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ABSTRACT 24 

Background. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes 25 

Coronavirus disease-19 (COVID-19), a respiratory illness with influenza-like symptoms that can 26 

result in hospitalization or death. We investigated human genetic determinants of COVID-19 risk 27 

and severity in 455,838 UK Biobank participants, including 2,003 with COVID-19. 28 

Methods. We defined eight COVID-19 phenotypes (including risks of infection, hospitalization 29 

and severe disease) and tested these for association with imputed and exome sequencing variants.  30 

Results. We replicated prior COVID-19 genetic associations with common variants in the 3p21.31 31 

(in LZTFL1) and 9q34.2 (in ABO) loci. The 3p21.31 locus (rs11385942) was associated with 32 

disease severity amongst COVID-19 cases (OR=2.2, P=3x10-5), but not risk of SARS-CoV-2 33 

infection without hospitalization (OR=0.89, P=0.25). We identified two loci associated with risk 34 

of infection at P<5x10-8, including a missense variant that tags the e4 haplotype in APOE 35 

(rs429358; OR=1.29, P=9x10-9). The association with rs429358 was attenuated after adjusting for 36 

cardiovascular disease and Alzheimer’s disease status (OR=1.15, P=0.005). Analyses of rare 37 

coding variants identified no significant associations overall, either exome-wide or with (i) 14 38 

genes related to interferon signaling and reported to contain rare deleterious variants in severe 39 

COVID-19 patients; (ii) 36 genes located in the 3p21.31 and 9q34.2 GWAS risk loci; and (iii) 31 40 

additional genes of immunologic relevance and/or therapeutic potential. 41 

Conclusions. Our analyses corroborate the association with the 3p21.31 locus and highlight that 42 

there are no rare protein-coding variant associations with effect sizes detectable at current sample 43 

sizes. Our full analysis results are publicly available, providing a substrate for meta-analysis with 44 

results from other sequenced COVID-19 cases as they become available. Association results are 45 

available at https://rgc-covid19.regeneron.com . 46 

47 
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INTRODUCTION 48 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in Wuhan, 49 

China in late 2019 [1] and causes coronavirus disease 2019 (COVID-19) [2]. COVID-19 50 

symptoms range from flu-like symptoms such as fever, cough and headaches to respiratory failure, 51 

acute immune responses and death [3]. It is estimated that most infected individuals display few, 52 

if any, symptoms [4, 5]. As of October 2020, SARS-CoV-2 has been reported in >41 million 53 

individuals and to be associated with >1.1 million deaths worldwide. Known risk factors include 54 

male sex, older age, ancestry, obesity, cardiovascular and kidney disease, chronic obstructive 55 

pulmonary disease (COPD) and dementia [6-9], among others.  56 

Studying host genetic variation among individuals infected with SARS-CoV-2 holds the 57 

potential to identify mechanisms that influence disease severity and outcomes. Akin to IFNGR1, 58 

STAT1, TLR7 and other genetic immune deficiencies that predispose to early-onset severe 59 

infections [10-15], this information may help identify individuals at high risk of SARS-CoV-2 60 

infection who should be prioritized for disease prevention strategies, including vaccination or 61 

monoclonal antibody treatments [16, 17]. Further, understanding host mechanisms that provide 62 

protection from SARS-CoV-2 infection or that modulate disease severity might guide the 63 

development of treatment efforts, in the same way that CCR5 variation and HIV infection [18], or 64 

FUT2 variation and infection by certain strains of norovirus [19], helped identify therapeutic 65 

strategies and targets for these diseases. 66 

Since the start of the SARS-CoV-2 pandemic, host genetic analysis of common genetic 67 

variation among SARS-CoV-2 patients identified two genome-wide significant loci, one at 68 

3p21.31 spanning at least six genes (including SLC6A20 and LZTFL1) and a second at 9q34.2 in 69 

the ABO locus [20, 21]. The first locus has been consistently replicated in additional studies [21, 70 
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22], while the association at the ABO locus remains contentious. In addition to these genome-wide 71 

association studies (GWAS), two studies suggest that rare deleterious variants in genes related to 72 

interferon signaling may be implicated in more extreme clinical outcomes [14, 23]. However, to 73 

date, there has been no assessment of the contribution of rare genetic variation to COVID-19 74 

disease susceptibility or severity through large population-based exome-wide association analyses.  75 

To identify rare coding variants associated with COVID-19 susceptibility and severity, we 76 

evaluated clinical data derived from quantitative polymerase chain reaction (qPCR) tests for 77 

SARS-CoV-2, together with anonymized electronic health records and death registry data for both 78 

COVID-19 patients and other individuals in the UK Biobank study. We first analyzed imputed 79 

data for 455,838 individuals (2,003 with COVID-19), including a deep dive into the unequivocal 80 

3p21.31 locus as a positive control, to calibrate our susceptibility and severity phenotypes with 81 

those used in other COVID-19 GWAS. We then analyzed exome sequencing data for a subset of 82 

424,183 individuals (1,865 with COVID-19) to investigate disease associations with individual 83 

rare variants and rare variant-aggregated gene-burden tests. In addition to an agnostic exome-wide 84 

search for genetic risk factors, we also focused on 81 specific genes of interest (i) with a known 85 

role in interferon signaling and recently observed to contain rare deleterious variants in patients 86 

with severe COVID-19 [14, 23]; (ii) near two common risk variants for COVID-19 identified by 87 

GWAS [20]; or (iii) of immunologic relevance and/or therapeutic potential. 88 

This study represents the largest exome-sequencing study of COVID-19 performed to date. 89 

Expanded analyses, particularly among individuals disproportionally affected by SARS-CoV-2, 90 

are essential to help identify human genetic determinants of disease risk and identify therapeutic 91 

avenues for the treatment of COVID-19. 92 

  93 
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METHODS 94 

 95 

Study participants 96 

We studied the host genetics of SARS-CoV-2 infection in participants of the UK Biobank study, 97 

which took place between 2006 and 2010 and includes approximately 500,000 adults aged 40-69 98 

at recruitment [24]. In collaboration with UK health authorities, the UK Biobank has made 99 

available regular updates on COVID-19 status for all participants, including results from four main 100 

data types: qPCR test for SARS-CoV-2, anonymized electronic health records, primary care and 101 

death registry data. We report results based on the 12 September 2020 data refresh and excluded 102 

from the analysis 28,547 individuals with a death registry event prior to 2020. 103 

