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Key points: 

• We identified and quantified novel markers of IPMN cyst status and pancreatic cancer 
disease progression – including amino acids, carboxylic acids, conjugated bile acids, 
free and carnitine-conjugated fatty acids, purine oxidation products and TMAO.  

• We show that the levels of these metabolites of potential bacterial origin correlated 
with the degree of bacterial enrichment in the cyst, as determined by 16S RNA.  
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Abstract 
 
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, with a 5-

year survival rate as low as 9%. One factor complicating the management of pancreatic cancer 

is the lack of reliable tools for early diagnosis. While up to 50% of the adult population has 

been shown to develop precancerous pancreatic cysts, limited and insufficient approaches are 

currently available to determine whether a cyst is going to progress into pancreatic cancer. 

Recently, we used metabolomics approaches to identify candidate markers of disease 

progression in patients diagnosed with intraductal papillary mucinous neoplasms (IPMNs) 

undergoing pancreatic resection. Here we enrolled an independent cohort to verify the 

candidate markers from our previous study with orthogonal quantitative methods in plasma 

and cyst fluid from serous cystic neoplasm and IPMN (either low- or high-grade dysplasia or 

pancreatic ductal adenocarcinoma). We thus validated these markers with absolute 

quantitative methods through the auxilium of stable isotope-labelled internal standards in a 

new independent cohort. Finally, we identified novel markers of IPMN status and disease 

progression – including amino acids, carboxylic acids, conjugated bile acids, free and 

carnitine-conjugated fatty acids, purine oxidation products and TMAO. We show that the 

levels of these metabolites of potential bacterial origin correlated with the degree of bacterial 

enrichment in the cyst, as determined by 16S RNA. Overall, our findings are interesting per 

se, owing to the validation of previous markers and identification of novel small molecule 

signatures of IPMN and disease progression. In addition, our findings further fuel the 

provoking debate as to whether bacterial infections may represent an etiological contributor to 

the development and severity of the disease in pancreatic cancer, in like fashion to other 

cancers (e.g., Helicobacter pylori and gastric cancer). 

 
Keywords: metabolomics; microbiome; cyst; IPMN;  
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Introduction 

Pancreatic cancer (PC) is the seventh leading cause for cancer related death 

worldwide (1). Incidence and mortality rates are almost identical (458,918 new cases and 

432,242 deaths in 2018) and although improvements with adjuvant chemotherapy have been 

made, 5-year survival rates remain as low as 9% (1, 2).  Incidence has shown an increasing 

tendency, and PC is estimated to become the second leading cause of cancer-related death by 

2030 (3).  

There are to this day no effective screening programs where pre-cancerous lesions can be 

detected with satisfactory accuracy and treated accordingly. Much research today therefore 

aims to improve diagnostic measures of pre-cancerous cystic lesions of the pancreas. The 

main proportion of these pancreatic cystic neoplasms (PCN) consists of intraductal papillary 

mucinous neoplasms (IPMN), which have a potential to transform from low grade dysplasia 

(LGD) through high-grade dysplasia (HGD) to cancer. Discriminating these potentially 

malignant cysts from essentially benign cysts of the pancreas, such as serous cystic neoplasms 

(SCN) is a delicate matter. A few years ago, pre-operative diagnostic accuracy was only 

around 60-70% even in expert centres (4). Adding endoscopic ultrasound and fine needle 

aspiration (EUS-FNA) adds some diagnostic information, as does blood levels of 

carcinoembryonic antigen (CEA), but they do not provide satisfactory information on the 

grade of dysplasia in these lesions, and cytology is not sufficiently specific to distinguish a 

mucinous lesion with LGD from one that has already transformed into cancer (5-7). Though 

diagnostic accuracy is continuously improved, including early recognition of main duct 

dilation (8), discriminating and grading these potentially pre-malignant cysts is still 

challenging.  

The prevalence of cystic lesions in the pancreas is very high in the general 

population, up to 49.1% as some studies indicate (9) – with an average number of ~4 cysts per 
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subject (9). The incidence of pancreatic cancer, however is estimated to be 5.5 and 4.0 per 

100,000 in men and women, respectively, worldwide (10) and, indeed, a 5 year follow-up of 

1077 subjects with ~50% pancreatic cyst incidence observed no pancreatic cancer (9).  This 

means that a small minority of these cysts will eventually evolve to cancer, adding further to 

the delicate dilemma of how to handle these cysts.  

Since pancreas resection involves high risk surgery, with significant peri-

operative morbidity and mortality, optimising pre-operative diagnostics is of outmost 

importance in order to select the patients that truly will benefit from surgery from those that 

will not. Recent studies from our group indicates that by integrating metabolomics and 

lipidomics approach it is possible to discriminate IPMN from SCN, and the grade of dysplasia 

associated with IPMN, with high sensitivity and specificity (11). In spite of a limited sample 

size and a workflow optimized for lipidomics characterization, we found that major key 

discriminating compounds were sugars, nucleotides or amino acids. While promising, our 

early study did not manage to discriminate IPMNs with different grade of dysplasia from 

pancreatic cancer. The lack of discriminating power of the data generated in the previous 

study could be potentially overcome by leveraging untargeted metabolomics approaches and 

the comprehensive output they generate, as is in part the focus of this manuscript. In addition, 

candidate markers of IPMN status progression that were identified in our previous study had 

not been quantified beyond the determination of relative measurements (peak areas in 

arbitrary units). In the present study, we aim to validate those results using an independent 

metabolomic platform on a new set of cyst fluid and plasma samples collected from a 

Swedish cohort undergoing pancreas resection due to suspicion of IPMN.  

