Supplementary material

SARS-CoV-2 outbreak in a tri-national urban area is dominated by a B.1 lineage variant linked to mass gathering events

Madlen Stange^{1,2,3*}, Alfredo Mari^{1,2,3*}, Tim Roloff^{1,2,3*}, Helena MB Seth-Smith^{1,2,3*}, Michael Schweitzer^{1,2}, Myrta Brunner⁴, Karoline Leuzinger^{5,6}, Kirstine K. Søgaard^{1,2}, Alexander Gensch¹, Sarah Tschudin-Sutter⁷, Simon Fuchs⁸, Julia Bielicki⁹, Hans Pargger¹⁰, Martin Siegemund¹⁰, Christian H Nickel¹¹, Roland Bingisser¹¹, Michael Osthoff¹², Stefano Bassetti¹², Rita Schneider-Sliwa⁴, Manuel Battegay⁷, Hans H Hirsch^{5,6,7}, Adrian Egli^{1,2,+}

¹ Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel,

Switzerland

² Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland

³ Swiss Institute for Bioinformatics, Basel, Switzerland

⁴ Human Geography, University of Basel, Basel, Switzerland

⁵ Clinical Virology, University Hospital Basel, Basel, Switzerland

⁶ Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland

⁷ Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland

⁸ Health Services for the City of Basel, Basel, Switzerland

⁹ Pediatric Infectious Diseases, Children's University Hospital Basel, Basel, Switzerland

¹⁰ Intensive Care Unit, University Hospital Basel, Basel, Switzerland

¹¹ Emergency Medicine, University Hospital Basel, Basel, Switzerland

¹² Internal Medicine, University Hospital Basel, Basel, Switzerland

*these four authors contributed equally to this work

+ correspondence
Adrian Egli, MD PhD
University Hospital Basel
Petersgraben 4
4031 Basel, Switzerland
Email: adrian.egli@usb.ch
Phone: +41 61 556 5749

Table of Contents

Supplementary Results	3
Basel samples in phylogenetic global context continued	3
Cluster B.1.5	3
Cluster B.1.8	3
Family clusters within lineage B.2	3
Supplementary Tables	5
Supplementary Figures	8

Supplementary Results

Basel samples in phylogenetic global context continued

Cluster B.1.5

Isolates that are assigned to lineage B.1.5 make up 2.6% of USB isolates (**Figure S6B**). They all share the A20268G mutation. Three unresolved branches defined by at least one additional mutation each, diverge from the internal node consisting of, from top to bottom, six (C25658T), six (C28854T), and one (G25483A, C4893T, C23380A, C26509T [mutations in order of temporal appearance]) Basel area isolates. Individual isolates can exhibit one to three additional mutations. Isolates date from March 13th to March 23rd with an inferred node age of February 19th (CI: January 13th-Ferbuary 20th, 2020). No social connections for transmission patterns within each branch could be inferred from the available patient data. Searching the clade defining mutations in the nextstrain.org phylogeny we gain the following insights. Mutation C25658T (plus the clade defining A20268G) is found in one isolate (Oman/RESP-20-6701/2020 from March 28th); C28854T is found 17 isolates, two of which show no additional mutations (Norway/2088/2020 from March 17th, Latvia/045/2020 from March 22nd) just like two of our isolates (42193056, 42189239). Derived isolates originate from Switzerland, Scotland, Romania, USA, Taiwan, and England. Mutation G25483A recorded in a single isolate (42202280) is not currently reported in the nextstrain.org phylogeny.

Cluster B.1.8

Isolates that are assigned to lineage B.1.8 make up 0.7% of USB isolates (**Figure S6C**). They all share the A24862G mutation. Isolates date from March 14th to March 22nd with an inferred internal node age of February 1st (CI: January 12th-March 8th, 2020). Two isolates (42191012, 42202147) exhibit the identical mutational pattern (additional T658C, C28829T) but have no known epidemiological link. Our own global comparison identified an isolate from Germany (Germany/NRW-34/2020 from March 16th) that exhibits the same mutations. Searching the clade defining mutation in the nextstrain.org phylogeny does not yield better insights into the evolution of the lineages as no isolates with the same pattern could be identified.

Family clusters within lineage B.2

We identified eight genomes that were assigned to lineage B.2 (**Figure S6D**). They all share the G26144T mutation that translates into amino acid change ORF3a-G251V and date from March 13^{th} to March 22^{nd} with an inferred internal node age of January 15^{th} (CI: January 13^{th} -January 18^{th} , 2020). This cluster harbours two household transmission clusters: *Family 2* with two members and *Family 3* with three members. These two clusters share C14805T (synonymous in *ORF1ab*) and exhibit unique

additional mutations C9319T (synonymous in *ORF1ab*) and G12278T (ORF1ab-A4005S), G26730T (M-V70F), G29414T (N-A381S), respectively. We find no evidence of further community transmission. These mutational combinations are not currently represented in the full global phylogeny (nextstrain.org), suggesting that quarantine measures were effective in these cases and inhibited further transmission events.

Supplementary Tables

Table S1. Counts and description of the in silico mutated genome community used for

COVGAP validation. Each observation consists of the genome position multiplied by the number of samples in which it appears. Attached as additional file.

Table S2. Nucleotide position in relation to the Wuhan-Hu1 reference sequence that were masked for phylogenetic inferences, due to homoplasies. Inferred by contributors to https://github.com/W-L/ProblematicSites_SARS-CoV2.

