- Genetic association analysis of SARS-CoV-2 infection in 455,838 UK Biobank participants 2 J. A. Kosmicki[†], J. E. Horowitz[†], N. Banerjee, R. Lanche, A. Marcketta, E. Maxwell, Xiaodong 3 Bai, D. Sun, J. Backman, D. Sharma, C. O'Dushlaine, A. Yadav, A. J. Mansfield, A. Li, J. 4 Mbatchou, K. Watanabe, L. Gurski, S. McCarthy, A. Locke, S. Khalid, O. Chazara, Y. Huang, E. 5 Kvikstad, A. Nadkar, A. O'Neill, P. Nioi, M. M. Parker, S. Petrovski, H. Runz, J. D. Szustakowski, 6 Q. Wang, Regeneron Genetics Center*, UKB Exome Sequencing Consortium*, M. Jones, S. 7 Balasubramanian, W. Salerno, A. Shuldiner, J. Marchini, J. Overton, L. Habegger, M. N. Cantor, 8 J. Reid, A. Baras[‡], G. R. Abecasis[‡], M. A. Ferreira[‡] 9 10 From: 11 Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA (JK, JEH, 12 NB, RL, AM, EM, XB, DS, JB, DSh, CO'D, AY, AJM, AL, JM, KW, LG, SM, AL, SK, MJ, SB, 13 WS, AS, JM, JO, LH, MNC, JR, AB, GRA, MAF) 14 Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 15 Cambridge, UK (OC, AO'N, SP, QW) 16 Biogen, 300 Binney St, Cambridge, MA 02142, USA (YH, HR) 17 Alnylam Pharmaceuticals, 675 West Kendall St, Cambridge, MA 02142, USA (MMP, PN). 18 Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08543 (EK, AN, JDS)
- 19 *A complete list of investigators is provided in the Supplementary Appendix.
- 20 [†]J. A. Kosmicki and J. E. Horowitz contributed equally to this manuscript.

- 21 [‡]A. Baras, G. R. Abecasis and M. A. Ferreira jointly supervised this work.
- 22 Correspondence to: manuel.ferreira@regeneron.com and goncalo.abecasis@regeneron.com
- 23 This research has been conducted using the UK Biobank Resource (Project 26041)

24 ABSTRACT

Background. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes
Coronavirus disease-19 (COVID-19), a respiratory illness with influenza-like symptoms that can
result in hospitalization or death. We investigated human genetic determinants of COVID-19 risk
and severity in 455,838 UK Biobank participants, including 2,003 with COVID-19.

29 Methods. We defined eight COVID-19 phenotypes (including risks of infection, hospitalization 30 and severe disease) and tested these for association with imputed and exome sequencing variants. 31 Results. We replicated prior COVID-19 genetic associations with common variants in the 3p21.31 32 (in LZTFL1) and 9q34.2 (in ABO) loci. The 3p21.31 locus (rs11385942) was associated with disease severity amongst COVID-19 cases (OR=2.2, P=3x10⁻⁵), but not risk of SARS-CoV-2 33 34 infection without hospitalization (OR=0.89, P=0.25). We identified two loci associated with risk 35 of infection at $P < 5 \times 10^{-8}$, including a missense variant that tags the $\varepsilon 4$ haplotype in APOE 36 (rs429358; OR=1.29, P=9x10⁻⁹). The association with rs429358 was attenuated after adjusting for 37 cardiovascular disease and Alzheimer's disease status (OR=1.15, P=0.005). Analyses of rare 38 coding variants identified no significant associations overall, either exome-wide or with (i) 14 39 genes related to interferon signaling and reported to contain rare deleterious variants in severe 40 COVID-19 patients; (ii) 36 genes located in the 3p21.31 and 9q34.2 GWAS risk loci; and (iii) 31 41 additional genes of immunologic relevance and/or therapeutic potential.

42 **Conclusions.** Our analyses corroborate the association with the 3p21.31 locus and highlight that 43 there are no rare protein-coding variant associations with effect sizes detectable at current sample 44 sizes. Our full analysis results are publicly available, providing a substrate for meta-analysis with 45 results from other sequenced COVID-19 cases as they become available. Association results are 46 available at <u>https://rgc-covid19.regeneron.com</u>.

48 INTRODUCTION

49 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in Wuhan, 50 China in late 2019 [1] and causes coronavirus disease 2019 (COVID-19) [2]. COVID-19 51 symptoms range from flu-like symptoms such as fever, cough and headaches to respiratory failure, 52 acute immune responses and death [3]. It is estimated that most infected individuals display few, 53 if any, symptoms [4, 5]. As of October 2020, SARS-CoV-2 has been reported in >41 million individuals and to be associated with >1.1 million deaths worldwide. Known risk factors include 54 55 male sex, older age, ancestry, obesity, cardiovascular and kidney disease, chronic obstructive 56 pulmonary disease (COPD) and dementia [6-9], among others.

57 Studying host genetic variation among individuals infected with SARS-CoV-2 holds the 58 potential to identify mechanisms that influence disease severity and outcomes. Akin to IFNGR1, 59 STAT1, TLR7 and other genetic immune deficiencies that predispose to early-onset severe 60 infections [10-15], this information may help identify individuals at high risk of SARS-CoV-2 61 infection who should be prioritized for disease prevention strategies, including vaccination or 62 monoclonal antibody treatments [16, 17]. Further, understanding host mechanisms that provide 63 protection from SARS-CoV-2 infection or that modulate disease severity might guide the 64 development of treatment efforts, in the same way that CCR5 variation and HIV infection [18], or 65 FUT2 variation and infection by certain strains of norovirus [19], helped identify therapeutic 66 strategies and targets for these diseases.

67 Since the start of the SARS-CoV-2 pandemic, host genetic analysis of common genetic 68 variation among SARS-CoV-2 patients identified two genome-wide significant loci, one at 69 3p21.31 spanning at least six genes (including *SLC6A20* and *LZTFL1*) and a second at 9q34.2 in 70 the *ABO* locus [20, 21]. The first locus has been consistently replicated in additional studies [21, 71 22], while the association at the *ABO* locus remains contentious. In addition to these genome-wide 72 association studies (GWAS), two studies suggest that rare deleterious variants in genes related to 73 interferon signaling may be implicated in more extreme clinical outcomes [14, 23]. However, to 74 date, there has been no assessment of the contribution of rare genetic variation to COVID-19 75 disease susceptibility or severity through large population-based exome-wide association analyses.

76 To identify rare coding variants associated with COVID-19 susceptibility and severity, we 77 evaluated clinical data derived from quantitative polymerase chain reaction (qPCR) tests for 78 SARS-CoV-2, together with anonymized electronic health records and death registry data for both 79 COVID-19 patients and other individuals in the UK Biobank study. We first analyzed imputed 80 data for 455,838 individuals (2,003 with COVID-19), including a deep dive into the unequivocal 81 3p21.31 locus as a positive control, to calibrate our susceptibility and severity phenotypes with 82 those used in other COVID-19 GWAS. We then analyzed exome sequencing data for a subset of 83 424,183 individuals (1,865 with COVID-19) to investigate disease associations with individual 84 rare variants and rare variant-aggregated gene-burden tests. In addition to an agnostic exome-wide 85 search for genetic risk factors, we also focused on 81 specific genes of interest (i) with a known 86 role in interferon signaling and recently observed to contain rare deleterious variants in patients 87 with severe COVID-19 [14, 23]; (ii) near two common risk variants for COVID-19 identified by 88 GWAS [20]; or (iii) of immunologic relevance and/or therapeutic potential.

This study represents the largest exome-sequencing study of COVID-19 performed to date. Expanded analyses, particularly among individuals disproportionally affected by SARS-CoV-2, are essential to help identify human genetic determinants of disease risk and identify therapeutic avenues for the treatment of COVID-19.

94 METHODS

95

96 <u>Study participants</u>

We studied the host genetics of SARS-CoV-2 infection in participants of the UK Biobank study, which took place between 2006 and 2010 and includes approximately 500,000 adults aged 40-69 at recruitment [24]. In collaboration with UK health authorities, the UK Biobank has made available regular updates on COVID-19 status for all participants, including results from four main data types: qPCR test for SARS-CoV-2, anonymized electronic health records, primary care and death registry data. We report results based on the 12 September 2020 data refresh and excluded

103 from the analysis 28,547 individuals with a death registry event prior to 2020.

104

105 **COVID-19 phenotypes used for genetic association analyses**

106 Using the data types outlined above, we grouped UK Biobank participants into three broad 107 COVID-19 disease categories (Table 1): (i) positive – those with a positive qPCR test for SARS-108 CoV-2 or a COVID-19-related ICD10 code (U07), hospitalization or death; (ii) negative – those 109 with only negative qPCR test results for SARS-CoV-2 and no COVID-19-related ICD10 code 110 (U07), hospitalization or death; and (iii) unknown – those with no qPCR test result and no COVID-111 19-related ICD10 code (U07), hospitalization or death. We then used these broad COVID-19 112 disease categories, in addition to hospitalization and disease severity information, to create eight 113 COVID-19-related phenotypes for genetic association analyses, as detailed in Table 2.

114

115 Array genotyping and imputation

116 DNA samples from participants of the UK Biobank study were genotyped as described previously

[24] using the Applied Biosystems UK BiLEVE Axiom Array (N=49,950) or the closely related
Applied Biosystems UK Biobank Axiom Array (N=438,427). Genotype data for variants not
included in the arrays were then inferred using three reference panels (Haplotype Reference
Consortium, UK10K and 1000 Genomes Project phase 3) as described previously [24].

121

122 Exome sequencing

123 Sample Preparation and Sequencing. Genomic DNA samples normalized to approximately 16 124 ng/ul were transferred to the Regeneron Genetics Center from the UK Biobank in 0.5ml 2D matrix 125 tubes (Thermo Fisher Scientific) and stored in an automated sample biobank (LiCONiC 126 Instruments) at -80°C prior to sample preparation. Exome capture was completed using a high-127 throughput, fully-automated approach developed at the Regeneron Genetics Center. Briefly, DNA 128 libraries were created by enzymatically shearing 100ng of genomic DNA to a mean fragment size 129 of 200 base pairs using a custom NEBNext Ultra II FS DNA library prep kit (New England 130 Biolabs) and a common Y-shaped adapter (Integrated DNA Technologies) was ligated to all DNA 131 libraries. Unique, asymmetric 10 base pair barcodes were added to the DNA fragment during 132 library amplification with KAPA HiFi polymerase (KAPA Biosystems) to facilitate multiplexed 133 exome capture and sequencing. Equal amounts of sample were pooled prior to overnight exome 134 capture, approximately 16 hours, with a slightly modified version of IDT's xGen probe library; 135 supplemental probes were added to capture regions of the genome well-covered by a previous 136 capture reagent (NimbleGen VCRome), but poorly covered by the standard xGen probes (design 137 bed file available by request). Captured fragments were bound to streptavidin-coupled Dynabeads 138 (Thermo Fisher Scientific) and non-specific DNA fragments removed through a series of stringent 139 washes using the xGen Hybridization and Wash kit according to the manufacturer's recommended

140 protocol (Integrated DNA Technologies). The captured DNA was PCR amplified with KAPA 141 HiFi and quantified by qPCR with a KAPA Library Quantification Kit (KAPA Biosystems). The 142 multiplexed samples were pooled and then sequenced using 75 base pair paired-end reads with 143 two 10 base pair index reads on the Illumina NovaSeq 6000 platform using S2 or S4 flow cells.

144

145 Variant calling and quality control. Sample read mapping and variant calling, aggregation and 146 quality control were performed via the SPB protocol described in Van Hout et al. [25] 147 (https://www.ukbiobank.ac.uk/wp-content/uploads/2019/08/UKB-50k-Exome-Sequencing-Data-148 Release-July-2019-FAQs.pdf). Briefly, for each sample, NovaSeq WES reads are mapped with 149 BWA MEM to the hg38 reference genome. Small variants are identified with WeCall and reported 150 as per-sample gVCFs. These gVCFs are aggregated with GLnexus into a joint-genotyped, multi-151 sample VCF (pVCF). SNV genotypes with read depth less than seven (DP < 7) and indel genotypes 152 with read depth less than ten (DP < 10) are changed to no-call genotypes. After the application of 153 the DP genotype filter, a variant-level allele balance filter is applied, retaining only variants that 154 meet either of the following criteria: (i) at least one homozygous variant carrier or (ii) at least one 155 heterozygous variant carrier with an allele balance greater than the cutoff (AB ≥ 0.15 for SNVs 156 and $AB \ge 0.20$ for indels).

157

Identification of low-quality variants from exome-sequencing using machine learning. Briefly, we defined a set of positive control and negative control variants based on: (i) concordance in genotype calls between array and exome sequencing data; (ii) mendelian inconsistencies in the exome sequencing data; (iii) differences in allele frequencies between exome sequencing batches; (iv) variant loadings on 20 principal components derived from the analysis of variants with a MAF<1%. The model was then trained on 30 available WeCall/GLnexus site quality metrics, including, for example, allele balance and depth of coverage. We split the data into training (80%) and test (20%) sets. We then performed a grid search with 5-fold cross-validation on the training set and applied the model with highest accuracy to the test set. Out of 15 million variants in the exome target region, 1 million (6.5%) were identified as low-quality and excluded from the analysis. Similarly, we identified and removed 6 million out of 21 million variants (28.6%) in the buffer region.

