1 min. Followed by an additional extension at 72 °C for 10 min at the end of the 35 cycles. All PCRs included nontemplate controls. Different combinations of Illumina adapters N701-N712 and [N/S/E]501-[N/S/E]508 and [N/S/E]517) were used. introducing index and variable sequences. sequencing primer binding sites and regions complementary to the flow cell Oligos which are critical for cluster generation. The combination of index and variable sequences in forward and reverse primers are unique to each set of primer pair and serve as identifiers for each study subject. As they are specific to a given sample library they enable multiple sequences to be sequenced together and are used for demultiplexing during data analysis to assign individual sequence reads to the correct sample during final data analysis.

2.4 Supplementary Table 4: WGBS descriptive information

Cohort	Sample (ENA)	before/after	Conversion rate	Mapping efficiency	Duplication Rate	Coverage	Mean methylation
PTSD	47.1 (K002000217_85588)	before	1	1	0.21	9.11	0.72
PTSD	47.2 (K002000217_85589)	after	1	1	0.21	8.33	0.72
PTSD	43.1(K002000217_85590)	before	1	1	0.22	8.19	0.72
PTSD	43.2 (K002000217_85591)	after	1	1	0.22	8.07	0.72
Anorexia	AN1-pre (AS-222872-LR-34031)	before	1	1	0.19	21.15	0.76
Anorexia	AN1-post (AS-222873-LR-34032)	after	1	1	0.18	22.54	0.76
Anorexia	AN2-pre (AS-222875-LR-34033)	before	1	1	0.17	21.13	0.76
Anorexia	AN2-post (AS-222876-LR-34034)	after	1	1	0.15	21.17	0.76
Anorexia	AN3-pre (AS-222877-LR-34035)	before	1	1	0.20	18.75	0.75
Anorexia	AN3-post (AS-241990-LR-35191)	after	1	1	0.17	18.00	0.74

2.5 Supplementary Table 5: DMRs in the PTSD cohort identified with camel

#	chrom	start	stop	cpg	mean_meth_diff	gene	cgi	overlap metilene	DBS
1	1	149233364	149233394	4	0.31				yes
2	1	229119599	229120672	8	0.30				
3	1	3685641	3685665	4	-0.30	CCDC27			
4	1	203097628	203097776	7	-0.32	ADORA1			yes
5	2	178034563	178034833	5	0.30				
6	2	88302827	88302847	4	-0.40				
7	2	104445362	104447294	8	-0.37				
8	4	132984311	132984336	4	-0.30				
9	5	4512352	4512371	4	0.32				
10	6	166996807	166996856	4	0.31	RPS6KA2			yes
11	6	28863695	28863746	4	-0.41			yes	
12	7	1595247	1595280	4	0.34	TMEM184A			
13	7	101514184	101514315	5	0.31	CUX1			
14	7	148768873	148768932	7	-0.39	ZNF786	yes		
15	8	35549566	35549812	4	0.31	UNC5D			
16	8	141109357	141109414	5	0.32	TRAPPC9	yes		
17	10	131052326	131052347	4	-0.31				
18	11	1892538	1892592	4	0.38	LSP1	yes		
19	11	45951791	45951817	4	-0.33	PHF21A			
20	12	130615735	130615819	4	0.31				
21	12	3370834	3371031	6	-0.36	TSPAN9			yes
22	12	133181087	133181120	4	-0.40	LRCOL1			
23	13	41496184	41496213	5	-0.33		yes		
24	15	88874573	88874627	4	-0.33				
25	16	75031951	75032022	7	0.30				
26	16	81924284	81924435	5	0.38	PLCG2			
27	20	57426931	57427018	11	0.30	GNAS			
28	20	57430980	57431013	4	-0.38	GNAS	yes		
29	22	19086801	19086831	4	0.35	DGCR2			
30	X	74144931	74144954	4	0.37	KIAA2022	yes		
31	X	102879244	102879668	6	0.37				
32	X	119149621	119149673	8	0.35		yes		
33	Х	34836096	34836268	4	-0.30				

2.6 Supplementary Table 6: DMRs in the PTSD cohort identified with metilene

#	#chr	start	stop	q-value	mean methylation difference	#CpGs	p (MWU)	p (2D KS)	mean g1	mean g2	cgi	gene	overlap camel
1	6	28863663	28863803	0.0270	36.36	11	1.30E-08	3.90E-09	55.682	19.318			yes
2	6	32847513	32847758	0.0450	33.72	16	1.40E-10	6.70E-09	86.875	53.156	yes		
3	8	105379654	105379756	0.0140	39.54	12	3.70E-09	2.10E-09	72.417	32.875	yes		
4	9	140312096	140312262	0.0037	31.76	25	1.30E-13	5.40E-10	83.760	52.000	yes	EXD3	