Moreover, since publication of our first metabolomics report, we have reported 

the detection of an intracystic pancreatic microbiome, as gleaned by 16S RNA gene 

sequencing analysis (12). Here we consolidate those findings and report a significant 
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correlation between IPMN dysplasia or cancerous state and plasma/cyst fluid levels of 

metabolites of potential bacterial origin such as trimethylamine-oxide (TMAO), polyamines, 

carboxylic acids and several conjugated bile acids. 

 

Results 

Metabolomics analyses of plasma and cyst fluid from SCN, IPMN and PDAC patients 

The patients’ population is extensively described in Table 1. All patients diagnosed with SCN 

were women, which is expected as SCN is present in women to a much larger extent than in 

men (13). As expected, the SCN groups were also younger than the other groups. As for 

LGD, HGD and PDAC, they were rather evenly distributed between the sexes. Commonly 

used blood parameters (HbA1c, S-Ca 19-9, S-amylase, albumin, bilirubin, and white blood 

cell count) didn’t vary across the groups, except for S-Ca 19-9 and bilirubin levels, which 

were both significantly higher in the PDAC group where plasma samples were retrieved. To 

expand on previous targeted metabolomics analyses on plasma and cyst fluid of patients 

presenting with IPMN or PDAC (11), untargeted metabolomics analyses were performed on 

plasma (Figure 1) and cyst fluid (Figure 2) from an independent validation cohort, enrolled 

at the Karolinska Institute in Stockholm. Plasma analyses (Figure 1.A) identified 38 unique 

compounds/chemical formulae increasing in plasma from SCN patients compared to PDAC 

patients and 70 significantly following an opposite trend (Figure 1.B). A series of 

representative volcano plot report similar analyses comparing HGD to PDAC, HGD to LGD 

and LGD to PDAC, the latter showing the largest differences (1433 unique chemicals 

increasing in LGD and 782 decreasing compared to PDAC – Figure 1.B). Pathway analyses 

of these chemicals highlighted a significant impact of disease progression on amino acid 

metabolism (Figure 1.C), carboxylic acids (Figure 1.D) and glycolysis-related metabolites 
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(glucose and lactate, substrate and product of the pathway, respectively - Figure 1.E), 

confirming and expanding upon previous reports (11).  

Similar untargeted metabolomics analyses were performed on cyst fluid (Figure 2). Volcano 

plots in Figure 2.B highlight a significant divergent small molecule composition across the 

four groups – with phenotypes more markedly distinct across the groups than those observed 

for plasma. From this analysis, top pathways identified across the four groups included purine 

oxidation (hypoxanthine, xanthine and urate - Figure 2.C), heme metabolism (biliverdin and 

bilirubin - Figure 2.D), acyl-carnitines (see next paragraphs - Figure 2.E), and glycolytic 

metabolites (glucose, hexose phosphate isobars, pyruvate and lactate - Figure 2.F). To 

validate untargeted metabolomics analyses, additional semi-targeted metabolomics analyses 

were performed (untargeted acquisition, post-hoc manual validation of high-resolution 

accurate intact mass, isotopic patterns, chemical formula composition and retention times 

against an in-house library of pure chemical standards). A total of 123 metabolites in plasma 

and 161 in cyst fluid were manually validated through targeted metabolomics analyses – 

Supplementary Table 1). Multivariate analyses of targeted metabolomics data are presented 

in Figure 3.B and C, which show the results from partial least square-discriminant analysis 

(PLS-DA) and hierarchical clustering analysis (top 25 metabolites by ANOVA p-values) in 

plasma and cyst fluid, respectively. Hierarchical clustering analysis, ANOVA and PLS-DA of 

semi-targeted data highlighted similar changes to untargeted metabolomics in top metabolic 

pathways (e.g., carboxylic acids, amino acids, glycolytic metabolites and purine oxidation 

products changed significantly in plasma – especially in HGD patients – Supplementary 

Figure 1). This analysis was necessary to verify the chemicals identified as significant in the 

exploratory, untargeted metabolomics analyses. These results were further validated with 

orthogonal, quantitative methods against stable isotope-labelled internal standards. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.20225524doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225524


Biomarker analysis in plasma and cyst fluid based on absolute quantitative 

measurements of top metabolites from the untargeted and targeted analyses 

Absolute quantitation against internal standards was performed for the most significant 

metabolites from the exploratory metabolomics analyses. Absolute quantitative data were 

leveraged to determine specificity and sensitivity of top biomarkers of pre-cancerous and 

cancerous (HGD or PDAC) vs non-cancerous IPMN and serous cystic neoplasm (LGD or 

SCN) in cyst-fluid and plasma. Results from these analyses are provided as part of 

Supplementary Table 1, including ranked biomarkers as a function of Areas Under the 

Curve (AUC), p-values, confidence interval and thresholds. Analysis of cyst fluid (Figure 

4.A) identified amino acids (especially choline – Area Under the Curve, AUC: 0.78 at 7.06 

uM), carboxylic acids (succinate, fumarate and malate, all with AUC: >0.75) and  several 

acyl-carnitines (AUC > 0.75 for 9 different carnitines) amongst the top biomarker of 

cancerous state (Figure 4.B). A detail of absolute carnitine concentrations in cyst fluids is 

shown in Figure 4.C, highlighting this class of compounds as the top discriminants between 

non-cancerous (SCN and LGD) and IPMN cysts showing HGD or PDAC association. Of 

note, acyl-carnitines ranked amongst the top markers of PDAC when comparing absolute 

quantitative measurements of cyst fluid from this group to all other groups (SCN, LGD and 