170

171 Gene burden masks. Briefly, for each gene region as defined by Ensembl [26], genotype 172 information from multiple rare coding variants was collapsed into a single burden genotype, such 173 that individuals who were: (i) homozygous reference (Ref) for all variants in that gene were 174 considered homozygous (RefRef); (ii) heterozygous for at least one variant in that gene were 175 considered heterozygous (RefAlt); (iii) and only individuals that carried two copies of the 176 alternative allele (Alt) of the same variant were considered homozygous for the alternative allele 177 (AltAlt). We did not phase rare variants; compound heterozygotes, if present, were considered 178 heterozygous (RefAlt). We did this separately for four classes of variants: (i) predicted loss of 179 function (pLoF), which we refer to as an "M1" burden mask; (ii) pLoF or missense ("M2"); (iii) 180 pLoF or missense variants predicted to be deleterious by 5/5 prediction algorithms ("M3"); (iv) 181 pLoF or missense variants predicted to be deleterious by 1/5 prediction algorithms ("M4"). The 182 five missense deleterious algorithms used were SIFT [27], PolyPhen2 (HDIV), PolyPhen2 183 (HVAR) [28], LRT [29], and MutationTaster [30]. For each gene, and for each of these four 184 groups, we considered five separate burden masks, based on the frequency of the alternative allele 185 of the variants that were screened in that group: <1%, <0.1%, <0.01%, <0.001% and singletons

only. Each burden mask was then tested for association with the same approach used for individualvariants (see below).

188

189 Genetic association analyses

190 Association analyses in the UK Biobank study were performed using the Firth logistic regression 191 test implemented in REGENIE [31], separately for variants derived from array-based imputation 192 and exome sequencing. In this test, Firth's approach is applied when the p-value from the standard 193 logistic regression score test is below 0.05. As the Firth penalty (*i.e.* Jeffrey's invariant prior) 194 corresponds to a data augmentation procedure where each observation is split into a case and a 195 control with different weights, it can handle variants with no minor alleles among cases. With no 196 covariates, this corresponds to adding 0.5 in every cell of a 2x2 table of allele counts versus case-197 control status.

198 We included in step 1 of REGENIE (i.e. prediction of individual trait values based on the 199 genetic data) variants that were directly genotyped, had a minor allele frequency (MAF) >1%, 200 <10% missingness, Hardy-Weinberg equilibrium test P-value>10⁻¹⁵ and after linkage-201 disequilibrium (LD) pruning (1000 variant windows, 100 sliding windows and $r^2 < 0.9$). The association model used in step 2 of REGENIE included as covariates age, age², sex, age-by-sex, 202 203 age²-by-sex, and the first 10 ancestry-informative principle components (PCs) released by the UK 204 Biobank. For the analysis of exome variants, we also included as covariates an indicator for exome 205 sequencing batch and 20 PCs derived from the analysis of exome variants with a MAF between 206 2.6x10⁻⁵ (roughly corresponding to a minor allele count [MAC] of 20) and 1%. We did this because 207 previous studies have found that PCs derived from common variants do not adequately correct for 208 fine-scale population structure [32, 33].

For imputed variants, we retained association results for variants with both an imputation information score ≥ 0.3 and MAC ≥ 5 , and either (i) MAF>0.5% or (ii) a protein-altering consequence (*i.e.* pLOF, missense or splice variants). For exome sequencing variants, we retained association results for variants with a MAC ≥ 5 . Association analyses were performed separately for three different ancestries defined based on the array data (African [AFR], European [EUR] and South Asian [SAS]), with results subsequently combined across ancestries using an inverse variance-weighed fixed-effects meta-analysis.

216

217 **Results availability**

218 All genotype-phenotype association results reported in this study are available for browsing using 219 the RGC's COVID-19 Results Browser (https://rgc-covid19.regeneron.com). Data access and use 220 is limited to research purposes in accordance with the Terms of Use (https://rgc-221 covid19.regeneron.com/terms-of-use). The COVID-19 Results Browser provides a user-friendly 222 interface to explore genetic association results, enabling users to query summary statistics across 223 multiple cohorts and association studies using genes, variants or phenotypes of interest. Results 224 are displayed in an interactive tabular view ordered by p-value - enabling filtering, sorting, 225 grouping and viewing additional statistics - with link outs to individual GWAS reports, including 226 interactive Manhattan and QQ plots. LocusZoom views of LD information surrounding variants 227 of interest are also available, with LD calculated using the respective source genetic datasets.

The data resource supporting the COVID-19 Results Browser is built using a processed version of the raw association analysis outputs. Using the RGC's data engineering toolkit based in Apache Spark and Project Glow (<u>https://projectglow.io/</u>), association results are annotated, enriched and partitioned into a distributed, columnar data store using Apache Parquet. Processed

- 232 Parquet files are registered with AWS Athena, enabling efficient, scalable queries on unfiltered
- 233 association result datasets. Additionally, "filtered" views of associations significant at a threshold
- of p-value < 0.001 are stored in AWS RDS Aurora databases for low latency queries to service
- 235 primary views of top associations. APIs into RDS and Athena are managed behind the scenes such
- that results with a p-value>0.001 are pulled from Athena as needed.

- 238 **RESULTS**
- 239

240 **Demographics and health characteristics of study participants**

Among 473,977 participants of the UK Biobank study who were alive in January 2020, 2,118 were COVID-19 positive, 16,331 were COVID-19 negative and 455,528 had unknown COVID-19 status (**Table 1**). Relative to participants who were COVID-19 negative or unknown (**Table 1**), COVID-19 positive individuals were more likely to be male, to have African or South Asian ancestry and to have cardiovascular or respiratory co-morbidities (**Table 3**). These co-morbidities

were also observed in analyses stratified by ancestry group (**Table 4**).

247

248 Genome-wide association study (GWAS) of imputed variants

We performed ancestry-specific GWAS for eight COVID-19-related phenotypes, using imputed variants available for a subset of 455,838 individuals (**Table 5**). These phenotypes captured a spectrum of disease severity, from COVID-19 cases who did not require hospitalization to those with severe disease (respiratory support or death). Association results are publicly available at <u>https://rgc-covid19.regeneron.com</u> and main findings summarized below. The genomic inflation factor (λ_{GC}) was close to 1 for most analyses (**Supplementary Table 1**).

255

Association with variants reported in previous COVID-19 GWAS. Recently, Ellinghaus et al. [20] performed a GWAS comparing 1,610 cases with a PCR-positive test for SARS-CoV-2 and respiratory failure, against 2,205 controls with unknown SARS-CoV-2 status (mostly blood donors), all from Spain or Italy. Two loci reached genome-wide significance in that study: (i) 3p21.31, near the *LZTFL1* gene (rs11385942, OR=1.77 for the GA allele; 95% CI=1.48-2.11;

261 $P=1.1 \times 10^{-10}$; and (ii) 9q34.2, near the ABO gene (rs657152, OR=1.39 for the A allele; 95% CI=1.20-1.47; P=4.9x10⁻⁸) [20]. Both loci were recently replicated in a larger GWAS [21], with 262 263 the former also replicated in a GWAS of severe COVID-19 patients in the UK [22]. We found a 264 nominally significant and directionally consistent association with both variants in the European-265 specific analysis of the phenotype COVID-19 positive vs. COVID-19 negative or unknown 266 (Figure 1). For the 3p21.31 locus (Figure 1A), we observed the largest effect with risks of 267 hospitalization (OR=1.69; 95% CI=1.25-2.28; P=6x10⁻⁴) and severe disease (OR=2.29; 95% 268 CI=1.56-3.35; $P=2x10^{-5}$) amongst COVID-19 cases. In contrast, there was no association with the 269 phenotype COVID-19 positive and not hospitalized vs. COVID-19 negative or unknown (OR=0.87; 95% CI=0.71-1.08; P=0.21). These results suggest that variants in this 3p21.31 locus 270 271 influence COVID-19 severity and not risk of SARS-CoV-2 infection.

272

273 Significant associations with common variants in ancestry-specific GWAS. Across the eight 274 phenotypes tested, we identified two loci with an association $P < 5x10^{-8}$, both found in the 275 European-specific analysis of the phenotype COVID-19 positive (N=1,797) vs. COVID-19 276 negative or unknown (N=434,038). The first locus was on chromosome 19q13.32; the lead variant 277 was rs429358 (MAF=15%, OR=1.29, CI=1.18-1.40, P=8.9x10⁻⁹), a common missense variant 278 (Cys130Arg) that tags the epsilon (ϵ) 4 haplotype in APOE (Figure 2A). This variant has 279 established associations with both Alzheimer's disease (AD) and coronary artery disease (CAD). 280 In addition, AD and CAD are known risk factors associated with COVID-19, and we observed an 281 enrichment of both diseases amongst COVID-19 positive individuals (Supplementary Table 2). 282 Therefore, we tested if the association between the APOE locus and susceptibility to COVID-19 283 could be confounded by AD or CAD case-control status. When both diseases were added as

covariates to the model, we found that the association with rs429358 was significantly attenuated (OR=1.15; 95% CI=1.04-1.26; P=0.005). These results suggest that the association between rs429358 in *APOE* and COVID-19 risk likely arose because of the enrichment of AD and CAD amongst COVID-19 cases.

The second locus was on chromosome 19p13.11, also associated with the phenotype COVID-19 positive vs. COVID-19 negative or unknown. The lead variant was rs117336466 (MAF=0.9%; OR=2.16, 95% CI=1.64-2.85, $P=4.5\times10^{-8}$), located in the first intron of *TMEM161A* (**Figure 2B**). This variant was not associated with risks of hospitalization (OR=0.60, 95% CI=0.33-1.09, P=0.094) or severe disease (OR=0.58, 95% CI=0.27-1.24, P=0.161) amongst COVID-19 positive cases.

294

Genome-wide significant associations in trans-ancestry meta-analysis. Seven of the eight phenotypes were tested in two or more ancestries. For these, we combined results across ancestries using a fixed-effects meta-analysis, but no new loci were identified at $P < 5 \times 10^{-8}$.

298

299 Exome-wide association study of sequenced variants

We tested the association between the same eight COVID-19-related phenotypes and exome sequencing variants available for a subset of 424,183 individuals from the UKB study. We tested both single variants and a burden of rare variants in protein-coding genes (see Methods).

303

304 *Exome-wide association results.* The λ_{GC} for common variants (MAF>0.5%) was close to 1 for 305 most analyses (**Supplementary Table 3**), while for rare variants (MAF<0.5%) we observed a 306 considerable deflation of test statistics, caused by a large proportion of variants having a MAC of 307 0 in cases (*e.g.* 89% of variants in the European-only analysis of COVID-19 positive and 308 hospitalized [N=1,065] vs. COVID-19 negative or unknown [N=403,700]). Overall, when 309 considering both trans- and single-ancestry association analyses, we did not identify any 310 associations with rare coding variants at a $P < 5x10^{-8}$.

311

312 Association results for 14 genes in the anti-viral interferon signaling pathway. Two recent exome 313 sequencing studies of COVID-19 suggested that rare deleterious variants in 14 genes related to 314 interferon signaling may be implicated in more extreme clinical outcomes [14, 23]. Given our 315 larger sample size, we examined whether there was any evidence for association between the 316 COVID-19 hospitalization phenotype (1,184 cases vs. 422,318 controls) and a burden of rare 317 (MAF<0.1%) pLoF variants (M1 burden test) or pLoF plus deleterious missense variants (M3 318 burden test) in these 14 genes. We found no nominal significant associations ($P \le 0.05$) with any of 319 the 14 genes (Table 6). Further, these results were unchanged when testing COVID-19 severe 320 cases (N=471), or when restricting the burden tests to include variants with a MAF<1% or 321 singleton variants (Supplementary Table 4). Therefore, in our analysis of the UK Biobank data, 322 we found no evidence for an association between the 14 specific interferon signaling genes and 323 COVID-19 outcomes.

324

Association results for 36 genes located in two risk loci for COVID-19 identified by Ellinghaus et al. [20]. Associations with rare protein-coding variants might help pinpoint target genes of common risk variants identified in GWAS of COVID-19. To address this possibility, we focused on 36 protein-coding genes located within 500 kb of the two common risk variants identified by Ellinghaus et al. [20]: rs11385942 (locus 3p21.31) and rs657152 (locus 9q34.2). Of the 72 gene burden tests performed (36 genes x 2 burden tests, considering variants with MAF<1%), four had a nominal significant association (**Supplementary Table 5**), including two protective (*CCR9* and *TSC1*) and two predisposing (*SARDH* and *XCR1*) associations. However, these associations did not remain significant after correcting for the number of tests performed (all with P>0.05/72=0.0007).

335

Association results for 31 additional genes of interest. Lastly, we performed the same analysis for 31 genes that are involved in the etiology of SARS-CoV-2 infection (*e.g. ACE2, TMPRSS2*), encode therapeutic targets (*e.g. IL6R, JAK2*) or have been implicated in other immune or infectious diseases through GWAS (*e.g. IL33*). After correcting for multiple testing, there were also no significant associations with a burden of rare deleterious variants for this group of genes (**Supplementary Table 6**).

343 **DISCUSSION**

Eleven months since the first reported cases of "pneumonia of unknown cause" to the World Health Organization and six months since the declaration of the COVID-19 pandemic [34], >41 million individuals have been infected with SARS-CoV-2 worldwide. Epidemiological studies have identified groups of individuals at high risk for severe disease, clinical complications and death [8, 9, 35-38]. More recently, studies focusing on host genetics have begun to identify common variants that contribute to heterogeneity in COVID-19 risk and severity [20-22].