2.7 Supplementary Table 7: DMRs in the AN cohort identified with camel

								overlap	
#	chrom	start	stop	cpg	mean_meth_diff	gene	cgi	metilene	DBS
1	2	220108022	220108240	15	-0.20	GLB1L	yes		yes
2	3	122631656	122631863	19	0.20	SEMA5B	yes		
3	3	96495654	96495787	25	-0.24		yes	yes	yes
4	3	128372270	128372392	12	-0.22	RPN1			
5	5	23951406	23951556	23	0.21				
6	5	131607580	131607728	15	0.23	PDLIM4	yes		
7	6	3850030	3850198	16	0.25	FAM50B	yes		yes
8	6	103780330	103780520	12	0.24				
9	6	144329661	144329803	14	0.21	PLAGL1	yes		
10	7	50850481	50850557	10	0.21	GRB10	yes		
11	7	130132831	130132968	14	0.21	MEST	yes	yes	yes
12	7	138349196	138349306	12	0.21	SVOPL	yes	yes	
13	8	37605479	37605612	13	0.27	ERLIN2		yes	yes
14	8	145577563	145577699	12	-0.21	TMEM249	yes		
15	9	121571655	121571834	22	0.28			yes	
16	9	140312005	140312139	22	0.28	EXD3	yes	yes	yes
17	9	140311650	140311755	14	-0.26	EXD3	yes		
18	10	2543763	2543863	10	0.24		yes		
19	10	134312364	134312602	11	0.23				
20	12	297564	297660	13	0.20				
21	14	104394643	104394730	18	0.25				
22	15	25200653	25200867	17	0.21	SNURF/SNRPN	yes		yes
23	16	60558	60623	18	-0.24			yes	
24	19	1423673	1423847	12	0.22	DAZAP1	yes		
25	19	50435883	50436183	13	0.22	ATF5			
26	19	54927810	54928046	22	0.21	TTYH1	yes		
27	20	3732270	3732372	17	0.23	HSPA12B	yes		
28	20	3732712	3732826	19	0.27	HSPA12B	yes		yes
29	20	57427046	57427278	12	0.21	GNAS	yes		
30	20	57416457	57416590	14	-0.23	GNAS/GNAS-AS1	yes		
31	Х	47509923	47510197	27	0.21	ELK1	yes		
32	Х	128657066	128657256	16	0.28	SMARCA1	yes		
33	Х	153599077	153599242	22	0.24	FLNA	yes		
34	Х	103411321	103411411	12	-0.21	FAM199X	yes		
35	Х	119444838	119444969	13	-0.21	TMEM255A	yes		

2.8 Supplementary Table 8: DMRs in the AN cohort identified with metilene

#	chr	start	stop	q-value	mean methylation difference	#CpGs	p (MWU)	p (2D KS)	mean g1	mean g2	cgi	gene	overlap camel	DBS
1	9	140312005	140312139	3.7E-07	-27.61	22	4.2E-14	4.3E-14	39.712	67.318	yes	EXD3	yes	yes
2	8	37605479	37605612	0.000039	-28.76	11	5.5E-12	4.5E-12	12.788	41.545		ERLIN2	yes	yes
3	16	60504	60682	0.000093	21.84	29	4.2E-14	1.1E-11	55.126	33.287			yes	
4	9	121571655	121571834	0.001	-28.48	21	4.3E-14	1.2E-10	43.921	72.397			yes	
5	7	138349215	138349321	0.003	-21.06	11	1.6E-11	3.4E-10	16.727	37.788	yes	SVOPL	yes	
6	7	130132857	130132968	0.019	-21.81	12	3.3E-11	2.2E-09	35.250	57.056	yes	MEST	yes	yes
7	3	96495630	96495787	0.026	23.22	26	8.7E-14	2.9E-09	73.321	50.103	yes		yes	yes
8	Х	153657063	153657259	0.00038	21.71	28	4.1E-14	4.4E-11	35.595	13.881	yes	ATP6AP1		
9	7	105596474	105596577	0.0021	-22.90	14	4.7E-13	2.4E-10	60.048	82.952		CDHR3		
10	Х	46618447	46618564	0.0043	24.73	17	1E-13	4.9E-10	33.020	8.294	yes	SLC9A7		

	Resp	onder	Non-res	sponder	То	tal
	Pre	Post	Pre	Post	Pre	Post
NR3C1	0.94	0.96	0.99	0.92	0.96	0.94
SD	± 0.17	± 0.17	± 0.20	± 0.12	± 0.18	± 0.15
N	32	32	21	21	56	56
SLC6A4	6.61	6.69	6.27	6.11	6.51	6.47
SD	± 0.82	± 0.88	± 0.61	± 0.61	± 0.78	± 1.17
N	36	36	21	21	60	60
OXTR	92.28	92.08	91.98	91.56	92.14	91.88
SD	± 1.45	± 1.43	± 1.74	± 2.36	± 1.53	± 1.79
N	36	36	21	21	60	60
<i>FKBP5</i>	88.86	88.97	89.10	89.25	88.96	89.11
SD	± 1.49	± 1.25	± 1.51	± 1.80	± 1.45	± 1.44
N	36	36	21	21	60	60
ADORA1	40.11	41.36	39.92	40.44	40.24	41.11
SD	± 6.15	± 5.59	± 6.06	± 6.02	± 6.08	± 5.64
N	36	36	21	21	60	60
TSPAN9	59.59	56.09	60.04	58.857	59.79	57.01
SD	±13.58	±14.20	±11.39	±11.69	±12.50	±13.10
N	36	36	21	21	60	60
RPS6KA2	47.75	48.04	52.79	51.85	49.51	49.37
SD	± 5.92	± 6.93	± 7.27	± 6.57	± 6.98	± 6.89
N	36	36	20	20	59	59
DMR-1	72.02	72.11	73.82	73.47	72.74	72.62
SD	± 6.47	± 6.72	± 7.05	± 6.82	± 6.63	± 6.66
N	36	36	21	21	60	60

DNA methylation means in percent and standard deviations by responder status and time

Note. Pre = pre-treatment. Post = post-treatment.