HGD combined – Supplementary Figure 2). On the other hand, biomarker analyses of cyst 

fluid from SCN vs PDAC patients identified the following top biomarkers: amino acids 

(glutamine, glutamate, adrenaline, valine, leucine, kynurenine), sugars (glucose, ribose), 

gamma-glutamyl-cycle metabolites (glutamyl-selenomethionine and aminobutyrate, 5-

oxoproline), purine oxidation products (hypoxanthine, allantoate) and carboxylic acids 

(fumarate - Supplementary Figure 3). Carboxylic acids (malate), aromatic amino acids and 

related metabolites (e.g., tryptophan, indole, dopamine, adrenaline) were identified as the top 

discriminant between cyst fluid of HGD and PDAC patients (Supplementary Figure 4). 
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Similar analyses in plasma (Figure 4.D) highlighted the bacterial metabolite trimethylamine-

oxide (TMAO) as the top biomarker (AUC: 0.82 at concentration 9.12 uM). Similarly, several 

conjugated bile acids were identified amongst the top plasma markers of cancerous IPMN, 

above all taurochenodeoxycholate (AUC: 0.73, 204 nM concentration) (Figure 4.E). Indeed, 

5 conjugated bile acids ranked amongst the 7 top discriminants between cyst fluid from 

PDAC patients versus any other cyst (SCN, LGD and HGD – Supplementary Figure 2). 

Notably, dysregulation of bile acid metabolism has been reported as a marker of bacterial 

metabolism (e.g., in the context of inflammation, obesity, haemorrhagic shock or iron-induced 

dysbiosis (14-17)), since bile acids can be deconjugated by bacteria. 

 

16S rRNA gene analysis of IPMN cyst fluid (A) revealed the presence a substantial 

bacterial diversity in the cysts from LGD, HGD and PDAC patients 

Recently, we used 16S rRNA gene sequencing analysis to provide evidence documenting 

bacterial involvement in cysts from patients suffering from IPMN (12). Given the metabolic 

signature potentially associated with microbial metabolism in the cyst fluid and plasma of 

patients with HGD and PDAC (Figure 4), here we correlate 16S gene diversity of cyst fluid 

from these patients in which the 16S gene was detectable in cysts from LGD and HGD IPMN, 

as well as PDAC patients (N=17) (Figure 5.A). Analysis of 16S gene sequences revealed a 

wealth of bacterial families in the cysts, with the most common belonging to the phylum class 

of Firmicutes, Proteobacteria, Actinobacteria and Alphaproteobacteria (Figure 5.B). 

Specifically, Methylobacterium, Klebsiella (both Gram negative Proteobacteria) and 

Enterococcus (Gram positive – Firmicutes) ranked amongst the top three most abundant 

genus members in the cysts tested in this study (Supplementary Figure 5 – which also 

included the top 25 most common bacteria by 16S RNA identified here). 
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Correlation of the cyst 16S gene copy numbers and metabolite levels (Figure 6.A) further 

highlighted a strong correlation (Spearman r > 0.95) for several bile acids (taurolithocholate, 

deoxycholate, chenodeoxycholate, ursodeoxycholate, cholate, taurodeoxycholate, 

glycochenodeoxycholate, taurochenodeoxycholate, taurocholate), odd-chain and oxidized 

fatty acids (C13 and carnitine conjugated-C13, 9(10)diHoME), carboxylic acids (succinate) 

and arginine/polyamine metabolites (citrulline, cadaverine, putrescine – Figure 6.B). 

Representative correlation curves are shown for several bile acids and succinate, showing that 

most of these correlations were driven by a subset of PDAC and HGD samples with 

significantly higher levels of these metabolites and total 16S gene copy number (up to two 

orders of magnitude for both) compared to the rest of the samples – Figure 6.C). Overall, 

here we identified and quantified metabolites of potential bacterial origin in cyst fluid that 

was also positive for bacterial infiltration, as determined by 16S gene detection (Figure 6.D).  

Expanding on the intriguing observations that 16S gene copy number in cyst fluid correlated 

with a subset of metabolites, we correlated metabolite levels to the pancreatic cyst 

microbiome profiles in the 16S gene sequenced samples. These analyses revealed clusters of 

metabolites and bacterial phyla to genus level (Supplementary Table 2). A hierarchical 

clustering analysis supported by Spearman correlation coefficient showing the correlations of 

top significant metabolic and specific bacteria at genus level is provided in Supplementary 

Figure 6 (a vectorial version of this heat map is provided in Supplementary Figure 7). A 

hierarchical clustering analysis highlighting the top metabolic correlates to specific bacterial 

strains is provided as Figure 7.A (expanded vectorial version in Supplementary Figure 8), 

while a few selected line plots for top correlates (though no clear trend with respect to the 

grade of dysplasia was noted) are shown in Figure 7.B (extended in Supplementary Figure 

9). Overall, these analyses sub-classified two main clusters that involved mainly 

Proteobacteri and Actinobacteria. Interestingly, the bile acids and the microbiota-derived 
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metabolites TMAO, cadaverine, putrescine, as well as choline and carnitine which are 

involved in conversion of TMAO, and the tryptophan pathway derived indole and kynurenine, 

were mostly found positively correlated with the bacteria in cluster 2. Included this cluster 

were Enterobacteriacea, Granulicatella, Klebsiella. Stenotrophomonas, Streptococcus, 

Haemophilus, Fusobacterium, previously noted in IPMN graded with HGD or cancer. These 

are highlighted in Supplementary Figure 6-7 cluster 2. Subsequent correlation analysis 

revealed that the increased level of bile acid metabolites were significantly attributed by 

mainly Enterobacteriacea, Streptococcus, Pseudomonas, while the TMAO was attributed by 

Klebsiella (p<0,05), while kynurenine in turn appears to be attributed by the Rhobdobacter 

(p<0,05) (Supplementary Table 2).  