350 Our analysis of COVID-19 in the UK Biobank indicates that, consistent with observational 351 studies in the same UK participants [35, 37], COVID-19-related hospitalizations and deaths skew 352 towards older, male individuals of non-European ancestry. Hypertension, obesity, CAD, type-2 353 diabetes and dementia are among the most frequently reported COVID-19 disease comorbidities 354 [8, 9, 35]. Similarly, after adjusting for age, we observed a 1.7-fold enrichment in both 355 cardiovascular disease and Alzheimer's disease among COVID-19 cases in the UK Biobank study. 356 Previous GWAS reported an association between risk of SARS-CoV-2 infection and 357 common variants in the 3p21.31 locus [20-22]. We confirmed this association and further showed 358 that this locus affects disease severity but not (or less so) risk of infection. We note, as have others, 359 that the lead variant rs35652899 is in high LD with a lead expression quantitative trait locus 360 (eQTL) for SCL6A20 in lung tissue [39]. The SLC6A20 gene encodes SIT1, a proline transporter 361 expressed in the small intestine, lung, and kidney [40]. SIT1 expression and function is increased 362 via interaction with angiotensin-converting enzyme 2 (ACE2), which is the SARS-CoV-2 receptor 363 [41]. One intriguing hypothesis is that increased expression of SLC6A20 in the gastrointestinal 364 tract, lung or kidney might promote viral uptake, thus leading to increased risk of severe disease 365 due to pathology in these tissues. Other candidate genes in the region include LZTFL1, which

encodes a cytoplasmic ciliary transport protein with expression in the lung and implicated in recessive ciliopathies with renal dysfunction as one feature, *CXCR6* and *CCR9*, chemokine receptors which mediate trafficking of T lymphocytes to the lung and GI tract, respectively, and *XCR1* on plasmacytoid dendritic cells, which mediates antigen cross presentation, potentially implicating dysregulation of immune cell trafficking and function in severe COVID-19, but further work is required to attribute the purported biological mechanisms of these genes with SARS-CoV-2 infection and disease progression of COVID-19.

373 Ellinghaus et al. [20] first reported an association between common variants in the ABO 374 locus and risk of SARS-CoV-2 infection. Furthermore, ABO blood groups have been associated 375 with severe COVID-19 [42, 43], with blood group A being associated with increased disease risk. 376 These observations raise the possibility that genes in the ABO locus play a role in COVID-19 377 susceptibility. However, genetic associations at the ABO locus can be confounded by population 378 stratification [44, 45]. Furthermore, the analysis reported by Ellinghaus et al [20] used blood 379 donors (which skew toward type O) as controls, which might have biased the association results 380 at the ABO locus. As such, it is important to determine if the association with the ABO locus is 381 reproducible in independent studies. First, we found no difference in representation of blood types 382 among COVID-19 cases and controls (not shown). Second, although we did observe a directionally 383 consistent and nominally significant association between risk of infection and the published lead 384 variant, when we combined results from the UK Biobank with those from the discovery cohort 385 [20], the association with this variant did not reach genome-wide significance (not shown). Third, 386 we found no evidence for an association between this locus and disease severity. Therefore, it 387 remains unclear whether variants in the ABO locus represent bona fide risk factors for COVID-19.

388 In our GWAS of imputed variants, we identified a genome-wide significant association 389 between risk of SARS-CoV-2 infection and a variant that tags the ɛ4 haplotype in APOE. Common 390 variants in APOE have been previously associated with SARS-CoV-2 infection, independent of 391 CAD, dementia and other comorbidities [46]. However, in contrast to these findings, we found 392 that the association with APOE was significantly attenuated after adjusting for AD and CAD. 393 Similar results were obtained after conditioning on AD alone (not shown). This suggests that the 394 observed association between risk of SARS-CoV-2 infection and APOE in our analysis of the UK 395 Biobank was, at least partly, confounded with AD status.

We also identified a putative new association between common variants on chromosome 19p13.11 and risk of SARS-CoV-2 infection. However, this locus was not associated with increased risks of hospitalization or severe disease amongst COVID-19 positive individuals. Replication in independent studies is required to validate the association between 19p13.11 and risk of SARS-CoV-2 infection.

401 Lastly, we analyzed exome sequence data for a subset of 424,183 individuals in the UK 402 Biobank to test the association between COVID-19 phenotypes and rare variants not captured by array genotyping or imputation. We found no associations at a $P < 5x10^{-8}$ with pLoF variants, 403 404 missense variants or in gene-burden analyses. We then concentrated on 81 genes of interest, 405 including 14 genes related to interferon signaling [14, 23], 36 genes in two GWAS loci [20] and 406 31 additional genes of immunologic relevance and/or therapeutic potential. After correcting for 407 the number of tests performed, there were no significant associations between the COVID-19 408 hospitalization phenotype and a burden of rare deleterious variants in any of these genes. We are 409 expanding our analysis of exome sequence data to include additional studies and will update results 410 accordingly.

412 At the outset of the pandemic, testing for SARS-CoV-2 was restricted to symptomatic individuals 413 and often performed exclusively at inpatient/outpatient care sites. Thus, this current analysis is 414 likely weighted toward cases with demonstrable COVID-19 symptoms or clinical presentation. 415 Broader analysis of seropositive individuals who were asymptomatic or had infections mild 416 enough to resolve at home will be critical to identify genetic factors that might protect from severe 417 disease, particularly among high-risk groups with comorbidities. Regardless, further genetic 418 studies across ancestry groups will shed more light on human genetic risk factors associated with 419 susceptibility to SARS-CoV-2 and may point to pathways and approaches for the treatment of 420 COVID-19.