Start position	End position
635	635
2091	2091
2094	2094
3145	3145
3564	3564
4050	4050
5736	5736
6869	6869
8022	8022
8790	8790
10129	10129
11074	11074
11083	11083
11535	11535
13402	13402
13408	13408
13476	13476
13571	13571
14277	14277
15922	15922
16887	16887
19484	19484
21575	21575
22335	22335
24389	24389
24390	24390
24933	24933
26549	26549
29037	29037
29553	29553

Country	number genomes with C15324T	Total genomes sequenced until March 23 rd	% genomes with mutation	% of population sequenced	Population
Argentina	1	4	25.00	0.00001	45,195,774
Australia	14	1092	1.28	0.00428	25,499,884
Austria	3	244	1.23	0.00271	9,006,398
Belgium	40	268	14.93	0.00231	11,589,623
Benin	1	6	16.67	0.00005	12,123,200
Bosnia and	2	12	16.67	0.00037	3,280,819
Herzegovina					
Brazil	1	226	0.44	0.00011	212,559,417
Canada	7	405	1.73	0.00107	37,742,154
Chile	2	120	1.67	0.00063	19,116,201
Costa Rica	1	40	2.50	0.00079	5,094,118
Democratic Republic	11	35	31.43	0.00004	89,561,403
of the Congo					
England	4	5643 (UK)	0.01	0.00831	67,886,011
France	69	369	18.70	0.00057	65,273,511
Germany	2	147	1.36	0.00018	83,783,942
Hungary	2	18	11.11	0.00019	9,660,351
Iceland	5	522	0.96	0.15297	341,243
India	1	119	0.84	0.00001	1,380,004,38
Israel	1	72	1.39	0.00083	8,655,535
Japan	3	343	0.87	0.00027	126,476,461
Luxembourg	24	116	20.69	0.01853	625,978
Morocco	3	13	23.08	0.00004	36,910,560
Netherlands	2	617	0.32	0.00360	17,134,872
Oman	1	21	4.76	0.00041	5,106,626
Portugal	8	570	1.40	0.00559	10,196,709
Russia	1	59	1.69	0.00004	145,934,462
Scotland	4	5643 (UK)	0.01	0.00831	67,886,011
Senegal	3	24	12.50	0.00014	16,743,927
South Korea	1	196	0.51	0.00038	51,269,185
Switzerland	57 (386)*	213 (675)*	26.8 (57.2)*	0.00780	8,654,622
Taiwan	3	95	3.16	0.00040	23,816,775
USA	1	4150	0.02	0.00125	331,002,651
Vietnam	1	59	1 69	0.00006	97 338 579

Table S3. List of countries that recorded genomes with mutation C15324T and number of total genomes sequenced until March 23rd 2020.

* Number in brackets summarize counts of genomes from GISAID plus genomes from this study

Table S4. GISAID identifiers and dates of sampling for all sequences that belong to emerging clade20A/15324T with a collection date until March 23^{rd} , 2020 (N = 279). Supplied as additional file.

Country	Coefficient of	Shannon	Shannon	Simpson Concentration	Simpson
	co-variation	Entropy H'	Diversity	Index D'	Diversity
Austria	1.577	1.680	5.365	0.2679	3.7322
France	1.762	0.421	1.524	0.8144	1.2278
Germany	1.358	1.637	5.137	0.2583	3.8715
Italy	0.751	1.067	2.908	0.3971	2.5181
Switzerland	2.768	0.869	2.385	0.6156	1.6243

Table S5. Diversity indices for SARS-CoV-2 lineages in Switzerland and neighbouring countries.

Supplementary Figures

Figure S1. Age distribution by sex for the time period between February 24th and March 23rd for all tests, positive tests, and for patient isolates from which whole genomes were generated. Solid lines for females, dashed lines for males.

Figure S2. The COVGAP pipeline. The steps shown ensure the calculation of high quality consensus sequences. Particularly, information on read coverage is retained and used both in the variant calling procedure and in the draft of the consensus independently from the called variants. Finally, the quality of the genome from each sample is scored by %Ns, which determines whether the produced sequence is retained or discarded.

Figure S3. COVGAP evaluation of sequencing quality parameters.

Of the original 746 samples, 689 successfully sequenced. Number of mapped reads across all SARS-CoV-2 positive samples successfully sequenced from 26th of February till 23th of March: (n=689), of which 533 passed the quality filter, and 156 failed. 468 of the samples passing the quality filters were matching the cohort eligibility criteria and therefore were further described in the present study. **A.** Number of mapped reads against Ct values from diagnostic tests; **B.** Number of mapped reads against percentage of Ns in the consensus.

Figure S4. COVGAP identifies all SNPs in the mock genomes. A. Levenshtein distance between the mutations in the input mock genomes (y axis) and in the genomes recovered by COVGAP (x axis); the marginal plots show the frequency of presence / detection across samples. Only two deletions (5845, 16281) and one insertion (16145) were not detected. **B**. Phylogeny of input and COVGAP-derived consensus output genomes, showing that all SNPs were identified.

Sample number: 42219995

Figure S5. Representative diagnostic output from COVGAP. This output generated per sample, indicates (from top to bottom): **A**. the coverage –not represented if over 1000x; **B**. which variants were detected in which position of the genome, and their corresponding annotation; **C**. low coverage regions (under 50x); **D**. genome annotation; and **E**. genome size markers as reference. Of note, a

report generated in parallel provides further information on the variants, including which amino acids are affected by the variant.

Figure S6. Divergence tree and zoom into additional sequence clusters, which did not result in large community spread. A. Isolates from Basel area cohort in global context. **B**. A small clade assigned to B.1.5 consists of two clusters with an accumulation of samples from Basel. **C**. Cluster within lineage B.1.8 with two Basel samples without known epidemiological link. **D**. Two family cluster within lineage B.2 that did not spread further into the Basel community.