 104 

COVID-19 phenotypes used for genetic association analyses 105 

Using the data types outlined above, we grouped UK Biobank participants into three broad 106 

COVID-19 disease categories (Table 1): (i) positive – those with a positive qPCR test for SARS-107 

CoV-2 or a COVID-19-related ICD10 code (U07), hospitalization or death; (ii) negative – those 108 

with only negative qPCR test results for SARS-CoV-2 and no COVID-19-related ICD10 code 109 

(U07), hospitalization or death; and (iii) unknown – those with no qPCR test result and no COVID-110 

19-related ICD10 code (U07), hospitalization or death. We then used these broad COVID-19 111 

disease categories, in addition to hospitalization and disease severity information, to create eight 112 

COVID-19-related phenotypes for genetic association analyses, as detailed in Table 2.  113 

 114 

Array genotyping and imputation 115 

DNA samples from participants of the UK Biobank study were genotyped as described previously 116 
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[24] using the Applied Biosystems UK BiLEVE Axiom Array (N=49,950) or the closely related 117 

Applied Biosystems UK Biobank Axiom Array (N=438,427). Genotype data for variants not 118 

included in the arrays were then inferred using three reference panels (Haplotype Reference 119 

Consortium, UK10K and 1000 Genomes Project phase 3) as described previously [24]. 120 

 121 

Exome sequencing 122 

Sample Preparation and Sequencing.  Genomic DNA samples normalized to approximately 16 123 

ng/ul were transferred to the Regeneron Genetics Center from the UK Biobank in 0.5ml 2D matrix 124 

tubes (Thermo Fisher Scientific) and stored in an automated sample biobank (LiCONiC 125 

Instruments) at -80°C prior to sample preparation.  Exome capture was completed using a high-126 

throughput, fully-automated approach developed at the Regeneron Genetics Center.  Briefly, DNA 127 

libraries were created by enzymatically shearing 100ng of genomic DNA to a mean fragment size 128 

of 200 base pairs using a custom NEBNext Ultra II FS DNA library prep kit (New England 129 

Biolabs) and a common Y-shaped adapter (Integrated DNA Technologies) was ligated to all DNA 130 

libraries.  Unique, asymmetric 10 base pair barcodes were added to the DNA fragment during 131 

library amplification with KAPA HiFi polymerase (KAPA Biosystems) to facilitate multiplexed 132 

exome capture and sequencing.  Equal amounts of sample were pooled prior to overnight exome 133 

capture, approximately 16 hours, with a slightly modified version of IDT’s xGen probe library; 134 

supplemental probes were added to capture regions of the genome well-covered by a previous 135 

capture reagent (NimbleGen VCRome), but poorly covered by the standard xGen probes (design 136 

bed file available by request).  Captured fragments were bound to streptavidin-coupled Dynabeads 137 

(Thermo Fisher Scientific) and non-specific DNA fragments removed through a series of stringent 138 

washes using the xGen Hybridization and Wash kit according to the manufacturer’s recommended 139 
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protocol (Integrated DNA Technologies).  The captured DNA was PCR amplified with KAPA 140 

HiFi and quantified by qPCR with a KAPA Library Quantification Kit (KAPA Biosystems).  The 141 

multiplexed samples were pooled and then sequenced using 75 base pair paired-end reads with 142 

two 10 base pair index reads on the Illumina NovaSeq 6000 platform using S2 or S4 flow cells. 143 

 144 

Variant calling and quality control. Sample read mapping and variant calling, aggregation and 145 

quality control were performed via the SPB protocol described in Van Hout et al. [25] 146 

(https://www.ukbiobank.ac.uk/wp-content/uploads/2019/08/UKB-50k-Exome-Sequencing-Data-147 

Release-July-2019-FAQs.pdf). Briefly, for each sample, NovaSeq WES reads are mapped with 148 

BWA MEM to the hg38 reference genome. Small variants are identified with WeCall and reported 149 

as per-sample gVCFs. These gVCFs are aggregated with GLnexus into a joint-genotyped, multi-150 

sample VCF (pVCF). SNV genotypes with read depth less than seven (DP < 7) and indel genotypes 151 

with read depth less than ten (DP < 10) are changed to no-call genotypes. After the application of 152 

the DP genotype filter, a variant-level allele balance filter is applied, retaining only variants that 153 

meet either of the following criteria: (i) at least one homozygous variant carrier or (ii) at least one 154 

heterozygous variant carrier with an allele balance greater than the cutoff (AB >= 0.15 for SNVs 155 

and AB >= 0.20 for indels). 156 

 157 

Identification of low-quality variants from exome-sequencing using machine learning. Briefly, we 158 

defined a set of positive control and negative control variants based on: (i) concordance in 159 

genotype calls between array and exome sequencing data; (ii) mendelian inconsistencies in the 160 

exome sequencing data; (iii) differences in allele frequencies between exome sequencing batches; 161 

(iv) variant loadings on 20 principal components derived from the analysis of variants with a 162 
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MAF<1%. The model was then trained on 30 available WeCall/GLnexus site quality metrics, 163 

including, for example, allele balance and depth of coverage. We split the data into training (80%) 164 

and test (20%) sets. We then performed a grid search with 5-fold cross-validation on the training 165 

set and applied the model with highest accuracy to the test set. Out of 15 million variants in the 166 

exome target region, 1 million (6.5%) were identified as low-quality and excluded from the 167 

analysis. Similarly, we identified and removed 6 million out of 21 million variants (28.6%) in the 168 

buffer region. 169 

 170 

Gene burden masks. Briefly, for each gene region as defined by Ensembl [26], genotype 171 

information from multiple rare coding variants was collapsed into a single burden genotype, such 172 

that individuals who were: (i) homozygous reference (Ref) for all variants in that gene were 173 

considered homozygous (RefRef); (ii) heterozygous for at least one variant in that gene were 174 

considered heterozygous (RefAlt); (iii) and only individuals that carried two copies of the 175 

alternative allele (Alt) of the same variant were considered homozygous for the alternative allele 176 