421 FIGURES

423 A. Locus 3p21.31 (rs11385942:GA, near the *LZTFL1* gene)

STUDY	RR RA AA	RR RA AA		OR [95% CI]	PVALU	E AAF
UKB 500K Genotyped EUB	1516(271)10	37515315672512160		1.154 [1.021.1.305]	0.022	0.071
LIKB 500K Genotyped AFR	10111410	8341 930 34		1 172 [0 64 2 146]	0.606	0.056
UKB 500K Genetyped SAS	52129110	5956120221712		1.055 [0.751 1.481]	0.000	0.050
OKB_SOOK_GENOLABER_SKS	55 20 10	5050[5525]/15		1.055 [0.751,1.401]	0.750	0.255
META	1670 313 20	0 389350 61578 2907	-	1.143 [1.021,1.28] 0.021	0.074
			1 1	1		
			0.5 1	2.5		
			OR (95% CI	0		
	N CASES	N CONTROLS				
STUDY	RRIRAIAA	RRIBAIAA		OB [95% CI]	PVALUE	ΔΔF
UKB EOOK Construed EUB	15161271110	0 1202111025102		1 144 [1 002 1 206]	0.046	0.072
UKB_SOUK_Genotyped_EOK	1510 2/1 10	0 12021[1935]05		1.144 [1.003,1.300]	0.040	0.072
UKB_500K_Genotyped_AFR	101 14 0	349 39 0 -		→ 1.18 [0.55,2.53]	0.671	0.055
UKB_500K_Genotyped_SAS	53 28 10	240 157 29	_	1.051 [0.701,1.577]	0.808	0.255
META	1670 313 2	0 13410 2131 112	-	1.136 [1.004,1.286]	0.043	0.077
		0.5	1	2.5		
			OR (95% CI)			
	N CASES	N CONTROLS				
STUDY	RRIRAIAA	RRIRAIAA		OR [95% CI]	PVALUE	AAF
LIKB 500K Genotyped ELIR	57417513	37515315672512160	-	0.873 [0.706.1.08]	0.211	0.071
OKB_SOOK_Genotyped_EOK	5747515	373133 30723 2100		0.873 [0.700,1.08]	0.211	0.071
UKB_500K_Genotyped_AFR	36 5 0	8341 930 34 -		→ 1.452 [0.512,4.119]	0.484	0.056
UKB_500K_Genotyped_SAS	27 10 5	5856 3923 713		0.904 [0.549,1.489]	0.693	0.255
МЕТА	637 90 8	389350 61578 2907	-	0.893 [0.737,1.082]	0.248	0.074
		,	1			
		0.1	5 1	2.5		
		0	OR (95% CI)	2.5		
			01((35)(00))			
	N CASES	N CONTROLS				
STUDY	RR RA AA	RR RA AA		OR [95% CI]	PVAL	UE AAF
UKB 500K Genotyped EUB	942119617	37515315672512160		1.329 [1.147.1.54]	1.5e-	04 0.07
UKB 500K Caraburad AFR	651010	82411020124		1 12 (0 520 2 277)	0.760	0.07
UKB_SUUK_Genotyped_AFR	eslain	8341 930 34		1.12 [0.528,2.377]	0.768	0.05
UKB_500K_Genotyped_SAS	26 18 5	5856 3923 713		1.147 [0.724,1.817]	0.558	3 0.25
META	1033 223 1	2 389350 61578 2907	-	1.304 [1.136,1.49	7] 1.6e	-04 0.07
	N CASES	NCONTROLS				
STUDY	KK KA AA	RR RA AA		OR [95% CI]	PVALUE	AAF
STUDY UKB_500K_Genotyped_EUR	378 91 3	RR RA AA 375153 56725 2160		OR [95% CI] 1.492 [1.198,1.859]	3.5e-04	0.071
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR	378 91 3 29 3 0	RR RA AA 375153 56725 2160 8341 930 34 <		OR [95% CI] 1.492 [1.198,1.859] 0.802 [0.247,2.602]	3.5e-04 0.713	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR	378 91 3 29 3 0	RR RA AA 375153 56725 2160 8341 930 34 <		OR [95% CI] 1.492 [1.198,1.859] → 0.802 [0.247,2.602]	3.5e-04 0.713	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RR RA AA 375153 56725 2160 8341 930 34 < 383494 57655 2194	•	OR [95% CI] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813]	3.5e-04 0.713 5.6e-04	0.071 0.056 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RR RA AA 375153 56725 2160 8341 930 34 383494 57655 2194	•	OR [95% C] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813]	90.713 5.6e-04	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RR RA AA 375153 56725 2160 8341 930 34 383494 57655 2194 [0.:]	5 1	OR [95% C] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5	9VALUE 3.5e-04 0.713 5.6e-04	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RR[RA]AA 375153 56725 2160 8341 930 34 383494 57655 2194	5 1 OR (95% CI)	OR [95% C]] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5	3.5e-04 0.713 5.6e-04	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RIRA AA 375153 6725 2160 8341 930 34 383494 57655 2194 7 0.:	5 1 OR (95% CI)	OR [95% C]] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5	9VALUE 3.5e-04 0.713 5.6e-04	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	378 91 3 29 3 0 407 94 3	RK RA AA 375153 56725 2160 8341 930 34 383494 57655 2194 0.	5 1 OR (95% CI)	OR [95% CI] 1.492 [1.198,1.859] 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5	9VALUE 3.5e-04 0.713 5.6e-04	0.071 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR	88(84)44 378(91)3 29(3)0 407(94)3 N CASES	RIRAJAA 3751535672521260 8341930 34 383494 57655 2194 C. N CONTROLS	5 1 OR (95% CI)	OR [95% CI] 1.492 [1.198,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5	9VALUE 3.5e-04 0.713 5.6e-04	0.071 0.056
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY	RR[RA]AA 378[91]3 29]3]0 407[94]3 N CASES RR[RA]AA	RRIRAJAA 375153556725212160 8341930]34 383494[57655]2194 0.: N CONTROLS RRIRAJAA	5 1 OR (95% CI)	OR [95% CI] 1.492 [1.199,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5 OR [95% CI] PV	9VALUE 3.5e-04 0.713 5.6e-04 /ALUE A	0.071 0.056 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR	RR RA AA 378 91]3 29 3 0 407 94 3 N CASES RR RA AA 942 196 7	RR[R4]AA 375153]66725[2160 8341]930]34 383494[57655]2194 0.: N CONTROLS N CONTROLS RR[R4]AA 574[75]3	5 1 OR (95% CI)	OR [95% CI] 1.492 (1.199,1.1659) → 0.802 [0.247,2.602] 1.462 (1.178,1.813] 2.5 OR [95% CI] PV 1.694 [1.255,2.285] 5.3	PVALUE 3.5e-04 0.713 5.6e-04 /ALUE /ALUE /ac-04 0.7	0.071 0.056 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K, Genotyped_EUR	RR RA AA 378 91]3 29 3 0 407 94 3 N CASES RR RA AA 942 196 7 65 9 0	RR[R4]A 375153[652]2160 8341[930]34 383494[57655]2194 0. N CONTROLS RR[R4]AA 574[75]3 36[5]0	5 1 OR (95% CI)	OR [95% CI] 1.492 [1.199,1.859] → 0.802 [0.247,2.602] 1.462 [1.178,1.813] 2.5 OR [95% CI] PV 1.694 [1.255,2.285] 5.3 1.694 [1.255,2.285] 5.3	PVALUE 3.5e-04 0.713 5.6e-04 //aLUE //aLUE //aLUE //aLUE //aLUE //aLUE //alue //alue //alue	AF 0.071 0.056 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR	RR[RA]AA 378[91]3 29[3]0 407[94]3 N CASES RR[RA]AA 942[196]7 65[9]0 26[18]5	RR[R4]A4 375135[6725[2160 8341]930[34 383494]57655]2194 N CONTROLS RR[R4]AA 574[75]3 36[5]0 27[10]5	5 1 OR (95% CI)	OR (95% CI) 1.492 [1.98.1.859] → 0.802 [0.247,2.602] 1.462 [1.176,1.613] 2.5 OR (95% CI) PV 1.694 [1.255,2.285] 5. 1.091 [0.102,11.766] 0. 0.914 [0.12,6.984] 0.0	PVALUE 3.5e-04 0.713 5.6e-04 //e-04 0.32 0.321	AF 0.071 0.056 0.07 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR UKB_500K, Genotyped_SAS	N CASES RR[RA]AA 9407[94]3 N CASES RR[RA]AA 942[196]7 65[9]0 26[18]5	RRIRAJA 375153[652]2160 8341 930]34 383494 57655]2194 0. N CONTROLS RRIRAJAA 574 75]3 36[5]0 27[10]5	5 1 OR (95% CI)	OR (95% CI) I.492 [1.98,1.859] → 0.802 [0.247,2.602]	PYALUE 3.5e-04 0.713 5.6e-04 //ALUE A. //ALUE A. //ALUE A. //ALUE 0.31 0.331	AF 0.071 0.056 0.07 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_SAS	N CASES RR RA AA 942 3 0 N CASES RR RA AA 942 196 7 65 9 0 26 18 5	RR[R4]A4 375135[6725[2160 8341]930[34 383494]57655]2194 0.: N CONTROLS RR[R4]AA 574[75]3 36[5]0 2710[5	5 1 OR (95% CI)	OR (95% CI) I.492 (1.198.1.859) → 0.802 [0.247,2.602] 1.462 (1.178,1.813) 2.5 OR (95% CI) PV 1.664 [1.255,2.285] 5. 1.091 [0.102,11.706] 0. 0.914 [0.12,6.986] 0.5	PVALUE 3.5e-04 0.713 5.6e-04 /ALUE //e-04 0.331 0.331	AF 0.071 0.056 0.07 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR UKB_500K, Genotyped_SAS META	Rrikajaa 378j913 29j30 407j94j3 N CASES RR RA AA 942196j7 65j90 26j18j5 1033j223j1	RR[R]A RR[R]A 375153[65725]2160 8341[930]34 383494]57655]2194 0. N CONTROLS RR[RA]AA 574]75[3] 36[5]0 27[10]5 27[10]5	5 1 OR (95% CI)	OR (95% CI) PV 1.492 [1.98,1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.613] → 2.5 → OR [95% CI] PV 1.694 [1.255,2.285] > 1.694 [1.25,5.285] > 1.091 [0.102,11.706] 0 0.914 [0.12,6.986] 0.5 1.661 [1.237,2.229] 7.	PVALUE 3.5e-04 0.713 5.6e-04 /ALUE /e-04 0.343 0.331 0.36e-04	0.071 0.056 0.07 0.05 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_SAS META	N CASES RR RA AA 9407 94 3 N CASES RR RA AA 942 196 7 65 9 0 26 18 5 1033 223 1	RRIRAJAA 375135/6725/2160 3834/9/37655/2194 0.: N CONTROLS RRIRAJAA 574/75/3 36(5)0 27/10/5 27/10/5	5 1 OR (95% CI)	OR (95% CI) P 1.492 [1.98.359] 0.802 [0.247,2.602] 1.462 [1.176,1.813] 2.5 OR (95% CI) P 1.694 [1.255,2.285] 5. 1.094 [1.02,1.1766] 0. 0.914 [0.102,1.1766] 0. 1.694 [1.23,2.295] 5.	PVALUE 3.5e-04 0.713 5.6e-04 %ALUE A. %ALUE 0.31 0.331 0.33e-04	AF 0.07 0.056 0.07 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META	RR[RA]AA 378[91]3 29]3]0 407[94]3 N CASES RR[RA]AA 942[196]7 65[9]0 2618[5 1033]223]1	RR[R4]A RR[R4]A 375153[65723]2160 8341[930]34 383494[97655]2194 0. N CONTROLS 0. N CONTROLS 0. 1000000000000000000000000000000000000	5 1 OR (95% CI)	OR (95% CI) PV 1.492 [1.08,1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.813] → 2.5 → OR (95% CI) PV 0.802 [0.247,2.602] → 1.462 [1.176,1.813] → 2.5 → 0.802 [0.247,2.602] → 1.694 [1.255,2.285] → 1.091 [0.102,11.706] → 0.914 [0.12,6.986] → 1.661 [1.237,2.229] 7. 5 →	PVALUE A 3.5e-04 0.713 5.6e-04 0. 76-04 0. 931 0. 33e-04 0.	0.071 0.056 0.07 0.056 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_SAS META	N CASES RR[RA]AA 9407[94]3 N CASES RR[RA]AA 942[196]7 65[9]0 26[18]5 1033]223]1	RR[R4]AA 375135[6725[2160 3834]930[34 383494]57655[2194 0.3 N CONTROLS RR[R4]AA 574[75]3 36[5]0 27[10]5 4 2637[90]8 0.5	5 1 OR (95% CI)	OR (95% CI) PA 1.492 (1.98.1.859) 0.002 [0.247,2.602] 1.462 (1.176,1.813) 2.5 OR (95% CI) PA 1.694 (1.255,2.285) 5.7 1.094 (1.255,2.285) 5.7 0.914 (0.12,6.966) 0.5 1.694 (1.237,2.229) 7.2	PYALUE A. 3.5e-04 0.713 5.6e-04 4 76-04 0.4 76-04 0.4 331 0. 36-04 0.	AF 0.056 0.056 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META	Nr (Ara)(Ara) 378[91]3 29]3[0 407[94]3 407[94]3 942[136]7 942[136]7 65[9]0 26[18]5 1033[223]1	RRIRAJA 3751531567212160 8341 930 34 	5 1 OR (95% CI)	OR (95% CI) PV 1.492 [1.08.1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.813] → 2.5 → 0R (95% CI) PV 1.642 [1.176,1.813] → 2.5 → 1.694 [1.255,2.285] → 1.091 [0.102,11.706] 0.9 0.914 [0.12,6.986] 0.9 1.661 [1.237,2.229] 7.	VALUE A. 3.5e-04 0.713 5.6e-04 9 5.6e-04 9 9.74LUE A. 72e-04 0. 943 0. 931 0. 332 0.	AF 0.056 0.056 0.07 0.07 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_SAS META	RRJRAJRAA 378[91]3 29[3]0 407[94]3 N CASES RRJRAJAA 942[196]7 65[9]0 26[18]5 1033[223]1 N CASES N	RRIRAJAA 375135/6725/2160 3834/9/376535/2194 	5 1 OR (95% CI)	OR (95% CI) PA 1.492 [1.98.1.859] 0.002 [0.247,2.602] 1.462 [1.176,1.813] 2.5 OR (95% CI) PA 1.694 [1.255,2.285] 5.1 1.094 [1.255,2.285] 5.1 0.914 [0.102,11.766] 0.5 1.661 [1.237,2.229] 7.1	PYALUE A. 3.5e-04 0.713 5.6e-04 0. 7e-04 0. 931 0. 331 0. 36e-04 0.	AF 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY	Nr (Arijaa 378[91]3 29]3]0 407[94]3 Nr CASES RR[RA]AA 942]136[7 65]90 26]18[5 1033[223]1 Nr CASES RR[RA]AA	RRIRAJAA 37513516572512160 8341 930 34 0.2 N CONTROLS RRIRAJAA 0.5 N CONTROLS 0.5 0.5	5 1 OR (95% CI)	OR (95% CI) I.492 [1.08.1.859] → 0.802 [0.247,2.602] ⊥.462 [1.176,1.813] 2.5 OR (95% CI) PV 1.694 [1.255,2.285] 5.5 1.091 [0.102,11.706] 0.5 0.914 [0.12,6.986] 0.5 1.661 [1.237,2.229] 7.5 5 R [95% CI] PVALL	PYALUE 3.5e-04 3.5e-04 0.713 5.6e-04 0.943 VALUE A. Ve-04 0.943 0.31 0. 331 0. 36e-04 0.	0.071 0.056 0.077 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFS META STUDY UKB_500K_Genotyped_EUR	NCKARJAA 378[91]3 378[91]3 407[94]3 407[94]3 407[94]3 N CASES RR[RA]AA 942[196]7 942[196]7 65[9]0 26[18]5 1033[223]1 1033[223]1 N CASES RR]RAJAA 378[94]3 378[94]3	RR[RA]AA 3751356725[2160 331]930]34 383494[57653]2194 0. 383494[57653]2194 0. 0. 383494[57653]2194 0. 0. 0. 20110[5 0.5 N CONTROLS RR[RA]AA 574[75]3	5 1 OR (95% CI) 1 OR (95% CI) 2.: OR (95% CI)	OR (95% CI) PM 1.492 [1.980.859] 0.002 [0.247,2.602] 1.462 [1.176,1.813] 2.5 OR (95% CI) PM 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.257,2.293] 7.7 5 5 R (95% CI) PVALU 288 [1.563,3.35] 2.1ee0	PALUE A. 3.5e-04 0.713 5.6e-04 0.43 7e-04 0.433 031 0.331 3e-04 0. 3e-04 0.	0.071 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	N KAKJAAA 378[91]3 29]3[0 407[94]3 407[94]3 N CASES RR[RA]AA 942[196]7 65[9[0] 26[18[5 1033[223]1 N N CASES RR[RA]AA 378[91]3 29]3[0 29]3[0	RRIRAJAA 375153/56725/2160 8341/930/34 383494/57655/2194 0.: N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0	5 1 OR (95% CI) 1 2.2 OR (95% CI) 0 (95% CI)	OR (95% CI) IA92 [108.1.859] → 0.802 [0.247,2.602] → → 1.462 [1.176,1.813] → 2.5 → OR (95% CI) PV 0.602 [0.247,2.602] → 1.462 [1.176,1.813] → 2.5 → OR (95% CI) PV 0.604 [1.255,2.285] → 1.001 [0.102,11.706] 0.0 0.914 [0.12,6.986] 0.9 1.661 [1.237,2.229] 7. 5 R [95% CI] PVALU 286 [1.563,3.35] 2.1e-00 276 [0.007,1.004] 0.487	PYALUE A 3.5e-04 0.713 5.6e-04 0.43 7e-04 0.433 0.331 0. 33-1 0. 36-04 0. 92 0.033 0.008 0.058	0.071 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	RR[RA]AA 378[91]3 29]3[0 407[94]3 407[94]3 407[94]3 N CASES RR[RA]AA 942[196]7 942[196]7 65[9]0 26[18]5 1033[223]1 1033[223]1 N CASES RR[RA]AA 378[91]3 29[3]0	RR[RA]AA 37513365725[2160 383494]576535[2194 0.3 RR[RA]AA 574]75]3 36]5 0 RR[RA]AA 574[75]3 36]5 0 0.5	5 1 OR (95% CI) 1 2.1 OR (95% CI) 2 .2 OR (95% CI)	OR (95% CI) PAC 1.492 (1.98.1.859) 0.002 [0.247,2.602] 1.462 (1.176,1.813) 2.5 OR (95% CI) PA 1.694 (1.255,2.285) 5.7 1.694 (1.255,2.285) 5.7 1.694 (1.255,2.285) 5.7 1.694 (1.255,2.285) 5.7 1.694 (1.25,2.285) 5.7 1.694 (1.25,2.285) 5.7 1.694 (1.25,2.285) 5.7 1.694 (1.25,2.285) 5.7 1.694 (1.25,2.285) 5.7 1.694 (1.22,5.986) 0.7 1.694 (1.23,7.2.29) 7.2 5 5 5 5 2.88 (1.563,3.35) 2.1e-0 2.76 (0.007,10.402) 0.487	PYALUE A. 3.5e-04 0.713 5.6e-04 A. YaLUE A. Ye-04 0. 331 0. 332 0. 331 0. 332 0. 36e-04 0. 931 0. 932 0.08 0.058 0.058	AF 0.077 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_AFR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	N KAKJAAA 378[91]3 29]3[0 407[94]3 407[94]3 N CASES RR RA AA 942[196]7 65[9]0 26[18]5 1033[223]1 N N CASES RR RA AA 378[91]3 378[91]3 297[94]3	RRIRAJAA 375153/56725/2160 8341/930/34 383494/87655/2194 0.: N CONTROLS RRIRAJAA 574/175/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/175/3 36(5)0 0.5	5 1 OR (95% CI) 1 22: OR (95% CI) 0 (95% CI) 0 0 (95% CI)	OR (95% CI) I.492 [1.08.1.859] → 0.802 [0.247,2.602] → 0.802 [0.247,2.602] ↓ 1.462 [1.176,1.613] 2.5	PYALUE 3.5e-04 0.713 5.6e-04 Marcelline ALUE A. 7e-04 0.331 0.331 0.331 3e-04 0.331 0.331 0.336-04 0.331 0.331 0.336-04 0.336-04 0.031 0.031 0.038 0.058 0.058	0.071 0.056 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	N RAKIRAJAA 378[91]3 29[3]0 407[94]3 407[94]3 N CASES RR]RAJAA 942[196]7 65[9]0 26[18]5 1033[223]1 1033[223]1 N CASES RR]RAJAA 378[91]3 29[3]0 407[94]3	RRIRAJAA 37513565725(2160 3314)930(34 383494)57653(2194 0.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 5 10 5 10 5 10 5 10 5 10 5 10	5 1 OR (95% CI) 1 OR (95% CI) 2.: OR (95% CI) 2.: 0 Q	OR (95% CI) PU 1.492 [1.98.1.859] 0.002 [0.247,2.602] 1.462 [1.176,1.813] 2.5 OR (95% CI) PU 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.257,2.285] 5.7 1.694 [1.237,2.229] 7. 5 5 R (95% CI) PVALU 286 [1.563,3.35] 2.1e-0 276 [0.007,1.0.42] 0.487 236 [1.53,3.3.266] 3.2e-0	PYALUE PYALUE A. 3.5e-04 0.713 5.6e-04 7e-04 0. 0. 931 0. 331 0. 36e-04 0. 0. 0. 935 0.08 0.058 0.078	0.071 0.056 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR META	N KAKJAAA 378[91]3 29]3[0 407[94]3 407[94]3 N CASES RR RA AA 942[196]7 65]9[0 26]18[5 1033[223]1 N N CASES RR RA AA 378[91]3 378[91]3 378[91]3 407[94]3 407[94]3	RRIRAJAA 375153/56725/2160 8341/930/34 83494/87655/2194 0.: N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5	5 1 OR (95% CI) 1 22: OR (95% CI) 0 22: OR (95% CI)	OR (95% CI) I.492 [1.08.1.859] → 0.802 [0.247,2.602] → 0.802 [0.247,2.602] ↓ 1.462 [1.176,1.613] 2.5 3 → 0.602 [0.247,2.602] ↓ 1.462 [1.176,1.613] 2.5 1.663 [1.255,2.285] ↓ 1.664 [1.255,2.285] ↓ 0.914 [0.12,6.966] 0.914 [0.12,6.966] 0.5 ↓ 1.661 [1.237,2.229] ↓ 1.661 [1.237,2.229] ↓ 2.6 × 2.16 [0.07,1.0402] ↓ 2.26 [1.53,3.35] × 2.36 [1.53,3.366] ↓ 2.326 [1.53,3.3266]	PYALUE PYALUE 3.5e-04 0.713 5.6e-04 0. 7e-04 0. 3031 0. 3331 0. 36e-04 0. 36e-04 0. 36e-04 0. 36e-04 0. 5 0.08 0.058 0.058	0.071 0.056 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	RR[RA]AA 378[91]3 29[3]0 407[94]3 N CASES RR[RA]AA 942[196]7 65[9]0 26[18]5 1033[223]1 N CASES RR[RA]AA 942[196]7 33[223]1 378[91]3 26[18]5 26[18]5 25[3]2 93]3 29[3]0 378[91]3 407[94]3 407[94]3 378[91]3	RR[RA]AA 375133[65725]2160 383494[93053]2194 0.3 RR[RA]AA 574[75]3 36[5]0 12 630[80]3 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 OR (95% CI) 1 0R (95% CI) 1 2.2 OR (95% CI) 0 2.2 OR (95% CI)	OR (95% CI) PM 1.492 (1.98.1.859) 0.002 [0.247,2.602] 1.462 (1.176,1.813) 2.5 OR (95% CI) PM 1.694 (1.255,2.285) 5.1 1.094 (1.255,2.285) 5.1 0.914 (0.102,11.706) 0.914 (0.12,6.966) 0.914 (0.12,6.966) 0.914 (0.12,6.966) 1.661 (1.237,2.229) 7.25 5 5 R (95% CI) PVALL 286 (1.563,3.35) 2.1e-0 276 (0.007,10.402) 0.487 236 (1.33,3.266) 3.2e-0	PYALUE A 3.5e-04 0.713 5.6e-04 0.043 VALUE A. Ve-04 0.033 30-04 0.033 30-04 0.033 30-04 0.033 5 0.08 0.058 0.058	0.071 0.056 0.057 0.056 0.07 0.07 081 064 264 088
