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During a pandemic, mitigation as well as protection of system-critical or vulnerable institutions
requires massively parallel, yet cost-effective testing to monitor the spread of agents such as the
current SARS-CoV2 virus. Here we present SARSeq, saliva analysis by RNA sequencing, as an
approach to monitor presence of SARS-CoV2 and other respiratory viruses performed on tens of
thousands of samples in parallel. SARSeq is based on next generation sequencing of multiple
amplicons generated in parallel in a multiplexed RT-PCR reaction. It relies on a two-dimensional
unique dual indexing strategy using four indices in total, for unambiguous and scalable
assignment of reads to individual samples. We calibrated this method using dilutions of synthetic
RNA and virions to show sensitivity down to a few molecules, and applied it to hundreds of
patient samples validating robust performance across various sample types. Double blinded
benchmarking to gold-standard quantitative RT-PCR performed in a clinical setting and a human
diagnostics laboratory showed robust performance up to a Ct of 36. The false positive rate, likely
due to cross contamination during sample pipetting, was estimated at 0.04-0.1%. In addition to
SARS-CoV2, SARSeq detects Influenza A and B viruses as well as human rhinovirus and can be
easily expanded to include detection of other pathogens. In sum, SARSeq is an ideal platform for
differential diagnostic of respiratory diseases at a scale, as is required during a pandemic.

Introduction

Within just a few months, the newly emerged
coronavirus SARS-CoV2 caused the global COVID-19
pandemic!. While the world awaits effective vaccines
and antiviral therapies, several measures can prevent
spread of the virus. Social distancing and more strict
“lockdown” strategies are effective in containment but
have a major negative impact on human well-being23.
Therefore, the limited and directed application of such
measures is desirable. Molecular testing for the
presence of the virus by contact tracing and widespread
surveillance of asymptomatic individuals, in particular
for system relevant institutions and vulnerable person
groups, can identify infection clusters and provide the
information needed for directed quarantine or other
containment measures4%. Such massive testing has
shown tremendous impact on containment of the
spread of SARS-CoV2 in China, South Korea, Taiwan
and Singapore’-°.

Several methods have been put forward for assessing
infection status, most of which rely on detecting the
presence of viral RNA in swab, pharyngeal lavage
(gargle), sputum, bronchoalveolar lavage, or saliva
samples'0-14. Tests for the virus itself typically rely on
the detection of characteristic fragments of the viral
genome or transcripts by reverse transcription (RT) and
quantitative polymerase chain reaction (QPCR). Given
that PCR reactions can amplify unspecific fragments
(incorrect amplicons) despite the use of specific primer
pairs, widely used gqPCR tests for COVID-19 use
fluorescently labeled so-called TagMan probes that
signal the presence and abundance of matching
amplicons only. This typically means that one or a few
(2-3) amplicons can be detected per reaction, and that
specific light cyclers are needed that can perform both
PCR and fluorescence measurements. The scalability
of such a method is limited by cost and equipment
availability — primarily light cyclers.
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A more scalable and cost-effective alternative is to
couple the same RT-PCR reaction to next generation
sequencing (NGS) as a means of high-throughput
readout. NGS-based approaches detect amplicons
identity by sequencing and computational analyses and
therefore are not limited in the number of different
amplicons they can detect in parallel: multiple different
fragments (viral and cellular controls) can be amplified
per reaction, as long as primer pairs are compatible. In
addition to detecting multiple fragments in parallel,
individual samples can be uniquely labeled with
characteristic sequence-identfiers, i.e. indices, to allow
for pooled sequencing and subsequent deconvolution.
The advantages of detecting multiple pathogen
amplicons per sample and processing tens of
thousands of samples in parallel mean that NGS-based
protocols offer huge cost-saving potential and are thus
highly attractive for large-scale testing.

However, while NGS-protocols are conceptually simple
and indeed a few different protocols have been
developed and partly even FDA-approved’s-20. Each of
these methods have different strengths, yet also suffer
from one or several challenges that directly impact
sensitivity, specificity at the amplicon and sample level,
scalability and/or costs. In this work, we describe
SARSeq (Saliva Analysis by RNA Sequencing), a
robust high-throughput protocol that overcomes these
challenges by optimization of the initial sample
conditions, a 2-step endpoint RT-PCR, NGS-compatible
amplicons with mutually compatible sets of primers, and
a barcoding strategy that achieves perfect sample-recall
by redundant dual indexing while scaling to tens of
thousands of samples by combinatorial indexing along
two dimensions. We apply this protocol to samples with
synthetic RNAs and various different patient samples
and demonstrate that it extends to the simultaneous
detection of SARS-CoV2, influenza viruses, and human
rhinoviruses (HRV) from the same sample in a single
experiment. Overall, our pipeline can be efficiently
combined with high-throughput sample collection in 96-
well formats, robotics and NGS to detect SARS-CoV2
and other respiratory pathogens in tens of thousands of
samples per experiment with a turnaround time of about
1 day (Fig. 1A).