 

Discussion 

While pancreatic IPMNs are common precancerous lesions – with incidence as high as ~49%  

(9) – limited tools are currently available in the clinics to identify patients with elevated risk 

of cyst progression to cancer. Current approaches rely on radiological assessment of cyst 

diameter, pancreatic duct dilatation, rate of progression and clinical markers such as CA19-9, 

carcinoembryonic antigen and amylase (7). Unfortunately, these tools are either very specific, 

but not sensitive (e.g., CEA in malignant and invasive IPMN has >93% specificity but only 

18% sensitivity (18)), or do not allow to determine IPMN-associated grade of dysplasia nor to 

provide a differential diagnosis for benign and low risk cysts, such as SCN. Recently, we have 

reported on the use of mass spectrometry-based metabolomics approaches as a tool to identify 

molecular markers of disease progression in patients presenting with IPMN cysts of different 

degree of dysplasia or pancreatic cancer prior to pancreas resection (11). As a result, we had 

identified both in pre-operative plasma and peri-operative cyst fluid a subset of candidate 

markers that could discriminate between IPMN and serous cystic neoplasm (SCN). In 
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particular, amino acids were identified as the top discriminating molecules between the two 

groups in plasma and free fatty acids correlated significantly with the carbohydrate antigen 

CA19-9 (11). Of note, we (19) and others (20, 21) had also independently reported a role for 

the circulating levels of certain amino acids (e.g., lysine, histidine, proline) or lipids 

(sphingolipids and ceramides) to enable early detection of pancreatic adenocarcinoma. 

However,  while our previous study managed to identify markers that separated SCN samples 

from the IPMN samples, unsupervised analyses showed a poor separation of the IPMN 

samples independently of the grade of dysplasia or pancreatic cancer stage (11). To overcome 

such limitations, in the present study we expanded on these preliminary observations by 

performing untargeted metabolomics and targeted quantitative measurements of selected 

metabolites to identify novel markers, while validating previously identified candidate 

markers in a newly enrolled independent cohort. As a result, we confirmed that several amino 

acids – including alanine, cystine, glutamine, histidine, lysine, ornithine, proline, serine, 

threonine - varied significantly across the various groups, but we also report significant 

alterations in the plasma and cyst fluid levels of several carboxylic acids (citrate, itaconate, 2-

hydroxyglutarate, fumarate, malate), sugars and glycolytic metabolites (glucose, 

glyceraldehyde 3-phosphate, lactate), purine oxidation products (hypoxanthine, xanthine, 

urate and allantoate), heme metabolites (bilirubin and biliverdin) and free or carnitine-

conjugated fatty acids. While in our previous study we had shown that free fatty acids 

correlated with cancerous state, as gleaned by the level of CA19-9, here we validated this 

observation and provide quantitative thresholds for several carnitine-conjugated fatty acids as 

discriminants between SCN and IPMN (all groups), as well as SCN or LGD cysts from more 

severe HGD and PDAC patients. Notably, while CA19-9 is a good marker of disease 

progression, studies have shown that this marker cannot discriminate between HGD and 

pancreatic cancer (18, 22). On the other hand, here we show that HGD and PDAC can be 
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discriminated based on the plasma or cyst fluid levels of several amino acids (tryptophan) and 

related catabolites (monoamine oxidase products of tyrosine metabolism: adrenaline, 

dopamine) of potential bacterial origin (indole). Interestingly, short and odd chain fatty acids 

have long been associated with microbial metabolism (23). Similarly, another top marker, 

TMAO is a molecule generated from choline, betaine, and carnitine via gut microbial 

metabolism. Recently, we reported alterations of TMAO metabolism in response to 

impairments in iron metabolism (dietary or transfusion-related), as a result of gut dysbiosis 

adversely impacting proliferation of Parabacteroides and favouring infections by Clostridia 

(14). Here we also report that several conjugated bile acids ranked amongst the top 10 

predictors of IPMN status and disease progression. Since catabolism of conjugated bile acids 

is performed by bacteria, accumulation of pro-inflammatory taurine and glycine-conjugated 

bile acids have been observed in the context of inflammation, obesity, trauma/haemorrhagic 

shock or iron-induced dysbiosis (14-17)). Also, bile acids have been recently reported to drive 

the maturation of newborn’s gut microbiota.(24) Altogether, these findings demonstrate a 

metabolic active proinflammatory pancreatic microbiota is supportive of malignant succession 

of IPMN, evidence corroborated by direct proofs of bacterial DNA in the peri-operative cyst 

fluids as determined by 16S gene sequencing, and by our unpublished finding that sequenced 

live bacteria are recovered from cyst fluid of HGD and PDAC cases (the latter in manuscript). 