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR WETA UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR WETA STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR	NCRASES 378[91]AA 378[91]A 29[3]0 407[94]3 407[94]3 NCASES RR[RA]AA 942[136]7 942[136]7 65[90] 26[18]5 10033[223]1 10033[223]1 378[91]3 29[3]0 407[94]3 407[94]3	RRIRAJAA 375153/56725/2160 8341/930/34 83494/97655/2194 0.: N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA	5 1 OR (95% CI) 1 2 OR (95% CI) 2 0 OR (95% CI) 3	OR (95% CI) I.492 [1.808.1859] → 0.802 [0.247,2.602] . → 1.492 [1.268.1859] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.602] . → 0.802 [0.247,2.606] 0.9 → 0.914 [0.12,2.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9 → 0.914 [0.12,6.986] 0.9	PYALUE 3.5e-04 0.713 5.6e-04 Are-04 0.331 0.331 0.331 0.331 0.331 0.36e-04 0.331 0.331 0.36e-04 0.058 0.058	0.071 0.077 0.077 0.077 0.077
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	N CASES RR]RAJAA 378[91]3 29]3[0 407[94]3 407[94]3 942[196]7 942[196]7 65[9]0 26[18]5 1033[223]1 N CASES RR]RAJAA 942[196]7 65[9]0 26[18]5 1033[223]1 378[91]3 29[3]0 378[91]3 407[94]3 407[94]3	RR[RA]AA 375133[65725]2160 383494[97653]2194 0.3 RR[RA]AA 574[75]3 36[5]0 12 637[90]8 0.5 N CONTROLS RR[RA]AA 574[75]3 36[5]0 610[80]3 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 OR (95% CI) 1 0R (95% CI) 1 2.: OR (95% CI) 2 3 (95% CI)	OR (95% CI) I.49(11,898,1.859) 1.49(21,898,1.859) 0.802 [0.247,2.602] 1.462 (1.176,1.813) 2.5 OR (95% CI) P. 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.094 [1.255,2.285] 5.7 1.094 [1.255,2.285] 5.7 1.094 [1.25,2.285] 5.7 1.094 [1.25,2.285] 5.7 1.094 [1.25,2.285] 5.7 1.094 [1.25,2.285] 5.7 1.094 [1.25,2.285] 5.7 1.694 [1.2,3,7,2.29] 7.2 5 5 R [95% CI] PVALU 286 [1.533,3.526] 2.1e+0 276 [0.007,10.402] 0.487 236 [1.33,3.266] 3.2e+0	Proteine Alue A. 3.5e-04 0.713 5.6e-04 7.6u 5.6e-04 0. 9.713 5.6e-04 0. 9.713 3.31 0. 9.724 0.0 0.311 9.764 0.0 0. 9.764 0.0 0.058 9.765 0.078	0.071 0.056 0.077 0.077 0.07 0.07 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR WETA UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_AFR WETA STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR	N RASIGNA 378[91] 29]3[0 407[94]3 407[94]3 N CASES RR[RA]AA 942[136]7 942[136]7 65]90 26]18[5 10033[223]1 N CASES RR[RA]AA 378[91]3 29]3[0 407[94]3	RRIRAJAA 37513516572512160 8341 930 34 	5 1 OR (95% CI) 1 22 OR (95% CI) 2 00 (95% CI) 3	OR (95% CI) PV 1.492 [1.498.1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.613] 2.5 OR (95% CI) PV 1.646 [1.255,2.285] 5. 1.091 [0.102,11.706] 0. 0.914 [0.12,6.966] 0.9 1.661 [1.237,2.229] 7. 5 R (95% CI) PVALU 286 [1.533,335] 2.1e-0 7.61 [0.07,1.042] 0.47	Proteine Proteine 3.5e-04 0.713 5.6e-04 0. ALUE A. Ace-04 0. Additional 0.743 Additional 0.331 331 0. 332 0.088 0.058 0.088 5 0.078	0.071 0.056 0.077 0.056 0.07 0.056 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	N CASES RR]RAJAA 378[91]3 29]3[0 407[94]3 407[94]3 942[196]7 942[196]7 65[9]0 26[18]5 1033[223]1 N CASES RR[RA]AA 942[196]7 303[223]1 1033[223]1 N CASES RR]RAJAA 378[91]3 378[91]3 29]3[0 407[94]3 407[94]3	RR[RA]AA 375133[65725]2100 383494[97653]2194 0.3 RR[RA]AA 574[75]3 36]5[0 271[75]3 36]5[0 0.5 N CONTROLS RR[RA]AA 574[75]3 36]5[0 0.5 1 0 0.5 1 0 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 OR (95% CI) 1 0R (95% CI) 1 0R (95% CI) 0 0R (95% CI) 2 0 0 (95% CI) 3	OR (95% CI) I.49(11,808.859) 1.49(21,808.1859) 0.002 [0.247,2.602] 1.462 [1.176,1.813] 2.5 OR (95% CI) P. 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.694 [1.25,2.285] 5.7 1.691 [1.23,7.2.29] 7.2 5 5 5 8 6 [1.53,3.35] 2.1e-0 276 [0.007,10.402] 0.487 236 [1.33,3.266] 3.2e-0	Proteine Proteine 3.5=04 0.713 5.6e-04 0. 943 0. 943 0. 943 0. 931 0. 9331 0. 936-04 0. 937 0.058 0.058 0.058	0.071 0.056 0.077 0.056 0.077
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR WETA UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR WETA STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR	NCRASES RR[RA]AA 378[91] 29]3[0 407[94]3 NCASES RR[RA]AA 942[136]7 058[18]5 10033[223]1 NCASES RR[RA]AA 378[91]3 29]3[0 407[94]3	RRIRAJA 375153/56725/2160 8341/930/34 383494/97655/2194 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA 574/75/3 36(5)0 0.5 N CONTROLS RRIRAJAA	5 1 OR (95% CI) 1 2: OR (95% CI) 2 . OR (95% CI) 2 . 3 . (95% CI)	OR (95% CI) PV 1.492 [1.498.1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.613] 2.5 OR (95% CI) PV 1.694 [1.255,2.285] 5. 1.694 [1.255,2.285] 5. 1.694 [1.255,2.285] 5. 1.091 [0.102,11.706] 0. 0.914 [0.12,6.966] 0.5 1.661 [1.237,2.229] 7. 5 R (95% CI) PVALU 206 [1.533,3.35] 2.1e-0 7.256 [1.533,3.266] 3.2e-0	Proteine Proteine 3.5=04 0.713 5.6e-04 0. Attue A 4. Ace-04 0. Attue A 0. <td>AF 0.071 0.056 0.077 0.056 0.07 0.056</td>	AF 0.071 0.056 0.077 0.056 0.07 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	N CASES RR RA AA 378[91]3 29[3]0 407[94]3 407[94]3 N 407[94]3 942[196]7 65[9]0 26[18]5 1033[223]1 1033[223]1 N CASES RR RA AA 378[91]3 29[3]0 407[94]3 N CASES RR RA AA 378[91]3 29[3]0 407[94]3	RRIRAJAA 375135/6725/2160 3834/94/57653/2194 0.3 83494/57653/2194 0.3 878/RAJAA 574/75/3 36/5/0 271/10/5 0.5 N CONTROLS RRIRAJAA 574/75/3 36/5/0 0.5 1 0.5 1 0.5	5 1 OR (95% CI) 1 OR (95% CI) 2 (95% CI) 2 (95% CI)	OR (95% CI) PVALUE 1.492 (1.980.859) 0.002 [0.247,2.602] 1.492 (1.980.859) 0.002 [0.247,2.602] 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.257,2.229] 7.7 1.694 [1.237,2.229] 7.7 5 5 R (95% CI) PVALUE 286 [1.563,3.35] 2.1e-0 276 [0.007,10.402] 0.487 236 [1.53,3.3266] 3.2e-0 R (95% CI) PVALUE	Protein Protein 3.5=04 0.713 5.6e-04 0.413 7.6e-04 0.413 9.331 0.331 3.6=04 0.55 0.058 0.058 0.058 0.078	0.071 0.056 0.077 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.057
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR WETA UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR WETA STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	NCASES RR[RA]AA 378[91] 29]3[0 407[94]3 29]3[0 407[94]3 942[136]7 942[136]7 26]18[5 1033[223]1 1033[223]1 N CASES RR[RA]AA 378[91]3 29]3[0 407[94]3 NCASES RR[RA]AA 378[91]3 29]3[0 407[94]3	RRIRAJAA S75153[56725]2160 8341 930[34 383494 57655]2194 N CONTROLS RRIRAJAA 574[75]3 36[5]0 0.5 N CONTROLS RRIRAJAA 574[75]3 36[5]0 0.5 N CONTROLS RRIRAJAA 574[75]3 36[5]0 0.5 N CONTROLS RRIRAJAA 0.5 109[20]0	5 1 OR (95% CI) 1 22 OR (95% CI) 2 00 (95% CI) 3 (95% CI) 3	OR (95% CI) I.492 (1.98.1.859) 1.492 (1.98.1.859)	PVALUE A. 3.5e-04 0.713 5.6e-04 0. VALUE A. VALUE A. 76-04 0. 31 0. 331 0. 331 0. 36-04 0. 0.055 0.078 0.067 0.067	0.071 0.056 0.077 0.056 0.077 0.07 0.07 0.07
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META	N CASES RR RA AA 378 91 3 29 3 0 407 94 3 407 94 3 N 407 94 3 942 196 7 1033 223 1 1033 223 1 N CASES RR RA AA 378 91 3 29 3 0 378 91 3 407 94 3 979 94 3 N CASES RR RA AA 942 196 7	RRIRAJAA 383494/576535/2160 383494/576535/2194 N CONTROLS RRIRAJAA 574/75/3 36/5/0 271/10/5 0.5 N CONTROLS RRIRAJAA 574/75/3 36/5/0 0.5 1 0.5 1 0RIRAJAA 169/20/0 	5 1 OR (95% CI) 1 OR (95% CI) 2.: 0 OR (95% CI) 2.: 0 OR (95% CI) 2.: 0 OR (95% CI) 0 OR (95% CI)	OR (95% CI) PVALUE 1.492 (1.98.1.859) 0.002 [0.247,2.602] 1.462 (1.176,1.813) 2.5 OR (95% CI) PV 1.694 [1.255,2.285] 5.7 1.694 [1.255,2.285] 5.7 1.694 [1.257,2.229] 7.7 1.694 [1.237,2.229] 7.7 5 5 R (95% CI) PVALUE 286 [1.533,353] 2.1e-0 276 [1.533,352] 0.487 236 [1.533,3266] 3.2e-0 R (95% CI) PVALUE R (95% CI) PVALUE R (95% CI) PVALUE R (95% CI) PVALUE	Protein Alue	AF 0.071 0.056 0.077 0.056 0.07 0.056 0.07
STUDY UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR META UKB_500K, Genotyped_EUR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_AFR UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR UKB_500K, Genotyped_EUR	N CASES RR[RA]AA 378[91]A3 378[91]A3 378[91]A3 942[136]7 658[90] 658[90] 658[90] 26118[5 10033[223]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1 10033[203]1	RRIRAJAA 375153/56725/2160 8341/930/34 	5 1 OR (95% CI) 1 22 OR (95% CI) 2 00 (95% CI) 3 (95% CI) 3	OR (95% CI) PV 1.492 [1.498.1.859] → 0.802 [0.247,2.602] → 1.462 [1.176,1.613] > 2.5 → → OR (95% CI) PV PV 1.694 [1.255,2.285] > > 1.694 [1.255,2.285] > > 1.694 [1.255,2.285] > > 1.694 [1.255,2.285] > > 0.914 [0.12,1.706] 0.0 0.914 [0.12,2.496] 0.3 1.661 [1.237,2.229] 7. > > 5 PVALUE > 7.26 [0.007.10.2] 0.487 > > 7.26 [1.53,3.266] 3.2e=C O > 8 [1.53,3.266] 3.2e=C O > 8 [1.95% CI] PVALUE S >	PVALUE A. 3.5e-04 0.713 5.6e-04 0. 4LUE A. 7e-04 0. 31 0. 331 0. 331 0. 331 0. 332 0.08 5 0.078 6 0.087	0.071 0.056 0.077 0.056 0.077 0.056 0.056 0.056
STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR META STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR UKB_500K_Genotyped_EUR	N CASES RR RA AA 378 91 3 29 3 0 407 94 3 407 94 3 N 407 94 3 942 196 7 1033 223 1 1033 223 1 N CASES RR RA AA 378 91 3 29 3 0 378 91 3 407 94 3 407 94 3 N CASES RR RA AA 378 91 3 29 3 0 407 94 3	RRIRAJAA 383494/57653/2160 383494/57653/2194 0.3 RRIRAJAA 574/75/3 36/5/0 271/10/5 0.5 N CONTROLS RRIRAJAA 574/75/3 36/5/0 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 OR (95% CI) 1 OR (95% CI) 2.1 OR (95% CI) 2.2 (95% CI) 2.5	OR (95% CI) PVALUE 1.492 (1.98.1.859) 0.002 [0.247,2.602] 1.492 (1.98.1.859) 2.5 OR (95% CI) PV 1.694 [1.255,2.285] 5.1 1.694 [1.255,2.285] 5.1 1.694 [1.257,2.295] 5.1 1.694 [1.257,2.295] 7.1 1.694 [1.237,2.292] 7.1 5 5 R (95% CI) PVALUE 286 [1.533,352] 2.1e-0 276 [0.007,10.402] 0.487 236 [1.33,3.266] 3.2e-0 R (95% CI) PVALUE 81 [0.15,2.646] 0.043	Protein Auture A 3.5e-04 0.713 5.6e-04 7e-04 0.04 0.04 7e-04 0.058 0.058 3e-04 0.058 0.058 15 0.078 0.057	AF 0.071 0.056 0.077 0.056 0.07 0.056 0.07
	STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS WETA STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_SAS WETA STUDY UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_AFR UKB_500K_Genotyped_SAS WETA STUDY UKB_500K_Genotyped_EUR UKB_500K_Genotyped_SAS META	S1007 N. (KR)(AA UKB_500K_Genotyped_EUR 1516(27)11 UKB_500K_Genotyped_AFR 101124[0 UKB_500K_Genotyped_SAS 53128[10 META 1670[313[2 NCASES 53128[10 WETA 1670[313[2 UKB_500K_Genotyped_SAS 53128[10 UKB_500K_Genotyped_EUR 1516[27]11 UKB_500K_Genotyped_FUR 1516[27]11 UKB_500K_Genotyped_FUR 1516[27]11 UKB_500K_Genotyped_FUR 1516[27]11 UKB_500K_Genotyped_FUR 1670[313]2 META 1670[313]2 META 1670[313]2 META 1670[313]2 UKB_500K_Genotyped_FUR 35[26][0 UKB_500K_Genotyped_FUR 35[27][0]5 META 637[90]8 STUDY N CASES STUDY RR[RA]AA UKB_500K_Genotyped_FUR 39[21]05 UKB_500K_Genotyped_SAS 637[90]8 META 1033[223]1 UKB_500K_Genotyped_SAS 25[18]5 META 1033[223]1	STUDT KRIKAJAA KRIKAJAA KRIKAJAA UKB_500K_Genetyped_LER 1361(271)10 3751351672512160 UKB_500K_Genetyped_AFR 1011410 38411930]34 UKB_500K_Genetyped_SAS 53128110 5856139231713 META 1670[313]20 389350[61578]2907 N CASES N CONTROLS STUDY RR[RA]AA RR[RA]AA UKB_500K_Genotyped_AFR 1516[271]10 12821[1935]83 UKB_500K_Genotyped_AFR 1516[271]10 240]157[29 META 1670[313]20 13410[2131]112 UKB_500K_Genotyped_AFR 53[26]10 240]157[29 META 1670[313]20 13410[2131]112 UKB_500K_Genotyped_AFR 56[3]0 8341[930]34 UKB_500K_Genotyped_AFR 56[3]0 8341[930]34 UKB_500K_Genotyped_SAS 27[10]5 5856[3923]713 META 637[90]8 389350[61578]2907 0. N <cases< td=""> N CONTROLS STUDY RR[RA]AA RR[RA]AA UKB_500K_Genotyped_SAS 26[18]5 3556[3923]713</cases<>	STUDI KingApa KingApa KingApa UKB_500K_Genotyped_EVR 1516/27110 375133167232160 + UKB_500K_Genotyped_AFR 101140 375133167232160 + UKB_500K_Genotyped_SAS 5312810 5856139231713 + META 1670[313]20 389350[61578]2907 - - N CASES N CONTROLS RRIRAJAA RRIRAJAA - UKB_500K_Genotyped_FAR 1516/27110 128211935183 + - UKB_500K_Genotyped_AFR 05127110 128211935183 + - - UKB_500K_Genotyped_AFR 0512110 240157129 - - - UKB_500K_Genotyped_AFR 0512110 240157129 - - - UKB_500K_Genotyped_AFR 0513120 1340121313112 - <	STUDY KingApa KingApa KingApa Or. [33742] UKB_500K_Genotyped_EAR 101[14] 375133[672]2160 + 1.145 [1.021,1.305] UKB_500K_Genotyped_SAS 53]28[10 5856[3923]713 1.055 [0.751,1.481] META 1670[313]20 389350[61576]2907 1.143 [1.021,1.26 0.5 1 2.5 0R (95% CI) VKB_500K_Genotyped_LRR 101[14] 12821[193]80 + 1.144 [1.001,1.266] UKB_500K_Genotyped_LRR 101[14] 12821[193]80 + 1.144 [1.001,1.306] UKB_500K_Genotyped_AFR 101[14] 12821[193]80 + 1.144 [1.001,1.306] UKB_500K_Genotyped_AFR 101[14] 249[157]2 1.051 [0.01,1.577] META 1670[313]20 13410[2131]12 1.136 [1.004,1.286] UKB_500K_Genotyped_AFR 53[28]10 240[157]2 0.67 [95% CI] UKB_500K_Genotyped_AFR 574[75]3 375153[5752]2160 + 0.473 [0.766,1.08] UKB_500K_Genotyped_AFR 565[922]713 0.5 1 [.054, 2.5 0.695% CI] 0.943 [0.54], 0.541, 0.521, 4.10]	STUDT Kitologa Kitologa Stilligizitio Stili Stili Stili