(AltAlt). We did not phase rare variants; compound heterozygotes, if present, were considered 177 

heterozygous (RefAlt). We did this separately for four classes of variants: (i) predicted loss of 178 

function (pLoF), which we refer to as an “M1” burden mask; (ii) pLoF or missense (“M2”); (iii) 179 

pLoF or missense variants predicted to be deleterious by 5/5 prediction algorithms (“M3”); (iv) 180 

pLoF or missense variants predicted to be deleterious by 1/5 prediction algorithms (“M4”). The 181 

five missense deleterious algorithms used were SIFT [27], PolyPhen2 (HDIV), PolyPhen2 182 

(HVAR) [28], LRT [29], and MutationTaster [30]. For each gene, and for each of these four 183 

groups, we considered five separate burden masks, based on the frequency of the alternative allele 184 

of the variants that were screened in that group: <1%, <0.1%, <0.01%, <0.001% and singletons 185 
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only. Each burden mask was then tested for association with the same approach used for individual 186 

variants (see below).  187 

 188 

Genetic association analyses 189 

Association analyses in the UK Biobank study were performed using the Firth logistic regression 190 

test implemented in REGENIE [31], separately for variants derived from array-based imputation 191 

and exome sequencing. In this test, Firth’s approach is applied when the p-value from the standard 192 

logistic regression score test is below 0.05. As the Firth penalty (i.e. Jeffrey’s invariant prior) 193 

corresponds to a data augmentation procedure where each observation is split into a case and a 194 

control with different weights, it can handle variants with no minor alleles among cases. With no 195 

covariates, this corresponds to adding 0.5 in every cell of a 2x2 table of allele counts versus case-196 

control status. 197 

  We included in step 1 of REGENIE (i.e. prediction of individual trait values based on the 198 

genetic data) variants that were directly genotyped, had a minor allele frequency (MAF) >1%, 199 

<10% missingness, Hardy-Weinberg equilibrium test P-value>10-15 and after linkage-200 

disequilibrium (LD) pruning (1000 variant windows, 100 sliding windows and r2<0.9). The 201 

association model used in step 2 of REGENIE included as covariates age, age2, sex, age-by-sex, 202 

age2-by-sex, and the first 10 ancestry-informative principle components (PCs) released by the UK 203 

Biobank. For the analysis of exome variants, we also included as covariates an indicator for exome 204 

sequencing batch and 20 PCs derived from the analysis of exome variants with a MAF between 205 

2.6x10-5 (roughly corresponding to a minor allele count [MAC] of 20) and 1%. We did this because 206 

previous studies have found that PCs derived from common variants do not adequately correct for 207 

fine-scale population structure [32, 33]. 208 
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For imputed variants, we retained association results for variants with both an imputation 209 

information score ³0.3 and MAC ³5, and either (i) MAF>0.5% or (ii) a protein-altering 210 

consequence (i.e. pLOF, missense or splice variants). For exome sequencing variants, we retained 211 

association results for variants with a MAC³5. Association analyses were performed separately 212 

for three different ancestries defined based on the array data (African [AFR], European [EUR] and 213 

South Asian [SAS]), with results subsequently combined across ancestries using an inverse 214 

variance-weighed fixed-effects meta-analysis.  215 

 216 

Results availability 217 

All genotype-phenotype association results reported in this study are available for browsing using 218 

the RGC’s COVID-19 Results Browser (https://rgc-covid19.regeneron.com). Data access and use 219 

is limited to research purposes in accordance with the Terms of Use (https://rgc-220 

covid19.regeneron.com/terms-of-use). The COVID-19 Results Browser provides a user-friendly 221 

interface to explore genetic association results, enabling users to query summary statistics across 222 

multiple cohorts and association studies using genes, variants or phenotypes of interest. Results 223 

are displayed in an interactive tabular view ordered by p-value – enabling filtering, sorting, 224 

grouping and viewing additional statistics – with link outs to individual GWAS reports, including 225 

interactive Manhattan and QQ plots. LocusZoom views of LD information surrounding variants 226 

of interest are also available, with LD calculated using the respective source genetic datasets. 227 

  The data resource supporting the COVID-19 Results Browser is built using a processed 228 

version of the raw association analysis outputs. Using the RGC’s data engineering toolkit based in 229 

Apache Spark and Project Glow (https://projectglow.io/), association results are annotated, 230 

enriched and partitioned into a distributed, columnar data store using Apache Parquet. Processed 231 
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Parquet files are registered with AWS Athena, enabling efficient, scalable queries on unfiltered 232 

association result datasets. Additionally, “filtered” views of associations significant at a threshold 233 

of p-value < 0.001 are stored in AWS RDS Aurora databases for low latency queries to service 234 

primary views of top associations. APIs into RDS and Athena are managed behind the scenes such 235 

that results with a p-value>0.001 are pulled from Athena as needed. 236 

   237 
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RESULTS 238 

 239 

Demographics and health characteristics of study participants 240 

Among 473,977 participants of the UK Biobank study who were alive in January 2020, 2,118 were 241 

COVID-19 positive, 16,331 were COVID-19 negative and 455,528 had unknown COVID-19 242 

status (Table 1). Relative to participants who were COVID-19 negative or unknown (Table 1), 243 

COVID-19 positive individuals were more likely to be male, to have African or South Asian 244 

ancestry and to have cardiovascular or respiratory co-morbidities (Table 3). These co-morbidities 245 

were also observed in analyses stratified by ancestry group (Table 4).  246 

 247 

Genome-wide association study (GWAS) of imputed variants 248 

We performed ancestry-specific GWAS for eight COVID-19-related phenotypes, using imputed 249 

variants available for a subset of 455,838 individuals (Table 5). These phenotypes captured a 250 

spectrum of disease severity, from COVID-19 cases who did not require hospitalization to those 251 

with severe disease (respiratory support or death). Association results are publicly available at 252 

https://rgc-covid19.regeneron.com and main findings summarized below. The genomic inflation 253 

factor (lGC) was close to 1 for most analyses (Supplementary Table 1). 254 

 255 

Association with variants reported in previous COVID-19 GWAS. Recently, Ellinghaus et al. [20] 256 

performed a GWAS comparing 1,610 cases with a PCR-positive test for SARS-CoV-2 and 257 

respiratory failure, against 2,205 controls with unknown SARS-CoV-2 status (mostly blood 258 

donors), all from Spain or Italy. Two loci reached genome-wide significance in that study: (i) 259 