Bacterial 16S rRNA gene sequence analysis here confirmed our previous reports about an 

enrichment in the cysts of certain strains (e.g., Fusobacterium nucleatum and Granulicatella 

adiacens) (12). In addition, here we report the frequent characterization of phyla such as 

Proteobacteria, Actinobacteria, followed by Firmicutes and Alphaproteobacteria. Total 16S 

bacterial 16S DNA levels in the cyst fluid correlated to disease progression (median levels 

increasing in IPMNs from LGD to HGD and PDAC). We thus identified metabolic correlates 

to 16S DNA levels, both as a total and as a function of enrichment of specific bacterial taxa in 
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the cyst. As a result, we showed that the levels of several metabolites (conjugated bile acids, 

(odd chain) free and carnitine-conjugated fatty acids, carboxylic acids, glycolytic metabolites 

and purine oxidation products) can be broken down into two separate clusters of which one 

cluster were enriched by bacteria members previously noted to be enriched in IPMN graded 

with HGD or cancer (12) including Enterobacteriacea, Granulicatella, Klebsiella. 

Stenotrophomonas, Streptococcus, Haemophilus, Fusobacterium. Our notion that these 

bacteria members appear mostly positively associated with microbiota-related metabolites 

(bile acids, TMAO, cadaverine, putrescine, as well as choline and carnitine which are 

involved in conversion of TMAO, and tryptophan derived indole and kynurenine), indicative 

that these are  metabolically active bacteria residing in the cystic precursors to invasive 

pancreatic cancer. This has important clinical implication as microbiota taxa residing within 

tumours have been found to confer tumour chemo-resistance due to microbial drug 

metabolism. Additionally, it also offers opportunities to model exposures to microbial 

products or microbial metabolites that influence cancer onset and progression.  

 

 

In conclusion, in the present study we validated in a new independent cohort with orthogonal 

quantitative methods several markers of diseases progression in plasma and cyst fluid from 

SCN and IPMN (either LGD, HGD and PDAC). We thus quantified thresholds for these 

markers through the auxilium of stable isotope-labelled internal standards. Finally, we 

identified novel markers of IPMN status and disease progression including conjugated bile 

acids, free and carnitine-conjugated fatty acids and TMAO. We show that the levels of these 

metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in 

the cyst, as determined by 16S gene analysis. Overall, our findings are interesting per se, 

owing to the validation of previous markers and identification of novel small molecule 
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signatures of IPMN and disease progression. In addition, our findings further fuel the 

provoking debate as to whether bacterial infections may represent an etiological contributor to 

the development and severity of the disease in pancreatic cancer, in like fashion to other 

cancers (e.g., Helicobacter pylori and gastric cancer (25)). Future studies will determine 

whether live bacteria (including Klebsiella, Granulicatella, Enterococcus) can be recovered 

from surgically removed IPMN cysts, and whether these bacteria can be characterised ex vivo 

for genotoxin potential in pancreatic cell models. 
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Methods 

Patient population, enrollment criteria and biofluid collection  

Patients undergoing pancreatic surgery for suspected pancreatic cystic neoplasm 

(PCN) with post-surgically validated intraductal papillary mucinous neoplasm (IPMN) and 

serous cystic neoplasm (SCN) from 2016 to 2019 at Karolinska University Hospital, Sweden, 

were included. Excluded were cases without a cystic component, non-IPMNs/SCNs, or those 

without cyst fluid in the resected pancreas. This study follows the Helsinki convention and 

good clinical practice with permission of the Ethical Review Board Stockholm and the 

Karolinska Biobank Board (Dnr 2015/1580-31/1). Written informed consent was obtained 

from all patients. 

Pancreatic cyst fluid collection 

Fresh resection specimens were received within 20�minutes of surgical removal and 

sampled by certified pathologists, in sterile conditions and on ice. Macroscopic assessment to 

identify the cystic lesion and main pancreatic duct was done by a specialist pancreatic 

pathologist. Fluid from the main pancreatic duct was collected using a syringe without needle. 

When the cystic lesion was readily identified in the intact specimen, the fluid was aspirated 

using a syringe with needle. For specimens in which the cystic lesion was not readily 

accessible from the surface the specimen was cut or when the cyst content was too viscous 

content was aspirated using a syringe without needle. Aspirated fluid was stored at −80�°C 

until further analysis. 

Peripheral blood collection and plasma isolation 

Venous whole blood was collected in K2 EDTA Vacutainer® tubes (BD, Stockholm, 

Sweden) immediately prior to surgery. Within four hours of collection, blood was processed 

using Ficoll Paque Plus (GE Life Sciences, Uppsala, Sweden) gradient-density centrifugation 
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following manufacturer’s instructions and the plasma fraction was stored at −80�°C until 

further analyses. 

Histopathological diagnosis and cyst fluid classification 

Resection specimens were fixed in 4% formaldehyde and processed for routine 

histopathological diagnosis. The cystic lesions were classified by light microscopic 

examination of hematoxylin-eosin stained slides by a specialized pancreatic pathologist as 

IPMN or SCN. The grade of dysplasia in IPMN was assessed using a 2-grade (high/low) scale 

(henceforth HGD and LGD, respectively), according to current international standard (26). To 

make the cyst fluid classification more representative of the neoplastic epithelium that 

produces it, specimens showing <5% high-grade dysplasia (HGD) were classified as low-

grade dysplasia (LGD). Specimens with concomitant invasive pancreatic ductal 

adenocarcinoma were classified as “PDAC” and considered as a separate class for further 

analyses. In total, 45 plasma samples (5 SCN, 20 LGD, 10 HGD, 10 PDAC) and 55 cyst fluid 

samples (5 SCN, 28 LGD, 8 HGD, 14 PDAC) were analyzed in this study. 