427 B. Locus 9q34.2 (rs8176719:TC, in the *ABO* gene)

435 B. Locus 19p13.11 (rs117336466 in *TMEM161A*)

Figure 2. Regional association results for the three loci with common variants associated with 438 439 COVID-19 phenotypes at $P < 5x10^{-8}$. (A) APOE locus (lead variant rs429358), associated with 440 COVID-19 positive vs. COVID-19 negative or unknown. (B) TMEM161A locus (lead variant 441 rs117336466), associated with COVID-19 positive vs. COVID-19 negative or unknown. The lead variant in each locus is shown by the purple diamond. Linkage disequilibrium (LD) in these figures 442 was estimated using genetic data from European individuals of the HapMap3 project.

444 TABLES

- **Table 1.** Breakdown of COVID-19 status in participants of the UK Biobank study as of September
- 447 12, 2020.

COVID-19 status	Positive PCR for SARS- CoV-2	ICD10 U07 diagnosis	COVID-19- related death	Negative PCR test for SARS-CoV-2	Ν
	Yes	Yes	Yes	-	251
	Yes	Yes	-	-	642
	Yes	-	Yes	-	42
	Yes	-	-	-	777
Docitivo	-	Yes	Yes	-	16
Fositive	-	Yes	-	-	92
	-	-	Yes	-	122
	-	Yes	Yes	Yes	15
	-	Yes	-	Yes	150
	-	-	Yes	Yes	11
					Total = 2118
Negative	-	-	-	Yes	16331
Unknown	-	-	-	-	455528

Phenotype	Case/ control group	COVID-19 status	Hospitalized	Severe disease*
COVID-19 positive	Cases	Positive	-	-
vs. COVID-19 negative or unknown	Controls	Negative or unknown	No or NA	No or NA
COVID-19 positive	Cases	Positive	-	-
vs. COVID-19 negative	Controls	Negative	No or NA	No or NA
COVID-19 positive and not hospitalized	Cases	Positive	No	No
vs. COVID-19 negative or unknown	Controls	Negative or unknown	No or NA	No or NA
COVID-19 positive and hospitalized	Cases	Positive	Yes (or death**)	-
vs. COVID-19 negative or unknown	Controls	Negative or unknown	No or NA	No or NA
COVID-19 positive and severe	Cases	Positive	-	Yes
vs. COVID-19 negative or unknown	Controls	Negative or unknown	No or NA	No or NA
COVID-19 positive and hospitalized	Cases	Positive	Yes (or death**)	-
vs. COVID-19 positive and not hospitalized	Controls	Positive	No	No
COVID-19 positive and severe	Cases	Positive	-	Yes
vs. COVID-19 positive and not hospitalized	Controls	Positive	No	No
COVID-19 positive and hospitalized	Cases	Positive	Yes (or death**)	-
vs. COVID-19 positive, not hospitalized, comorbidities and age>60	Controls	Positive with co- morbidities and age>60	No	No

449 **Table 2.** Criteria used to define COVID-19 phenotypes for genetic association analysis.

450 * Severe disease: respiratory support (oxygen, ventilation) or death. ** A total of 175 individuals had a record of death due to

451 COVID-19 but had no record of hospitalization. These individuals were included as cases. A hyphen ("-") indicates that the variable

452 (*i.e.* Hospitalized and Severe Disease) was not considered as inclusion criteria.

Demographic and clinical characteristics	COVID-19 positive	COVID-19 negative	COVID-19 unknown
N	2118	16331	455528
Female, n (%)	995 (46.9)	8547 (52.3)	252361 (55.4)
Median age at assessment, years (95% CI)	59 (51,67)	60 (53-66)	57 (50, 63)
Median body mass index, kg/m ² (95% CI)	28 (24, 31)	27 (24, 30)	26 (23, 29)
Median C-reactive protein levels (95% CI)	1.6 (0.35, 2.9)	1.5 (0.3, 2.7)	1.3 (0.3, 0.3)
Number of current/past smokers, n (%)	1098 (51.8)	8228 (50.3)	199923 (43.9)
Median number of inpatient ICD10 3D codes (95% CI)	12 (3, 21)	12 (3, 20)	8 (2, 14)
Median Townsend deprivation index (95% CI)	-1.14 (-3.7, 1.46)	-1.9 (-4.2, 0.4)	-2.17 (-4.2, -0.12)
Ancestry			
African, n (%)	115 (5.4)	388 (2.4)	8921 (1.9)
East Asian, n (%)	17 (0.8)	65 (0.4)	2213 (0.4)
South Asian, n (%)	92 (4.3)	428 (2.6)	10125 (2.2)
European, n (%)	1798 (84.9)	14864 (91.0)	420007 (92.2)
Co-morbidities			
Hypertension, n (%)	1169 (55.2)	8917 (54.6)	200277 (43.9)
Coronary Disease, n (%)	229 (10.8)	1743 (10.6)	26015 (5.7)
Heart Failure, n (%)	100 (4.7)	563 (3.4)	5317 (1.1)
Type 2 Diabetes, n (%)	320 (15.1)	2013 (12.3)	30581 (6.7)
Chronic kidney disease, n (%)	92 (4.3)	573 (3.5)	6615 (1.4)
Asthma, n (%)	340 (16.0)	2895 (17.7)	64315 (14.1)
COPD, n (%)	159 (7.5)	1042 (6.4)	10661 (2.3)
Alzheimer's disease, n (%)	42 (1.9)	69 (0.42)	359 (0.07)

Table 3. Demographics for participants of the UK Biobank study included in the analysis.