3p21.31, near the LZTFL1 gene (rs11385942, OR=1.77 for the GA allele; 95% CI=1.48-2.11; 260 
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P=1.1x10-10); and (ii) 9q34.2, near the ABO gene (rs657152, OR=1.39 for the A allele; 95% 261 

CI=1.20-1.47; P=4.9x10-8) [20]. Both loci were recently replicated in a larger GWAS [21], with 262 

the former also replicated in a GWAS of severe COVID-19 patients in the UK [22]. We found a 263 

nominally significant and directionally consistent association with both variants in the European-264 

specific analysis of the phenotype COVID-19 positive vs. COVID-19 negative or unknown 265 

(Figure 1). For the 3p21.31 locus (Figure 1A), we observed the largest effect with risks of 266 

hospitalization (OR=1.69; 95% CI=1.25-2.28; P=6x10-4) and severe disease (OR=2.29; 95% 267 

CI=1.56-3.35; P=2x10-5) amongst COVID-19 cases. In contrast, there was no association with the 268 

phenotype COVID-19 positive and not hospitalized vs. COVID-19 negative or unknown 269 

(OR=0.87; 95% CI=0.71-1.08; P=0.21). These results suggest that variants in this 3p21.31 locus 270 

influence COVID-19 severity and not risk of SARS-CoV-2 infection. 271 

 272 

Significant associations with common variants in ancestry-specific GWAS. Across the eight 273 

phenotypes tested, we identified two loci with an association P<5x10-8, both found in the 274 

European-specific analysis of the phenotype COVID-19 positive (N=1,797) vs. COVID-19 275 

negative or unknown (N=434,038). The first locus was on chromosome 19q13.32; the lead variant 276 

was rs429358 (MAF=15%, OR=1.29, CI=1.18-1.40, P=8.9x10-9), a common missense variant 277 

(Cys130Arg) that tags the epsilon (e) 4 haplotype in APOE (Figure 2A). This variant has 278 

established associations with both Alzheimer’s disease (AD) and coronary artery disease (CAD). 279 

In addition, AD and CAD are known risk factors associated with COVID-19, and we observed an 280 

enrichment of both diseases amongst COVID-19 positive individuals (Supplementary Table 2). 281 

Therefore, we tested if the association between the APOE locus and susceptibility to COVID-19 282 

could be confounded by AD or CAD case-control status. When both diseases were added as 283 
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covariates to the model, we found that the association with rs429358 was significantly attenuated 284 

(OR=1.15; 95% CI=1.04-1.26; P=0.005). These results suggest that the association between 285 

rs429358 in APOE and COVID-19 risk likely arose because of the enrichment of AD and CAD 286 

amongst COVID-19 cases. 287 

The second locus was on chromosome 19p13.11, also associated with the phenotype 288 

COVID-19 positive vs. COVID-19 negative or unknown. The lead variant was rs117336466 289 

(MAF=0.9%; OR=2.16, 95% CI=1.64-2.85, P=4.5x10-8), located in the first intron of TMEM161A 290 

(Figure 2B). This variant was not associated with risks of hospitalization (OR=0.60, 95% 291 

CI=0.33-1.09, P=0.094) or severe disease (OR=0.58, 95% CI=0.27-1.24, P=0.161) amongst 292 

COVID-19 positive cases. 293 

 294 

Genome-wide significant associations in trans-ancestry meta-analysis. Seven of the eight 295 

phenotypes were tested in two or more ancestries. For these, we combined results across ancestries 296 

using a fixed-effects meta-analysis, but no new loci were identified at P<5x10-8.  297 

 298 

Exome-wide association study of sequenced variants 299 

We tested the association between the same eight COVID-19-related phenotypes and exome 300 

sequencing variants available for a subset of 424,183 individuals from the UKB study. We tested 301 

both single variants and a burden of rare variants in protein-coding genes (see Methods). 302 

 303 

Exome-wide association results. The lGC for common variants (MAF>0.5%) was close to 1 for 304 

most analyses (Supplementary Table 3), while for rare variants (MAF<0.5%) we observed a 305 

considerable deflation of test statistics, caused by a large proportion of variants having a MAC of 306 
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0 in cases (e.g. 89% of variants in the European-only analysis of COVID-19 positive and 307 

hospitalized [N=1,065] vs. COVID-19 negative or unknown [N=403,700]). Overall, when 308 

considering both trans- and single-ancestry association analyses, we did not identify any 309 

associations with rare coding variants at a P<5x10-8.  310 

 311 

Association results for 14 genes in the anti-viral interferon signaling pathway. Two recent exome 312 

sequencing studies of COVID-19 suggested that rare deleterious variants in 14 genes related to 313 

interferon signaling may be implicated in more extreme clinical outcomes [14, 23]. Given our 314 

larger sample size, we examined whether there was any evidence for association between the 315 

COVID-19 hospitalization phenotype (1,184 cases vs. 422,318 controls) and a burden of rare 316 

(MAF<0.1%) pLoF variants (M1 burden test) or pLoF plus deleterious missense variants (M3 317 

burden test) in these 14 genes. We found no nominal significant associations (P<0.05) with any of 318 

the 14 genes (Table 6). Further, these results were unchanged when testing COVID-19 severe 319 

cases (N=471), or when restricting the burden tests to include variants with a MAF<1% or 320 

singleton variants (Supplementary Table 4). Therefore, in our analysis of the UK Biobank data, 321 

we found no evidence for an association between the 14 specific interferon signaling genes and 322 

COVID-19 outcomes. 323 

 324 

Association results for 36 genes located in two risk loci for COVID-19 identified by Ellinghaus et 325 

al. [20]. Associations with rare protein-coding variants might help pinpoint target genes of 326 

common risk variants identified in GWAS of COVID-19. To address this possibility, we focused 327 

on 36 protein-coding genes located within 500 kb of the two common risk variants identified by 328 

Ellinghaus et al. [20]: rs11385942 (locus 3p21.31) and rs657152 (locus 9q34.2). Of the 72 gene 329 
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burden tests performed (36 genes x 2 burden tests, considering variants with MAF<1%), four had 330 

a nominal significant association (Supplementary Table 5), including two protective (CCR9 and 331 

TSC1) and two predisposing (SARDH and XCR1) associations. However, these associations did 332 

not remain significant after correcting for the number of tests performed (all with 333 