Sample processing and metabolite extraction:  A volume of 10μl of plasma and 30 μl 

of cyst fluid was extracted either in methanol:acetonitrile:water (5:3:2, v/v/v – hydrophilic 

metabolites) or pure methanol (lipid extraction). After vortexing at 4°C for 30 min, extracts 

were separated from the protein pellet by centrifugation for 10 min at 10,000g at 4°C and 

stored at −80°C until analysis. For polar metabolites, half of the extracts were dried down via 

SpeedVac prior to resuspension in ddH2O + 0.1% formic acid, to facilitate ionization and 

chromatographic resolution of certain polar metabolites (e.g., betaine, kyurenine, etc.).(27, 

28) For lipidomics analyses,(28) supernatants were diluted 1:1 (v/v) with 10 mM ammonium 

acetate for analysis by ultra-high pressure liquid chromatography coupled to mass 

spectrometry (UHPLC-MS). A total of 41 stable isotope-labeled internal standards for 
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absolute quantitation were spiked in the lysis buffer, as extensively described in 

Supplementary Materials and Methods. 

Metabolomics: UHPLC-MS metabolomics analyses were performed as described,(27, 

29) using a Vanquish UHPLC system coupled online to a high-resolution Q Exactive mass 

spectrometer (Thermo Fisher, Bremen, Germany). Samples were resolved over a Kinetex C18 

column (2.1x150 mm, 1.7 µm; Phenomenex, Torrance, CA, USA) at 45°C. A volume of 10 μl 

of sample extracts was injected into the UHPLC-MS. Each sample was injected and run four 

times with two different chromatographic and MS conditions, as previously described (27) 

and detailed as follows: 1) using a 5 minute gradient at 450 µL/minute from 5-95% B (A: 

water/0.1% formic acid; B:acetonitrile/0.1% formic acid) and the MS was operated in positive 

mode and 2) using a 5 minute gradient at 450 µL/minute from 5-95% B (A: 5% acetonitrile, 

95%water/1 mM ammonium acetate; B:95%acetonitrile/5% water, 1 mM ammonium acetate) 

and the MS was operated in negative ion mode. The UHPLC system was coupled online with 

a Q Exactive (Thermo, San Jose, CA, USA) scanning in Full MS mode at 70,000 resolution in 

the 60-900 m/z range, 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas, operated in 

negative or positive ion mode (separate runs). These chromatographic and MS conditions 

were applied for both relative and targeted quantitative metabolomics measurements, with the 

differences that for the latter targeted quantitative post hoc analyses were performed on the 

basis of the stable isotope-labeled internal standards used as a reference quantitative 

measurement, as detailed below. 

Lipidomics: Samples were resolved as described (28) over an ACQUITY HSS T3 

column (2.1 x 150 mm, 1.8 µm particle size (Waters, MA, USA) using an aqueous phase (A) 

of 25% acetonitrile and 5 mM ammonium acetate and a mobile phase (B) of 50% isopropanol, 

45% acetonitrile and 5 mM ammonium acetate. Samples were eluted from the column using 

either the solvent gradient: 0-1 min 25% B and 0.3 mL/min; 1-2 min 25-50% B and 0.3 
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mL/min, 2-8 min 50-90% B and 0.3 mL/min, 8-10 min 90-99% B and 0.3 mL/min, 10-14 min 

hold at 99% B and 0.3 mL/min, 14-14.1 min 99-25% B 1and 0.3 mL/min, 14.1-16.9 min hold 

at 25% B and 0.4 mL/min, 16.9-17 min hold at 25% B and resume flow of 0.3 mL/min. 

isocratic elution of 5% B flowed at 250 µl/min and 25ºC or a gradient from 0- 5% B over 0.5 

min; 5-95% B over 0.6 min, hold at 95% B for 1.65 min; 95-5% B over 0.25 min; hold at 5% 

B for 2 min, flowed at 450 µl/min and 35ºC7. The Q Exactive mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA, USA) was operated independently in positive or negative ion 

mode, scanning in Full MS mode (2 μscans) from 150 to 1500 m/z at 70,000 resolution, with 

4 kV spray voltage, 45 sheath gas, 15 auxiliary gas.  

MS2 analyses for untargeted metabolomics For discovery mode untargeted 

metabolomics, dd-MS2 was performed at 17,500 resolution, AGC target = 1e5, maximum IT 

= 50 ms, and stepped NCE of 25, 35 for positive mode, and 20, 24, and 28 for negative mode, 

as described in previous publications (30). 

Quality control and data processing:  Calibration was performed prior to analysis 

using the PierceTM Positive and Negative Ion Calibration Solutions (Thermo Fisher 

Scientific). Acquired data was then converted from .raw to .mzXML file format using Mass 

Matrix (Cleveland, OH, USA). Samples were analyzed in randomized order with a technical 

mixture (generated by mixing 5 μl of all samples tested in this study) injected every 10 runs to 

qualify instrument performance. This technical mixture was also injected three times per 

polarity mode and analyzed with the parameters above, except CID fragmentation was 

included for unknown compound identification (10 ppm error for both positive and negative 

ion mode searches for intact mass, 50 ppm error tolerance for fragments in MS2 analyses – 

further details about the database searched below). 

Metabolite assignment and relative quantitation: Metabolite assignments, 

isotopologue distributions, and correction for expected natural abundances of deuterium, 13C, 
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and 15N isotopes were performed using MAVEN (Princeton, NJ, USA), (31) against an in 

house library of deuterated lipid standards (SPLASH® LIPIDOMIX® Mass Spec Standard, 

Avanti Lipids) and in house libraries of 3,000 unlabeled (MSMLS, IROATech, Bolton, MA, 

USA; IroaTech ; product A2574 by ApexBio; standard compounds for central carbon and 

nitrogen pathways from SIGMA Aldrich, St Louis, MO, USA) and 41 stable-isotope labeled 

internal standards (detailed below). Discovery mode analysis was performed with standard 

workflows using Compound Discoverer 2.1 SP1 (Thermo Fisher Scientific, San Jose, CA). 