D		COVID-19 positiv	/e	Covid-19 negative
Disease	All	Hospitalized*	Not hospitalized	or unknown
	A	frican ancestry		
Total N	115	74	41	9309
Hypertension, n (%)	76 (66.1)	51 (68.9)	25 (60.9)	4561 (48.9)
Coronary Disease, n (%)	5 (4.4)	4 (5.4)	1 (2.4)	329 (3.5)
Heart Failure, n (%)	6 (5.2)	6 (8.1)	0	98 (1.1)
Type 2 Diabetes, n (%)	31 (26.9)	26 (35.1)	5 (12.2)	1325 (14.2)
Chronic kidney disease, n (%)	4 (3.4)	4 (5.4)	0	179 (1.9)
Asthma, n (%)	16 (13.9)	10 (13.5)	6 (14.6)	1332 (14.3)
COPD, n (%)	3 (2.6)	3 (4.1)	0	98 (1.1)
Alzheimer's disease, n (%)	0	0	0	7 (0.07)
	Eu	ropean ancestry	•	
Total N	1798	1145	653	434871
Hypertension, n (%)	993 (55.2)	704 (61.4)	289 (44.2)	191906 (44.1)
Coronary Disease, n (%)	205 (11.4)	166 (14.5)	39 (5.9)	25512 (5.8)
Heart Failure, n (%)	85 (4.7)	75 (6.5)	10 (1.5)	5396 (1.2)
Type 2 Diabetes, n (%)	267 (14.8)	211 (18.4)	56 (8.5)	27611 (6.3)
Chronic kidney disease, n (%)	78 (4.3)	64 (5.6)	14 (2.1)	6563 (1.5)
Asthma, n (%)	295 (16.4)	189 (16.5)	106 (16.2)	61755 (14.2)
COPD, n (%)	151 (8.4)	131 (11.4)	20 (3.1)	10949 (2.5)
Alzheimer's disease, n (%)	41 (2.3)	26 (2.7)	15 (2.3)	385 (0.08)
	Sout	h Asian ancestry		
Total N	92	50	42	10553
Hypertension, n (%)	47 (51.1)	26 (52)	21 (50)	5149 (48.7)
Coronary Disease, n (%)	10 (10.8)	6 (12)	4 (9.5)	994 (9.4)
Heart Failure, n (%)	5 (5.4)	3 (6)	2 (4.7)	167 (1.6)
Type 2 Diabetes, n (%)	25 (27.1)	16 (32)	9 (21.4)	2308 (21.9)
Chronic kidney disease, n (%)	6 (6.5)	6 (12)	0	202 (1.9)
Asthma, n (%)	17 (18.4)	10 (20)	7 (16.6)	1691 (16.0)
COPD, n (%)	3 (3.2)	2 (4)	1 (2.3)	185 (1.7)
Alzheimer's disease, n (%)	0	0	0	9 (0.08)

455 **Table 4.** Prevalence of co-morbidities, stratified by ancestry.

456 *A total of 175 individuals had a record of death due to COVID-19 but had no record of hospitalization. These individuals were

457 included in the "Hospitalized" group in this analysis.

458 Table 5. Case-control sample size for eight COVID-19-related phenotypes tested in genetic459 association analyses in the UK Biobank study.

Dh an atrum a	A	N ca	ises	N cor	ntrols	
rnenotype	Ancestry	Imputed	Exome	Imputed	Exome	
	Combined	2003	1865	453,835	422,318	
COVID-19 positive	AFR	115	110	9305	8599	
VS.	EUR	1797	1673	434,038	404,300	
COVID-19 negative of unknown	SAS	91	82	10,492	9419	
	Combined	2003	1865	15,653	14,519	
COVID-19 positive	AFR	115	110	388	361	
VS. COVID 10 pagativa	EUR	1797	1673	14,839	13,765	
COVID-19 liegative	SAS	91	82	426	393	
COVID 10 providing and not homitalized	Combined	734	681	453,835	422,318	
COVID-19 positive and not nospitalized	AFR	41	39	9305	8599	
vs. COVID-19 negative or unknown	EUR	652	605	434,038	404,300	
COVID-19 negative of ultrilowit	SAS	42	37	10,492	9419	
COVID 10 positive and hearitalized	Combined	1268	1184	453,835	422,318	
COVID-19 positive and hospitalized	AFR	74	71	9305	8599	
vs. COVID-19 negative or unknown	EUR	1145	1068	434,038	404,300	
COVID-19 negative of ultrilowit	SAS	49	45	10,492	9419	
COVID-19 positive and severe	Combined	-	471	443,343	412,899	
vs.	AFR	32	32	9305	8599	
COVID-19 negative or unknown	EUR	-	439	434,038	404,300	
COVID 10 positive and hearitalized	Combined	1268	1068	735	605	
COVID-19 positive and hospitalized	AFR	74	-	41	-	
vs. COVID-19 positive and not hospitalized	EUR	1145	1068	652	605	
eovid-19 positive and not nospitalized	SAS	49	-	42	-	
COVID-19 positive and severe	Combined	504	439	693	605	
vs.	AFR	32	-	41	-	
COVID-19 positive and not hospitalized	EUR	472	439	652	605	
COVID-19 positive and hospitalized						
vs. COVID-19 positive, not hospitalized.	EUR	1145	1068	189	174	
comorbidities and age>60						

460 SAS case and control sample sizes for both severe COVID-19 sample sizes fell below the 461 minimum case threshold to properly analyze. Dashes (-) in cells indicate the sample sizes were 462 also too small for analysis.

464 Table 6. Association between the phenotype COVID-19 positive and hospitalized (N=1,184) vs
465 COVID-19 negative or unknown (N=422,318) and 14 genes related to interferon signaling that
466 were recently reported to contain rare (MAF<0.1%), deleterious variants in patients with severe
467 COVID-19 [14, 23].

Gene	Burden test	Odds Ratio [95% CI]	P-value	Cases RR RA AA	Controls RR RA AA	AAF
STAT2	M3	2.34 (1.0, 5.5)	0.050	1176 8 0	421086 1231 1	1.47E-03
UNC93B1	M3	2.07 (0.93, 4.58)	0.073	1177 7 0	420917 1401 0	1.66E-03
IRF7	M3	2.15 (0.8, 5.74)	0.129	1179 5 0	421275 1043 0	1.24E-03
IFNAR1	M3	0.37 (0.08, 1.68)	0.195	1184 0 0	421811 507 0	5.99E-04
UNC93B1	M1	3.4 (0.43, 26.93)	0.247	1066 2 0	403926 374 0	4.64E-04
IRF7	M1	2.07 (0.6, 7.12)	0.247	1181 3 0	421674 644 0	7.64E-04
TLR7	M3	0.52 (0.15, 1.77)	0.297	1184 0 0	421856 334 128	6.97E-04
IFNAR1	M1	0.37 (0.04, 3.77)	0.404	1139 0 0	412664 235 0	2.84E-04
TLR3	M1	0.37 (0.02, 6.06)	0.488	1184 0 0	422141 177 0	2.09E-04
STAT1	M3	0.37 (0.02, 7.77)	0.520	1184 0 0	422137 181 0	2.14E-04
STAT2	M1	0.36 (0.01, 8.76)	0.529	1068 0 0	404195 105 0	1.30E-04
TRAF3	M3	0.37 (0.01, 10.13)	0.553	1139 0 0	412750 149 0	1.80E-04
IRF3	M1	1.5 (0.29, 7.66)	0.625	1182 2 0	422001 317 0	3.77E-04
TICAMI	M1	0.37 (0.0, 28.86)	0.652	1068 0 0	404205 95 0	1.17E-04
TICAM1	M3	0.37 (0.0, 28.86)	0.652	1068 0 0	404205 95 0	1.17E-04
TBK1	M1	0.36 (0.0, 31.85)	0.658	1068 0 0	404231 69 0	8.51E-05
IKBKG	M3	0.43 (0.0, 64.35)	0.744	1113 0 0	413640 70 9	1.06E-04
STAT1	M1	0.37 (0.0, 375.39)	0.776	1068 0 0	404268 32 0	3.95E-05
TBK1	M3	0.84 (0.24, 2.97)	0.787	1182 2 0	421450 867 1	1.03E-03
TLR3	M3	0.9 (0.39, 2.06)	0.803	1179 5 0	420322 1995 1	2.36E-03
IRF9	M1	0.37 (0.0, 1526.67)	0.813	1068 0 0	404275 25 0	3.08E-05
IRF9	M3	0.37 (0.0, 1526.67)	0.813	1068 0 0	404275 25 0	3.08E-05
IKBKG	M1	0.49 (0.0, 369.27)	0.834	1113 0 0	413679 31 9	5.91E-05
TRAF3	M1	0.37 (0.0, 10210.6)	0.847	1068 0 0	404284 16 0	1.97E-05
TLR7	M1	0.51 (0.0, 617.09)	0.851	1068 0 0	404282 12 6	2.96E-05
IRF3	M3	1.12 (0.26, 4.83)	0.874	1182 2 0	421885 433 0	5.14E-04
IFNAR2	M1	1.04 (0.14, 7.7)	0.968	1183 1 0	421965 353 0	4.18E-04
IFNAR2	M3	1.01 (0.14, 7.18)	0.996	1183 1 0	421949 369 0	4.37E-04

469	RR: individuals who were homozygote for the reference allele for all variants included in the
470	burden test. RA: individuals who were heterozygote for at least one variant included in the
471	burden test. AA: individuals who were homozygote for the alternative allele for at least one
472	variant included in the burden test. The genes <i>TLR7</i> and <i>IKBKG</i> are located on the X
473	chromosome; individuals counted as homozygote for the alternative allele include hemizygous
474	males.
475	* M1: burden of rare (MAF<0.1%) pLoF variants. M3: burden of rare (MAF<0.1%) pLoF or
476	missense variants that are predicted to be deleterious by 5 out of 5 algorithms.

478	SUPPLEMENTARY TABLES
479	
480	Supplementary Tables 1 to 6 are provided in a separate document.
481	
482	Supplementary Table 1. Genomic inflation factor (λ_{GC}) observed in the analysis of imputed
483	variants for each of the eight phenotypes tested.
484	
485	Supplementary Table 2. Association between COVID-19 phenotypes and both cardiovascular
486	disease and Alzheimer's disease.
487	
488	Supplementary Table 3. Genomic inflation factor (λ_{GC}) observed in the analysis of exome
489	sequence variants for each of the eight phenotypes tested.
490	
491	Supplementary Table 4. Results from burden association tests for 14 genes related to interferon
492	signaling and recently reported to contain rare (MAF<0.1%), deleterious variants in patients with
493	severe COVID-19 [14, 23].
494	
495	Supplementary Table 5. Association between the phenotype COVID-19 positive and
496	hospitalized (N=1,184) vs COVID-19 negative or unknown (N=422,318) and 36 genes located in
497	two loci identified in a previous GWAS of severe COVID-19 [20].
498	
499	Supplementary Table 6. Association between the phenotype COVID-19 positive and

500 hospitalized (N=1,184) vs COVID-19 negative or unknown (N=422,318) and 31 genes that are

- 501 involved in the etiology of SARS-CoV-2, encode therapeutic targets or have been implicated in
- 502 other immune or infectious diseases through GWAS.

503 **References**

- Zhu, N., et al., *A Novel Coronavirus from Patients with Pneumonia in China, 2019.* New
 England Journal of Medicine, 2020. 382(8): p. 727-733.
- 506 2. Coronaviridae Study Group of the International Committee on Taxonomy of, V., The
- 507 species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV
- 508 *and naming it SARS-CoV-2*. Nat Microbiol, 2020. **5**(4): p. 536-544.
- 509 3. Guan, W.J., et al., *Clinical Characteristics of Coronavirus Disease 2019 in China*. N
 510 Engl J Med, 2020. 382(18): p. 1708-1720.
- 511 4. Kimball, A., et al., Asymptomatic and Presymptomatic SARS-CoV-2 Infections in
- 512 *Residents of a Long-Term Care Skilled Nursing Facility King County, Washington,*
- 513 *March 2020.* MMWR Morb Mortal Wkly Rep, 2020. **69**(13): p. 377-381.
- 514 5. Bai, Y., et al., *Presumed Asymptomatic Carrier Transmission of COVID-19*. JAMA,
 515 2020. 323(14): p. 1406-1407.
- 516 6. Richardson, S., et al., Presenting Characteristics, Comorbidities, and Outcomes Among
- 517 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama, 2020.
- 518 **323**(20): p. 2052-2059.
- 519 7. Atkins, J.L., et al., PREEXISTING COMORBIDITIES PREDICTING SEVERE COVID-
- 520 19 IN OLDER ADULTS IN THE UK BIOBANK COMMUNITY COHORT. medRxiv,
- 521 2020: p. 2020.05.06.20092700.
- 522 8. Zhou, F., et al., *Clinical course and risk factors for mortality of adult inpatients with*
- 523 *COVID-19 in Wuhan, China: a retrospective cohort study.* Lancet, 2020. **395**(10229): p.
- 524 1054-1062.

525	9.	Cummings, M.J., et al., Epidemiology, clinical course, and outcomes of critically ill
526		adults with COVID-19 in New York City: a prospective cohort study. Lancet, 2020.
527		395 (10239): p. 1763-1770.
528	10.	Ciancanelli, M.J., et al., Infectious disease. Life-threatening influenza and impaired

- 529 interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448-53.
- 530 11. Casanova, J.L., Severe infectious diseases of childhood as monogenic inborn errors of 531
- 532 12. Dupuis, S., et al., Impairment of mycobacterial but not viral immunity by a germline

immunity. Proc Natl Acad Sci U S A, 2015. **112**(51): p. E7128-37.