P>0.05/72=0.0007). 334 

 335 

Association results for 31 additional genes of interest. Lastly, we performed the same analysis for 336 

31 genes that are involved in the etiology of SARS-CoV-2 infection (e.g. ACE2, TMPRSS2), 337 

encode therapeutic targets (e.g. IL6R, JAK2) or have been implicated in other immune or infectious 338 

diseases through GWAS (e.g. IL33). After correcting for multiple testing, there were also no 339 

significant associations with a burden of rare deleterious variants for this group of genes 340 

(Supplementary Table 6). 341 

  342 



 17 

DISCUSSION 343 

Eleven months since the first reported cases of “pneumonia of unknown cause” to the World 344 

Health Organization and six months since the declaration of the COVID-19 pandemic [34], >41 345 

million individuals have been infected with SARS-CoV-2 worldwide. Epidemiological studies 346 

have identified groups of individuals at high risk for severe disease, clinical complications and 347 

death [8, 9, 35-38]. More recently, studies focusing on host genetics have begun to identify 348 

common variants that contribute to heterogeneity in COVID-19 risk and severity [20-22]. 349 

Our analysis of COVID-19 in the UK Biobank indicates that, consistent with observational 350 

studies in the same UK participants [35, 37], COVID-19-related hospitalizations and deaths skew 351 

towards older, male individuals of non-European ancestry. Hypertension, obesity, CAD, type-2 352 

diabetes and dementia are among the most frequently reported COVID-19 disease comorbidities 353 

[8, 9, 35]. Similarly, after adjusting for age, we observed a 1.7-fold enrichment in both 354 

cardiovascular disease and Alzheimer’s disease among COVID-19 cases in the UK Biobank study. 355 

Previous GWAS reported an association between risk of SARS-CoV-2 infection and 356 

common variants in the 3p21.31 locus [20-22]. We confirmed this association and further showed 357 

that this locus affects disease severity but not (or less so) risk of infection. We note, as have others, 358 

that the lead variant rs35652899 is in high LD with a lead expression quantitative trait locus 359 

(eQTL) for SCL6A20 in lung tissue [39]. The SLC6A20 gene encodes SIT1, a proline transporter 360 

expressed in the small intestine, lung, and kidney [40]. SIT1 expression and function is increased 361 

via interaction with angiotensin-converting enzyme 2 (ACE2), which is the SARS-CoV-2 receptor 362 

[41]. One intriguing hypothesis is that increased expression of SLC6A20 in the gastrointestinal 363 

tract, lung or kidney might promote viral uptake, thus leading to increased risk of severe disease 364 

due to pathology in these tissues. Other candidate genes in the region include LZTFL1, which 365 
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encodes a cytoplasmic ciliary transport protein with expression in the lung and implicated in 366 

recessive ciliopathies with renal dysfunction as one feature, CXCR6 and CCR9, chemokine 367 

receptors which mediate trafficking of T lymphocytes to the lung and GI tract, respectively, and 368 

XCR1 on plasmacytoid dendritic cells, which mediates antigen cross presentation, potentially 369 

implicating dysregulation of immune cell trafficking and function in severe COVID-19, but further 370 

work is required to attribute the purported biological mechanisms of these genes with SARS-CoV-371 

2 infection and disease progression of COVID-19.  372 

Ellinghaus et al. [20] first reported an association between common variants in the ABO 373 

locus and risk of SARS-CoV-2 infection. Furthermore, ABO blood groups have been associated 374 

with severe COVID-19 [42, 43], with blood group A being associated with increased disease risk. 375 

These observations raise the possibility that genes in the ABO locus play a role in COVID-19 376 

susceptibility. However, genetic associations at the ABO locus can be confounded by population 377 

stratification [44, 45]. Furthermore, the analysis reported by Ellinghaus et al [20] used blood 378 

donors (which skew toward type O) as controls, which might have biased the association results 379 

at the ABO locus. As such, it is important to determine if the association with the ABO locus is 380 

reproducible in independent studies. First, we found no difference in representation of blood types 381 

among COVID-19 cases and controls (not shown). Second, although we did observe a directionally 382 

consistent and nominally significant association between risk of infection and the published lead 383 

variant, when we combined results from the UK Biobank with those from the discovery cohort 384 

[20], the association with this variant did not reach genome-wide significance (not shown). Third, 385 

we found no evidence for an association between this locus and disease severity. Therefore, it 386 

remains unclear whether variants in the ABO locus represent bona fide risk factors for COVID-19. 387 
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In our GWAS of imputed variants, we identified a genome-wide significant association 388 

between risk of SARS-CoV-2 infection and a variant that tags the e4 haplotype in APOE.  Common 389 

variants in APOE have been previously associated with SARS-CoV-2 infection, independent of 390 

CAD, dementia and other comorbidities [46]. However, in contrast to these findings, we found 391 

that the association with APOE was significantly attenuated after adjusting for AD and CAD. 392 

Similar results were obtained after conditioning on AD alone (not shown). This suggests that the 393 

observed association between risk of SARS-CoV-2 infection and APOE in our analysis of the UK 394 

Biobank was, at least partly, confounded with AD status.  395 

We also identified a putative new association between common variants on chromosome 396 

19p13.11 and risk of SARS-CoV-2 infection. However, this locus was not associated with 397 

increased risks of hospitalization or severe disease amongst COVID-19 positive individuals. 398 

Replication in independent studies is required to validate the association between 19p13.11 and 399 

risk of SARS-CoV-2 infection.   400 

Lastly, we analyzed exome sequence data for a subset of 424,183 individuals in the UK 401 

Biobank to test the association between COVID-19 phenotypes and rare variants not captured by 402 

array genotyping or imputation. We found no associations at a P<5x10-8 with pLoF variants, 403 

missense variants or in gene-burden analyses. We then concentrated on 81 genes of interest, 404 

including 14 genes related to interferon signaling [14, 23], 36 genes in two GWAS loci [20] and 405 

31 additional genes of immunologic relevance and/or therapeutic potential. After correcting for 406 

the number of tests performed, there were no significant associations between the COVID-19 407 

hospitalization phenotype and a burden of rare deleterious variants in any of these genes. We are 408 

expanding our analysis of exome sequence data to include additional studies and will update results 409 

accordingly. 410 
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 411 

At the outset of the pandemic, testing for SARS-CoV-2 was restricted to symptomatic individuals 412 

and often performed exclusively at inpatient/outpatient care sites. Thus, this current analysis is 413 

likely weighted toward cases with demonstrable COVID-19 symptoms or clinical presentation. 414 

Broader analysis of seropositive individuals who were asymptomatic or had infections mild 415 

enough to resolve at home will be critical to identify genetic factors that might protect from severe 416 

disease, particularly among high-risk groups with comorbidities. Regardless, further genetic 417 

studies across ancestry groups will shed more light on human genetic risk factors associated with 418 

susceptibility to SARS-CoV-2 and may point to pathways and approaches for the treatment of 419 

COVID-19.   420 
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FIGURES 421 

 422 

A. Locus 3p21.31 (rs11385942:GA, near the LZTFL1 gene) 423 

 424 

 425 

  426 

Covid-19 positive and not hospitalized
vs. 