From these analyses, metabolite IDs or unique chemical formulae were determined from high-

resolution accurate intact mass, isotopic patterns, identification of eventual adducts (e.g., Na+ 

or K+, etc.) and MS2 fragmentation spectra against the KEGG pathway, HMDB, ChEBI, and 

ChEMBL databases. Additional untargeted lipidomics analyses were performed with the 

software LipidSearch (Thermo Fisher, Bremen, Germany).  

16S RNA gene quantification and sequencing: Cyst fluid microbial copy number 

was measured by the 16S DNA qPCR assay, the microbiome composition and diversity by 

PacBio Single Molecule, full-length 16S rRNA gene sequencing (GATC Biotech, Konstanz, 

Germany), as previously described.(12) 

Statistical Analysis: Graphs and statistical analyses (either t-test or One-way 

ANOVA), as well as correlation analyses (Spearman) and calculation of Receiver Operating 

Characteristic (ROC) curves were prepared with GraphPad Prism 8.0 (GraphPad Software, 

Inc, La Jolla, CA), and MetaboAnalyst 4.0.(32) The same software was used to perform 

multivariate analysis, including principal component analysis, partial least square discriminant 

analysis and hierarchical clustering analyses. For the integrated microbiome and metabolome 

correlation analysis, the genus-level OTU table and the relative metabolite measurements of 

pancreatic cyst fluid samples were processed to include bacteria and metabolites that appear 

in a minimum of 3 or more patients. Zero counts were imputed with a pseudo-count of 0.001, 
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normalized and clr transformed. The Spearman correlation was performed on the transformed 

data. For each pair, a p-value was calculated using a permutation test with 10,000 

permutations. For data processing and statistical analysis, Python (Version 3.6.10) was used 

with the following packages: Pandas (Version 1.0.2) and NumPy (Version 1.18.1) for data 

processing, SciPy (Version 1.4.1) for the calculation of Spearman’s correlation and Matplotlib 

(Version 3.1.3) REF4 and Seaborn (Version 0.11.0) to visualize the data (33, 34). 

Targeted quantitative metabolomics: Targeted quantitative metabolomics analyses 

were performed on all plasma and cyst fluid samples against stable isotope-labeled internal 

standards (list, vendors and concentrations provided in Supplementary Materials). For this 

quantitative analysis, upon acquisition raw data were converted to .mzxml and peak areas for 

light and heavy (stable isotope-labeled) isotopologues were exported for each metabolite, as 

extensively described in prior methodological work (27, 28, 35). In details, absolute 

concentrations were determined using the following formula: [light] = (abundance light) / 

(abundance heavy) * [heavy] [dilution factor] where [light] = concentration of non-

isotopically labeled (endogenous) metabolite, (abundance light) = total area abundance of 

endogenous metabolite, (abundance heavy) = total area abundance of isotopically-labeled 

standard, and [heavy] = known concentration isotopically-labeled internal standard. 
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Figure legends 

 

Figure 1 – Untargeted metabolomics analyses of plasma (A) revealed distinct signatures 

in IPMN and PDAC patients, as shown in the volcano plots from the untargeted 

metabolomics analyses (B). Top pathways included amino acid metabolism (C), carboxylic 

acids (D) and glycolysis-related metabolites (glucose and lactate, substrate and product of the 

pathway, respectively - E). 
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Figure 2 Untargeted metabolomics analyses of cyst fluid (A) revealed distinct signatures 

in IPMN and PDAC patients, as shown in the volcano plots from the untargeted 

metabolomics analyses (B). Top pathways included purine oxidation (C), heme metabolism 

(D) and acyl-carnitines (E). glycolytic metabolites (F), 
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Figure 3 – Metabolomics analyses of plasma and cyst fluid from IPMN and PDAC 

patients. An overview of the experimental design is provided in A. in B and C, results from 

partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (top 

25 metabolites by ANOVA p-values) in plasma and cyst fluid, respectively. 
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Figure 4 – Absolute quantitation of the most significant metabolites from the 

exploratory metabolomics analyses were leveraged to determine specificity and 

sensitivity of top biomarkers in cyst-fluid and plasma. Analysis of cyst fluid (A) identified 

amino acids, carboxylic acids and – above all – acyl-carnitines (ROC curves in B, bar plots in 

C) as the top discriminants between non-cancerous IPMN (SCN and LGD) and cysts showing 

HGD or derived from PDAC patients. Similar analyses in plasma (D) highlighted the bacterial 

metabolite trimethylamine-oxide (TMAO) as the top biomarker, an observation validated with 

orthogonal quantitative methods (uM concentration provide in the ROC curve and dot plot in 

D). Similarly, several conjugated bile acids – that are deconjugated by bacteria in humans – 

were identified amongst the top plasma markers of cancerous IPMN (E). 
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Figure 5 – 16S RNA gene analysis of IPMN cyst fluid revealed the presence a large 

bacterial diversity in the cysts from LGD, HGD and PDAC patients (B), with median 

16S rRNA gene copy levels indicated from LGD to HGD and PDAC. Each dot 

represents one patient (A).  
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Figure 6 – Correlation of 16S RNA data to cyst fluid and plasma metabolites in this 

study (A). Several carboxylic acids, polyamines and conjugated bile acids were identified 

among the top positive correlates to the total 16S RNA levels (B-C), suggestive of the model 

proposed in D. 
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Figure 7 – Hierarchical clustering of metabolic correlates to 16S RNA levels divided by 

bacterial strain (A) identified clusters of metabolites and bacteria. A few selected line plots 

of significant correlates are highlighted in B as a function of IPMN status (grade of dysplasia, 

either low or high – LGD and HGD, respectively) or pancreatic ductal adenocarcinoma 

(PDAC). 
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Table 1. Patient group characteristics. 