3. Supplementary Figures

3.1 Supplementary Figure 1: Principal component analysis

Suplementary Fig. 1. Principal component analysis. (PCA): A) PCA of the four PTSD datasets (2.8 million CpGs). B) PCA of the six AN datasets (23 million CpGs). Only CpG loci with minimum coverage of 10 reads in all samples and minimum mapping quality of 30 are considered.

3.2 Supplementary Figure 2: Chromosomal location of analyzed regions of the PTSD cohort

Chromosomal positions of analyzed genomic regions are displayed using graphical output from the UCSC genome browser. All genes are shown in $5' \rightarrow 3'$ orientation from left to right. The analyzed DNA regions are shown as red bars. CpG islands with the number of CpGs are shown in green bars.

Candidate Genes

3.2.1 NR3C1

NR3C1: DNA methylation of 42 CpGs in the promoter region of exon 1F of NR3C1 (Glucocorticoid Receptor) was analyzed (chr5:142.783.541-142.783.911).

3.2.2 SLC6A4

SLC6A4: DNA methylation of the entire CpG island located in the promoter region of the *SLC6A4* (Serotonin Transporter) was analyzed. The CpG island was divided into 3 fragments for sequencing (SLC6A4-1:chr17:28.562.939-28.563.283; SLC6A4-2: chr17:28.562.574-28.562.952; SLC6A4-3: chr17:28.562.328-28.562.682). CpG sites which are affected by SNPs were not included in the statistical analysis (rs25533; rs35206195; and rs56384968).

OXTR: 16 CpGs in a putative OXTR (Oxytocin Receptor) enhancer region (intron 3) were analyzed (OXTR-1: chr3:8.799.262-8.799.615; OXTR-2: chr3:8.800.371-8.800.739). This region is characterized by histone acetylation (H3K27Ac: turquoise peaks). CpG sites which are affected by SNPs were not analyzed in the statistical analysis (rs2268491 and rs7636061).

3.2.4 FKBP5

	FKBP5 Human Feb. 2009 (GRCh37/hg19) chr6:35,538,246-35,658,316 (120,071 bp)										
	l 35,650,000	l 35,640,000	l 35,630,000	l 35,620,000	l 35,610,000 Your Sequ	l 35,600,000 ience from Blat Se	I 35,590,000 earch	I 35,580,000 FKBP5	кр I 35,570,00		
—				UCSC Genes (Re	efSeq, GenBank, (CCDS, Rfam, tRN	As & Comparative	e Genomics)			

FKBP5: DNA methylation analysis was performed on 5 CpGs in intron 7 of *FKBP5* (FKBP Prolyl Isomerase 5) containing a glucocorticoid response element (GRE) (chr6:35.558.322-35.558.593 272).

New Targets from WGBS

3.2.5 ADORA1

ADORA1: DNA methylation of 7 CpGs in ADORA1 (Adenosine A1 Receptor) was analyzed (chr1:203.097.582-203.097.833).

3.2.6 TSPAN9

TSPAN9: DNA methylation of 6 CpGs in TSPAN9 (Tetraspanin 9) were analyzed (chr12:3.370.787-3.371.092).

3.2.7 RPS6KA2

DMR-1: DNA methylation of 14 CpGs was analyzed according to the WGBS results. The differentially methylated region (DMR) is about 9 kbp downstream of *RNVU1-18* (RNA. Variant U1 Small Nuclear 18). 6 kbp upstream of *LOC105369140* (NBPF Member 6 Pseudogene) and ~50 kbp upstream of Long Intergenic Non-Protein Coding RNAs (*LOC388692* and *LOC644634*). *RNVU1-18* is affiliated with the snRNA class. *LOC105369140* is a pseudogene. Location of DMR-1: chr1:149.233.322-149.233.624. CpG sites which are influenced by SNPs were not analyzed (rs2319160 and rs2319163).

3.3 Supplementary Figure 3: Correlations between symptom change and DNA methylation change in the PTSD cohort

3.4 Supplementary Figure 4: Mean DNA Methylation of the PTSD cohort

Mean Methylation FKBP5

Mean Methylation OXTR

Mean Methylation RPS6K2

Mean Methylation DMR-1

Mean Methylation SLC6A4

Supplementary Fig. 5. Analysis of candidate AN_DMRs by WGBS and DBS. T0, before intervention; T1, after intervention.