Covid-19 negative or unknown

Covid-19 positive
vs. 

Covid-19 negative or unknown

Covid-19 positive
vs. 

Covid-19 negative

Covid-19 positive and hospitalized
vs. 

Covid-19 negative or unknown

Covid-19 positive and hospitalized
vs. 

Covid-19 positive and not hospitalized

Covid-19 positive and severe
vs. 

Covid-19 positive and not hospitalized

Covid-19 positive and hospitalized
vs. 

Covid-19 positive, not hospitalized, comorbidities and age>60

Covid-19 positive and severe
vs. 

Covid-19 negative or unknown



 22 

B. Locus 9q34.2 (rs8176719:TC, in the ABO gene) 427 

 428 

Figure 1. Results in the UKB for variants in two loci reported recently by Ellinghaus et al. [20] to 429 

associate with risk of hospitalization with severe COVID-19. For the chromosome 9 locus, we 430 

used rs8176719 as a proxy (r2=0.94) for the lead variant reported by Ellinghaus et al. (rs657152). 431 
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A. Locus 19q13.32 (rs429358 in APOE) 433 

 434 

B. Locus 19p13.11 (rs117336466 in TMEM161A) 435 

 436 
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 437 

Figure 2. Regional association results for the three loci with common variants associated with 438 

COVID-19 phenotypes at P<5x10-8. (A) APOE locus (lead variant rs429358), associated with 439 

COVID-19 positive vs. COVID-19 negative or unknown. (B) TMEM161A locus (lead variant 440 

rs117336466), associated with COVID-19 positive vs. COVID-19 negative or unknown. The lead 441 

variant in each locus is shown by the purple diamond. Linkage disequilibrium (LD) in these figures 442 

was estimated using genetic data from European individuals of the HapMap3 project.  443 
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TABLES 444 

 445 

Table 1. Breakdown of COVID-19 status in participants of the UK Biobank study as of September 446 

12, 2020.  447 

COVID-19 
status 

Positive  
PCR for SARS-
CoV-2  

ICD10 U07 
diagnosis 

COVID-19-
related death 

Negative  
PCR test for 
SARS-CoV-2 

N 

Positive 

Yes Yes Yes - 251 

Yes Yes - - 642 

Yes - Yes - 42 

Yes - - - 777 

- Yes Yes - 16 

- Yes - - 92 

- - Yes - 122 

- Yes Yes Yes 15 

- Yes - Yes 150 

- - Yes Yes 11 

  Total = 2118    

Negative - - - Yes 16331 

Unknown - - - - 455528 

  448 
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Table 2. Criteria used to define COVID-19 phenotypes for genetic association analysis. 449 

Phenotype Case/ 
control group COVID-19 status Hospitalized Severe disease* 

COVID-19 positive 
vs. 
COVID-19 negative or unknown 

Cases Positive  - - 

Controls Negative or unknown No or NA No or NA 
COVID-19 positive 
vs. 
COVID-19 negative 

Cases Positive - - 

Controls Negative No or NA No or NA 
COVID-19 positive and not hospitalized 
vs. 
COVID-19 negative or unknown 

Cases Positive No No 

Controls Negative or unknown No or NA No or NA 
COVID-19 positive and hospitalized 
vs. 
COVID-19 negative or unknown 

Cases Positive Yes (or death**) - 

Controls Negative or unknown No or NA No or NA 
COVID-19 positive and severe 
vs. 
COVID-19 negative or unknown 

Cases Positive -  Yes 

Controls Negative or unknown No or NA No or NA 
COVID-19 positive and hospitalized 
vs. 
COVID-19 positive and not hospitalized  

Cases Positive Yes (or death**) - 

Controls Positive No No 
COVID-19 positive and severe 
vs. 
COVID-19 positive and not hospitalized 

Cases Positive - Yes 

Controls Positive No No 
COVID-19 positive and hospitalized 
vs. 
COVID-19 positive, not hospitalized, 
comorbidities and age>60 

Cases Positive Yes (or death**) - 

Controls Positive with co-
morbidities and age>60 No No 

* Severe disease: respiratory support (oxygen, ventilation) or death. ** A total of 175 individuals had a record of death due to 450 

COVID-19 but had no record of hospitalization. These individuals were included as cases. A hyphen (“-“) indicates that the variable 451 

(i.e. Hospitalized and Severe Disease) was not considered as inclusion criteria.  452 
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Table 3. Demographics for participants of the UK Biobank study included in the analysis.  453 

Demographic and clinical characteristics COVID-19 
positive 

COVID-19 
negative 

COVID-19 
unknown 

N 2118 16331 455528 
Female, n (%) 995 (46.9) 8547 (52.3) 252361 (55.4) 
Median age at assessment, years (95% CI) 59 (51,67) 60 (53-66) 57 (50, 63) 
Median body mass index, kg/m2 (95% CI) 28 (24, 31) 27 (24, 30) 26 (23, 29) 
Median C-reactive protein levels (95% CI) 1.6 (0.35, 2.9) 1.5 (0.3, 2.7) 1.3 (0.3, 0.3) 
Number of current/past smokers, n (%) 1098 (51.8) 8228 (50.3) 199923 (43.9) 
Median number of inpatient ICD10 3D codes (95% CI) 12 (3, 21) 12 (3, 20) 8 (2, 14) 
Median Townsend deprivation index (95% CI) -1.14 (-3.7, 1.46) -1.9 (-4.2, 0.4) -2.17 (-4.2, -0.12) 
 