 Cyst fluid (n = 57) Plasma (n = 45) 

  IPMN   IPMN 

SCN LGD HGD Cancer SCN LGD HGD Cancer 

Patients, % (n) 8.8 (5) 50.9 (29) 14.0 (8) 26.3 (15) 11.1 (5) 44.4 (20) 22.2 (10) 22.2 (10) 

Female, % 100 59 62 53 100 50 70 40 

Alcohol use, % - - - - - - - - 

Smokers, % 0 19 13 29 0 15 0 20 

CVD, % 40 62 75 53 40 60 70 60 

Statins use, % 0 21 25 13 20 21 40 20 

Diabetes, % 0 21 50 27 0 20 60 20 

Age, years 

median (range) 

47 

(30-68) 

70*** 

(47-82) 

76*** 

(67-84) 

71*** 

(55-82) 

47 

(30-68) 

68*** 

(55-79) 

74*** 

(66-84) 

76*** 

(65-83) 

BMI, kg/m2 

median (range) 

33.69  

(21.6-37.1) 

26.39**  

(20.8-40.4) 

28.56 

(23.5-32.0) 

24.21***  

(18.8-30.2) 

28.01 

(21.6-37.1) 

26.87 

(21.6-36.7) 

28.04 

(23.4-30.5) 

24.08 

(18.8-29.5) 

HbA1c, 

mmol/mol 

median (range) 

40 

(33-49) 

40 

(32-58) 

52 

(28-68) 

41 

(15.1-60) 

41 

(36-49) 

41 

(32-62) 

42 

(28-68) 

40 

(31-67) 

S-CA 19-9, kE/L 

median (range) 

9.9 

(<3-34) 

9.4 

(<1-60) 

24 

(9-71) 

39 

(<1-4840) 

7.9 

(<3-11) 

11 

(<1-182) 

24 

(<1–189) 

255*** 

(<1-694) 

Serum amylase, 

µkat/L 

median (range) 

0.46 

(0.3-0.75) 

0.43 

(<0.13-1.45) 

0.53 

(<0.13-4.18) 

0.6 

(<0.13-11.6) 

0.46 

(0.19–0.75) 

0.44 

(<0.13-1.45) 

0.27 

(<0.13–4.18) 

0.6 

(<0.13–2.07) 

Albumin, g/L 

median (range) 

37 

(33-40) 

37 

(31-42) 

36 

(16–39) 

34 

(22-38) 

37 

(33-40) 

36 

(31-42) 

36 

(16-39) 

34 

(22-38) 

Bilirubin, µmol/L 

median (range) 

5 

(5-9) 

6 

(<3-34) 

8 

(<3-12) 

8 

(4-127) 

5 

(3-9) 

6.8 

(3-34) 

5 

(3-25) 

19*** 

(4–119) 

WBC, x 109/L 

median (range) 

7.6 

(4.1-10.9) 

7.0 

(0.3-11.3) 

7.6 

(5.5-9.4) 

7.9 

(4.2-10.8) 

7.1 

(4.1-10.9) 

7.1 

(0.3-11.3) 

8.4 

(6.4-12.9) 

10.2 

(4.2-13.9) 

Statistical comparisons between each group and the control group (SCN) were made using 

Stata 15 software and quantile regression for all quantitative measures; * p≤0.05, ** p≤0.01, 

*** p≤0.001. 
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Supplementary Figure legends 

Supplementary Figure 1 - Hierarchical clustering analysis of semi-targeted data 

highlighted changes in plasma levels of amino acids, carboxylic acids and purines. 

 

Supplementary Figure 2 – ROC curves of top metabolic discriminant between cancerous 

and non-cancerous state from targeted absolute quant data 

 

Supplementary Figure 3 - Hierarchical clustering analysis of semi-targeted data 

highlighted changes in cyst fluid metabolites between SCN and PDAC samples. A 

few representative ROC curves for top discriminant metabolites are shown in the bottom 

half of the figure. 

 

Supplementary Figure 4 – ROC curves of top metabolic discriminants between high 

grade dysplasia (HGD) and PDAC samples. 

 

Supplementary Figure 5 – Top 25 most common bacterial infiltrations in pancreatic 

cysts in the present study as determined by 16S RNA. 

 

Supplementary Figure 6 – Metabolic correlates to bacterial strains as determined by 16S 

RNA levels (A) reveal two sub-clusters (B and C) of metabolites with strong 

correlation to infiltration of the cyst by specific bacterial strains. 

 

Supplementary Figure 7 – Vectorial version of the map in Supplementary Figure 6 

Supplementary Figure 8 – Detailed view of significant (bold font) metabolic correlates to 

specific bacterial strains (vectorial version of the map in figure 7.A). 

Supplementary Figure 9 - Highlighted line plots of top correlates metabolites vs 

bacteria. 

 

Supplementary Table 1 – Raw metabolomics data from the analyses described in this 

study 

Supplementary Table 2 – Metabolic correlates to bacterial strains as determined by 16S 

RNAs. 
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