- 533 human STAT1 mutation. Science, 2001. 293(5528): p. 300-3.
- 534 13. Jouanguy, E., et al., Interferon-gamma-receptor deficiency in an infant with fatal bacille 535 *Calmette-Guerin infection*. N Engl J Med, 1996. **335**(26): p. 1956-61.
- 536 14. van der Made, C.I., et al., Presence of Genetic Variants Among Young Men With Severe 537 COVID-19. JAMA, 2020. 324(7): p. 663-673.
- 538 15. Zhang, S.Y., et al., Severe COVID-19 in the young and healthy: monogenic inborn errors 539 of immunity? Nat Rev Immunol, 2020. 20(8): p. 455-456.
- 540 16. Hansen, J., et al., Studies in humanized mice and convalescent humans yield a SARS-
- 541 *CoV-2 antibody cocktail.* Science, 2020. **369**(6506): p. 1010-1014.
- 542 17. Baum, A., et al., Antibody cocktail to SARS-CoV-2 spike protein prevents rapid
- 543 mutational escape seen with individual antibodies. Science, 2020. 369(6506): p. 1014-
- 544 1018.
- 545 18. Samson, M., et al., Resistance to HIV-1 infection in caucasian individuals bearing mutant
- 546 alleles of the CCR-5 chemokine receptor gene. Nature, 1996. 382(6593): p. 722-5.

- 547 19. Thorven, M., et al., A homozygous nonsense mutation (428G-->A) in the human secretor
 548 (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol,
 549 2005. 79(24): p. 15351-5.
- 550 20. Ellinghaus, D., et al., Genomewide Association Study of Severe Covid-19 with
- 551 *Respiratory Failure*. New England Journal of Medicine, 2020.
- Shelton, J.F., et al., *Trans-ethnic analysis reveals genetic and non-genetic associations with COVID-19 susceptibility and severity*. medRxiv, 2020: p. 2020.09.04.20188318.
- 554 22. Pairo-Castineira, E., et al., *Genetic mechanisms of critical illness in Covid-19*. medRxiv,
 555 2020: p. 2020.09.24.20200048.
- Zhang, Q., et al., *Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.* Science, 2020. **370**(6515): p. eabd4570.
- 558 24. Bycroft, C., et al., *The UK Biobank resource with deep phenotyping and genomic data*.
 559 Nature, 2018. 562(7726): p. 203-209.
- 560 25. Van Hout, C.V., et al., *Exome sequencing and characterization of 49,960 individuals in*561 *the UK Biobank.* Nature, 2020.
- 562 26. Zerbino, D.R., et al., *Ensembl 2018*. Nucleic Acids Research, 2017. 46(D1): p. D754563 D761.
- 564 27. Vaser, R., et al., SIFT missense predictions for genomes. Nat Protoc, 2016. 11(1): p. 1-9.
- 565 28. Adzhubei, I., D.M. Jordan, and S.R. Sunyaev, Predicting functional effect of human
- 566 *missense mutations using PolyPhen-2*. Curr Protoc Hum Genet, 2013. 7(1): p. 7.20.1-
- 567 7.20.41.
- 568 29. Chun, S. and J.C. Fay, *Identification of deleterious mutations within three human*569 *genomes.* Genome research, 2009. 19(9): p. 1553-1561.

- Schwarz, J.M., et al., *MutationTaster evaluates disease-causing potential of sequence alterations*. Nat Methods, 2010. 7(8): p. 575-6.
- 572 31. Mbatchou, J., et al., *Computationally efficient whole genome regression for quantitative*573 *and binary traits.* bioRxiv, 2020: p. 2020.06.19.162354.
- Mathieson, I. and G. McVean, *Differential confounding of rare and common variants in spatially structured populations*. Nature Genetics, 2012. 44(3): p. 243-246.
- 33. Zaidi, A.A. and I. Mathieson, *Demographic history impacts stratification in polygenic scores.* bioRxiv, 2020: p. 2020.07.20.212530.
- 578 34. *W.H.O. Rolling updates on coronavirus disease (COVID-19).* Available from:
- 579 <u>https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-</u>
 580 happen.
- 581 35. Chudasama, Y.V., et al., *Multimorbidity and SARS-CoV-2 infection in UK Biobank*.
 582 Diabetes Metab Syndr, 2020. 14(5): p. 775-776.
- 583 36. Gold, J.A.W., et al., Characteristics and Clinical Outcomes of Adult Patients
- 584 Hospitalized with COVID-19 Georgia, March 2020. MMWR Morb Mortal Wkly Rep,
- 585 2020. **69**(18): p. 545-550.
- 586 37. Niedzwiedz, C.L., et al., *Ethnic and socioeconomic differences in SARS-CoV-2 infection:*587 prospective cohort study using UK Biobank. BMC Med, 2020. 18(1): p. 160.
- 588 38. Price-Haywood, E.G., et al., *Hospitalization and Mortality among Black Patients and*
- 589 White Patients with Covid-19. N Engl J Med, 2020. **382**(26): p. 2534-2543.
- 590 39. Hao, K., et al., *Lung eQTLs to help reveal the molecular underpinnings of asthma*. PLoS
 591 Genet, 2012. 8(11): p. e1003029.

- 40. Lonsdale, J., et al., *The Genotype-Tissue Expression (GTEx) project*. Nature Genetics,
 2013. 45(6): p. 580-585.
- 594 41. Vuille-dit-Bille, R.N., et al., *Human intestine luminal ACE2 and amino acid transporter*595 *expression increased by ACE-inhibitors*. Amino Acids, 2015. 47(4): p. 693-705.
- 596 42. Zhao, J., et al., *Relationship between the ABO Blood Group and the COVID-19*
- 597 *Susceptibility*. Clin Infect Dis, 2020.
- 43. Li, J., et al., Association between ABO blood groups and risk of SARS-CoV-2 pneumonia.
 Br J Haematol, 2020. 190(1): p. 24-27.
- 44. Thomson, G. and W.F. Bodmer, *Letter: Population stratification as an explanation of IQ*
- 601 *and ABO association*. Nature, 1975. **254**(5498): p. 363-4.
- Mourant, A.E., K. Domaniewska-Sobczak, and A.C. Kopec, *The distribution of the human blood groups and other polymorphisms*. 2nd ed. ed. 1976: London : Oxford
 university press.
- 605 46. Kuo, C.L., et al., APOE e4 genotype predicts severe COVID-19 in the UK Biobank
- 606 *community cohort.* J Gerontol A Biol Sci Med Sci, 2020.

607 SUPPLEMENTARY TEXT

608

609 Regeneron Genetics Center (RGC) Research Team and Contribution Statements

- 610 All authors/contributors are listed in alphabetical order.
- 611

612 **RGC Management and Leadership Team**

- 613 Goncalo Abecasis, Ph.D., Aris Baras, M.D., Michael Cantor, M.D., Giovanni Coppola, M.D.,
- 614 Aris Economides, Ph.D., Luca A. Lotta, M.D., Ph.D., John D. Overton, Ph.D., Jeffrey G. Reid,
- 615 Ph.D., Alan Shuldiner, M.D.
- 616 Contribution: All authors contributed to securing funding, study design and oversight. All
- 617 authors reviewed the final version of the manuscript.
- 618

619 Sequencing and Lab Operations

- 620 Christina Beechert, Caitlin Forsythe, M.S., Erin D. Fuller, Zhenhua Gu, M.S., Michael Lattari,
- 621 Alexander Lopez, M.S., John D. Overton, Ph.D., Thomas D. Schleicher, M.S., Maria
- 622 Sotiropoulos Padilla, M.S., Louis Widom, Sarah E. Wolf, M.S., Manasi Pradhan, M.S., Kia
- 623 Manoochehri, Ricardo H. Ulloa.
- 624 Contribution: C.B., C.F., A.L., and J.D.O. performed and are responsible for sample genotyping.
- 625 C.B, C.F., E.D.F., M.L., M.S.P., L.W., S.E.W., A.L., and J.D.O. performed and are responsible
- 626 for exome sequencing. T.D.S., Z.G., A.L., and J.D.O. conceived and are responsible for
- 627 laboratory automation. M.P., K.M., R.U., and J.D.O are responsible for sample tracking and the
- 628 library information management system.
- 629

631 Nilanjana Banerjee, Ph.D., Michael Cantor, M.D. M.A., Dadong Li, Ph.D., Deepika Sharma,

632 MHI

- 633 Contribution: All authors contributed to the development and validation of clinical phenotypes
- 634 used to identify study subjects and (when applicable) controls.
- 635

636 Genome Informatics

- 637 Xiaodong Bai, Ph.D., Suganthi Balasubramanian, Ph.D., Andrew Blumenfeld, Gisu Eom, Lukas
- Habegger, Ph.D., Alicia Hawes, B.S., Shareef Khalid, Jeffrey G. Reid, Ph.D., Evan K. Maxwell,
- 639 Ph.D., William Salerno, Ph.D., Jeffrey C. Staples, Ph.D.
- 640 Contribution: X.B., A.H., W.S. and J.G.R. performed and are responsible for analysis needed to
- 641 produce exome and genotype data. G.E. and J.G.R. provided compute infrastructure
- 642 development and operational support. S.B., and J.G.R. provide variant and gene annotations and
- their functional interpretation of variants. E.M., J.S., A.B., L.H., J.G.R. conceived and are
- 644 responsible for creating, developing, and deploying analysis platforms and computational

645 methods for analyzing genomic data.

646

647 Analytical Genetics

- 648 Gonçalo R. Abecasis, Ph.D., Joshua Backman, Ph.D., Manuel A. Ferreira, Ph.D., Lauren Gurski,
- Jack A. Kosmicki, Ph.D., Alexander Li, Ph.D., Adam Locke, Ph.D., Anthony Marcketta,
- 50 Jonathan Marchini, Ph.D., Joelle Mbatchou, Ph.D., Shane McCarthy, Ph.D., Colm O'Dushlaine,
- 651 Ph.D., Dylan Sun, Kyoko Watanabe, Ph.D.

652	Contribution: J.A.K. and M.A.F. performed association analyses and led manuscript writing
653	group. J.B. identified low-quality variants in exome sequence data using machine learning. L.G.
654	and K.W. helped with visualization of association results. A.Li., A.L., A.M. and D.S. prepared
655	the analytical pipelines to perform association analyses. J.M. and J.M. developed and helped
656	deploy REGENIE. S.M. and C.O'D. helped defined COVID-19 phenotypes. G.R.A. supervised
657	all analyses. All authors contributed to and reviewed the final version of the manuscript.
658	
659	Immune, Respiratory, and Infectious Disease Therapeutic Area Genetics
660	Julie E. Horowitz, PhD.
661	Contribution: J.E.H. helped defined COVID-19 phenotypes, interpret association results and led
662	the manuscript writing group.
663	
663 664	<u>Research Program Management</u>
663 664 665	Research Program Management Marcus B. Jones, Ph.D., Michelle LeBlanc, Ph.D., Jason Mighty, Ph.D., Lyndon J. Mitnaul,
663 664 665 666	Research Program Management Marcus B. Jones, Ph.D., Michelle LeBlanc, Ph.D., Jason Mighty, Ph.D., Lyndon J. Mitnaul, Ph.D.
663 664 665 666 667	Research Program Management Marcus B. Jones, Ph.D., Michelle LeBlanc, Ph.D., Jason Mighty, Ph.D., Lyndon J. Mitnaul, Ph.D. Contribution: All authors contributed to the management and coordination of all research
 663 664 665 666 667 668 	Research Program Management Marcus B. Jones, Ph.D., Michelle LeBlanc, Ph.D., Jason Mighty, Ph.D., Lyndon J. Mitnaul, Ph.D. Contribution: All authors contributed to the management and coordination of all research activities, planning and execution. All authors contributed to the review process for the final

671	UK Biobank Exome Sequencing Consortium Research Team
672	
673	¹ Bristol Myers Squibb
674	Oleg Moiseyenko, Carlos Rios, Saurabh Saha
675	
676	² Regeneron Pharmaceuticals Inc.
677	Listed in pages 38 to 40.
678	
679	³ Biogen Inc.
680	Sally John, Chia-Yen Chen, David Sexton, Paola G. Bronson, Christopher D. Whelan, Varant
681	Kupelian, Eric Marshall, Timothy Swan, Susan Eaton, Jimmy Z. Liu, Stephanie Loomis, Megan
682	Jensen, Saranya Duraisamy, Ellen A. Tsai, Heiko Runz
683	
684	⁴ Alnylam Pharmaceuticals
685	Aimee M. Deaton, Margaret M. Parker, Lucas D. Ward, Alexander O. Flynn-Carroll, Greg
686	Hinkle, Paul Nioi
687	
688	⁵ AstraZeneca
689	Caroline Austin (Business Development); Ruth March (Precision Medicine & Biosamples);
690	Menelas N. Pangalos (BioPharmaceuticals R&D); Adam Platt (Translational Science &
691	Experimental Medicine, Research and Early Development, Respiratory and Immunology); Mike
692	Snowden (Discovery Sciences); Athena Matakidou, Sebastian Wasilewski, Quanli Wang, Sri

- 693 Deevi, Keren Carss, Katherine Smith (Centre for Genomics Research, Discovery Sciences,
- 694 BioPharmaceuticals R&D), Carolina Haefliger, Slavé Petrovski
- 695
- ¹Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08543
- ⁶⁹⁷ ²Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591
- ⁶98 ³Biogen Inc., 225 Binney Street, Cambridge, MA 02139
- ⁴Alnylam Pharmaceuticals, 675 West Kendall St, Cambridge, MA 02142
- ⁵AstraZeneca Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D,
- 701 Cambridge, UK