Ancestry    

African, n (%) 115 (5.4) 388 (2.4) 8921 (1.9) 
East Asian, n (%) 17 (0.8) 65 (0.4) 2213 (0.4) 
South Asian, n (%) 92 (4.3) 428 (2.6) 10125 (2.2) 
European, n (%) 1798 (84.9) 14864 (91.0) 420007 (92.2) 
 
Co-morbidities    

Hypertension, n (%) 1169 (55.2) 8917 (54.6) 200277 (43.9) 
Coronary Disease, n (%) 229 (10.8) 1743 (10.6) 26015 (5.7) 
Heart Failure, n (%) 100 (4.7) 563 (3.4) 5317 (1.1) 
Type 2 Diabetes, n (%) 320 (15.1) 2013 (12.3) 30581 (6.7) 
Chronic kidney disease, n (%) 92 (4.3) 573 (3.5) 6615 (1.4) 
Asthma, n (%) 340 (16.0) 2895 (17.7) 64315 (14.1) 
COPD, n (%) 159 (7.5) 1042 (6.4) 10661 (2.3) 
Alzheimer’s disease, n (%) 42 (1.9) 69 (0.42) 359 (0.07) 

  454 
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Table 4. Prevalence of co-morbidities, stratified by ancestry. 455 

Disease 
COVID-19 positive Covid-19 negative 

or unknown All Hospitalized* Not hospitalized 

African ancestry 
Total N 115 74 41 9309 
Hypertension, n (%) 76 (66.1) 51 (68.9) 25 (60.9) 4561 (48.9) 
Coronary Disease, n (%) 5 (4.4) 4 (5.4) 1 (2.4) 329 (3.5) 
Heart Failure, n (%) 6 (5.2) 6 (8.1) 0 98 (1.1) 
Type 2 Diabetes, n (%) 31 (26.9) 26 (35.1) 5 (12.2) 1325 (14.2) 
Chronic kidney disease, n (%) 4 (3.4) 4 (5.4) 0 179 (1.9) 
Asthma, n (%) 16 (13.9) 10 (13.5) 6 (14.6) 1332 (14.3) 
COPD, n (%) 3 (2.6) 3 (4.1) 0 98 (1.1) 
Alzheimer’s disease, n (%) 0 0 0 7 (0.07) 

European ancestry 
Total N 1798 1145 653 434871 
Hypertension, n (%) 993 (55.2) 704 (61.4) 289 (44.2) 191906 (44.1) 
Coronary Disease, n (%) 205 (11.4) 166 (14.5) 39 (5.9) 25512 (5.8) 
Heart Failure, n (%) 85 (4.7) 75 (6.5) 10 (1.5) 5396 (1.2) 
Type 2 Diabetes, n (%) 267 (14.8) 211 (18.4) 56 (8.5) 27611 (6.3) 
Chronic kidney disease, n (%) 78 (4.3) 64 (5.6) 14 (2.1) 6563 (1.5) 
Asthma, n (%) 295 (16.4) 189 (16.5) 106 (16.2) 61755 (14.2) 
COPD, n (%) 151 (8.4) 131 (11.4) 20 (3.1) 10949 (2.5) 
Alzheimer’s disease, n (%) 41 (2.3) 26 (2.7) 15 (2.3) 385 (0.08) 

South Asian ancestry 
Total N 92 50 42 10553 
Hypertension, n (%) 47 (51.1) 26 (52) 21 (50) 5149 (48.7) 
Coronary Disease, n (%) 10 (10.8) 6 (12) 4 (9.5) 994 (9.4) 
Heart Failure, n (%) 5 (5.4) 3 (6) 2 (4.7) 167 (1.6) 
Type 2 Diabetes, n (%) 25 (27.1) 16 (32) 9 (21.4) 2308 (21.9) 
Chronic kidney disease, n (%) 6 (6.5) 6 (12) 0 202 (1.9) 
Asthma, n (%) 17 (18.4) 10 (20) 7 (16.6) 1691 (16.0) 
COPD, n (%) 3 (3.2) 2 (4) 1 (2.3) 185 (1.7) 
Alzheimer’s disease, n (%) 0 0 0 9 (0.08) 

*A total of 175 individuals had a record of death due to COVID-19 but had no record of hospitalization. These individuals were 456 

included in the “Hospitalized” group in this analysis.   457 
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Table 5. Case-control sample size for eight COVID-19-related phenotypes tested in genetic 458 

association analyses in the UK Biobank study. 459 

Phenotype Ancestry N cases N controls 
Imputed Exome Imputed Exome 

COVID-19 positive 
vs. 

COVID-19 negative or unknown 

Combined 2003 1865 453,835 422,318 
AFR 115 110 9305 8599 
EUR 1797 1673 434,038 404,300 
SAS 91 82 10,492 9419 

COVID-19 positive 
vs. 

COVID-19 negative 

Combined 2003 1865 15,653 14,519 
AFR 115 110 388 361 
EUR 1797 1673 14,839 13,765 
SAS 91 82 426 393 

COVID-19 positive and not hospitalized 
vs. 

COVID-19 negative or unknown 

Combined 734 681 453,835 422,318 
AFR 41 39 9305 8599 
EUR 652 605 434,038 404,300 
SAS 42 37 10,492 9419 

COVID-19 positive and hospitalized 
vs. 

COVID-19 negative or unknown 

Combined 1268 1184 453,835 422,318 
AFR 74 71 9305 8599 
EUR 1145 1068 434,038 404,300 
SAS 49 45 10,492 9419 

COVID-19 positive and severe 
vs. 

COVID-19 negative or unknown 

Combined - 471 443,343 412,899 
AFR 32 32 9305 8599 
EUR - 439 434,038 404,300 

COVID-19 positive and hospitalized 
vs. 

COVID-19 positive and not hospitalized 

Combined 1268 1068 735 605 
AFR 74 - 41 - 
EUR 1145 1068 652 605 
SAS 49 - 42 - 

COVID-19 positive and severe 
vs. 

COVID-19 positive and not hospitalized 

Combined 504 439 693 605 
AFR 32 - 41 - 
EUR 472 439 652 605 

COVID-19 positive and hospitalized 
vs. 

COVID-19 positive, not hospitalized, 
comorbidities and age>60 

EUR 1145 1068 189 174 

SAS case and control sample sizes for both severe COVID-19 sample sizes fell below the 460 

minimum case threshold to properly analyze.  Dashes (-) in cells indicate the sample sizes were 461 

also too small for analysis. 462 

  463 
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Table 6. Association between the phenotype COVID-19 positive and hospitalized (N=1,184) vs 464 

COVID-19 negative or unknown (N=422,318) and 14 genes related to interferon signaling that 465 

were recently reported to contain rare (MAF<0.1%), deleterious variants in patients with severe 466 

COVID-19 [14, 23].   467 

Gene Burden 
test 

Odds Ratio 
[95% CI] P-value Cases 

RR|RA|AA 
Controls 

RR|RA|AA AAF 

STAT2 M3 2.34 (1.0, 5.5) 0.050 1176|8|0 421086|1231|1 1.47E-03 
UNC93B1 M3 2.07 (0.93, 4.58) 0.073 1177|7|0 420917|1401|0 1.66E-03 

IRF7 M3 2.15 (0.8, 5.74) 0.129 1179|5|0 421275|1043|0 1.24E-03 
IFNAR1 M3 0.37 (0.08, 1.68) 0.195 1184|0|0 421811|507|0 5.99E-04 

UNC93B1 M1 3.4 (0.43, 26.93) 0.247 1066|2|0 403926|374|0 4.64E-04 
IRF7 M1 2.07 (0.6, 7.12) 0.247 1181|3|0 421674|644|0 7.64E-04 
TLR7 M3 0.52 (0.15, 1.77) 0.297 1184|0|0 421856|334|128 6.97E-04 

IFNAR1 M1 0.37 (0.04, 3.77) 0.404 1139|0|0 412664|235|0 2.84E-04 
TLR3 M1 0.37 (0.02, 6.06) 0.488 1184|0|0 422141|177|0 2.09E-04 
STAT1 M3 0.37 (0.02, 7.77) 0.520 1184|0|0 422137|181|0 2.14E-04 
STAT2 M1 0.36 (0.01, 8.76) 0.529 1068|0|0 404195|105|0 1.30E-04 
TRAF3 M3 0.37 (0.01, 10.13) 0.553 1139|0|0 412750|149|0 1.80E-04 
IRF3 M1 1.5 (0.29, 7.66) 0.625 1182|2|0 422001|317|0 3.77E-04 

TICAM1 M1 0.37 (0.0, 28.86) 0.652 1068|0|0 404205|95|0 1.17E-04 
TICAM1 M3 0.37 (0.0, 28.86) 0.652 1068|0|0 404205|95|0 1.17E-04 

TBK1 M1 0.36 (0.0, 31.85) 0.658 1068|0|0 404231|69|0 8.51E-05 
IKBKG M3 0.43 (0.0, 64.35) 0.744 1113|0|0 413640|70|9 1.06E-04 
STAT1 M1 0.37 (0.0, 375.39) 0.776 1068|0|0 404268|32|0 3.95E-05 
TBK1 M3 0.84 (0.24, 2.97) 0.787 1182|2|0 421450|867|1 1.03E-03 
TLR3 M3 0.9 (0.39, 2.06) 0.803 1179|5|0 420322|1995|1 2.36E-03 
IRF9 M1 0.37 (0.0, 1526.67) 0.813 1068|0|0 404275|25|0 3.08E-05 
IRF9 M3 0.37 (0.0, 1526.67) 0.813 1068|0|0 404275|25|0 3.08E-05 

IKBKG M1 0.49 (0.0, 369.27) 0.834 1113|0|0 413679|31|9 5.91E-05 
TRAF3 M1 0.37 (0.0, 10210.6) 0.847 1068|0|0 404284|16|0 1.97E-05 
TLR7 M1 0.51 (0.0, 617.09) 0.851 1068|0|0 404282|12|6 2.96E-05 
IRF3 M3 1.12 (0.26, 4.83) 0.874 1182|2|0 421885|433|0 5.14E-04 

IFNAR2 M1 1.04 (0.14, 7.7) 0.968 1183|1|0 421965|353|0 4.18E-04 
IFNAR2 M3 1.01 (0.14, 7.18) 0.996 1183|1|0 421949|369|0 4.37E-04 

 468 
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RR: individuals who were homozygote for the reference allele for all variants included in the 469 

burden test. RA: individuals who were heterozygote for at least one variant included in the 470 

burden test. AA: individuals who were homozygote for the alternative allele for at least one 471 

variant included in the burden test. The genes TLR7 and IKBKG are located on the X 472 

chromosome; individuals counted as homozygote for the alternative allele include hemizygous 473 

males. 474 

* M1: burden of rare (MAF<0.1%) pLoF variants. M3: burden of rare (MAF<0.1%) pLoF or 475 

missense variants that are predicted to be deleterious by 5 out of 5 algorithms. 476 

  477 
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SUPPLEMENTARY TABLES  478 

 479 

Supplementary Tables 1 to 6 are provided in a separate document. 480 

 481 

Supplementary Table 1. Genomic inflation factor (lGC) observed in the analysis of imputed 482 

variants for each of the eight phenotypes tested. 483 

 484 

Supplementary Table 2. Association between COVID-19 phenotypes and both cardiovascular 485 

disease and Alzheimer’s disease. 486 

 487 

Supplementary Table 3. Genomic inflation factor (lGC) observed in the analysis of exome 488 

sequence variants for each of the eight phenotypes tested. 489 

 490 

Supplementary Table 4. Results from burden association tests for 14 genes related to interferon 491 

signaling and recently reported to contain rare (MAF<0.1%), deleterious variants in patients with 492 

severe COVID-19 [14, 23].   493 

 494 

Supplementary Table 5. Association between the phenotype COVID-19 positive and 495 

hospitalized (N=1,184) vs COVID-19 negative or unknown (N=422,318) and 36 genes located in 496 

two loci identified in a previous GWAS of severe COVID-19 [20]. 497 

 498 

Supplementary Table 6. Association between the phenotype COVID-19 positive and 499 

hospitalized (N=1,184) vs COVID-19 negative or unknown (N=422,318) and 31 genes that are 500 
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involved in the etiology of SARS-CoV-2, encode therapeutic targets or have been implicated in 501 

other immune or infectious diseases through GWAS.  502 
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