Method Development and Results

Two-step RT-PCR allows specific detection of SARS-
CoV2 from crude respiratory samples by NGS

The first step towards establishing a high-throughput
SARS-CoV2 test was to find a sample preparation
method that would bypass the costly and time-
consuming step of RNA purification from patient
samples, while being compatible with RT-PCR. A
number of sample types have been effectively used to
detect SARS-CoV2, including swabs collected in viral
transport medium (VTM) or other buffers, saliva and
gargle with Hanks’ balanced salt solution (HBSS) or
saline solutions0-1214, Gargle samples enable similar
sensitivity to swabs collected by medical staff2, and are
preferred to pure saliva as samples become more
uniform in viscosity and are thus easier to pipette, a
prerequisite for automation (Fig. 1A). Such samples,
however, pose the challenge that exposure of viral or
cellular RNA for RT must occur under strict inhibition of

the high load of RNAses present in saliva2!. A number
of methods have been reported to expose and
simultaneously stabilize RNA in these samples,
including heat inactivating at 95°C1'5, treating with
proteinase K'4, and mixing with TCEP/EDTA?22 or with
QuickExtract solution23. To compare these methods, we
obtained gargle samples (in HBSS) from one negative
and two SARS-CoV2 positive individuals, and either
purified RNA or treated the gargle according to the
different protocols. We then assessed RNA exposure
and stability by performing TagMan RT-qPCR of a virus-
specific amplicon (N1) (Fig. 1B). All the methods
generated stable RNA while maintaining similar
sensitivity to purified RNA under our reaction conditions.
We also tested QuickExtract and TCEP/EDTA on swab
samples in VTM, in experiments that are described
below. In these tests, QuickExtract showed the least
precipitation upon heating to 95°C and was thus used
for most experiments unless otherwise stated.

The next aspect we evaluated was when to add the
DNA indices that distinguish individual samples. These
can in principle be incorporated during the RT15.18.19 as
well as during the PCR2425 as extensions of the
primers used to reverse transcribe or amplify the
desired amplicons, respectively (Fig. 1C). However, we
found that having primers with the required extensions
during the RT step resulted in a large fraction of non-
specific PCR products, presumably because the low
temperature of the RT reaction allows substantial non-
specific priming (Fig. 1D). Given the large but limited
sequence space on NGS flow cells, such lack of
specificity means that many more reads would be
needed per sample, limiting upscaling to large sample
numbers. We therefore chose a 2-step reaction in which
priming in the RT step is performed with random
hexamers plus two gene-specific 12-mers that increase
sensitivity for SARS-CoV2 (Suppl. Fig. 1), while
integration of the sample indices occurs during the
PCR.

One of the hurdles towards establishing a pooled NGS-
based assay for samples from virus infected individuals
derives from the fact that viral loads can differ by many
orders of magnitude such that high-titer samples would
dominate an NGS run. TagMan RT-gPCR reports
differences in Ct values of 20-25 cycles, which translate
into 225=33.5 million-fold differences in viral titers.
Therefore, if samples with low virus titer are to be
robustly identified as positive, e.g., with >100 virus-
derived amplicon reads, the samples with high virus
titers would require 3.3 x 109 reads, which is prohibitive.
For that reason, the dynamic range needs to be
compressed to “dampen” the signals from highly
positive samples while providing sufficient sensitivity to
detect samples with lower titers. Of note, sample
indexing during RT as discussed in Fig 1C with
subsequent PCR upon pooling would also maintain
these quantitative differences, which is not desired for
this application’®. To achieve this compression, we ran
the first PCR reaction on individual samples for 45
cycles until they reached saturation. This generated
similar numbers of amplicons per well independent of
initial viral titer (Fig. 1D,E; Suppl. Fig. 1C). In summary,
using crude respiratory specimens as input, a 2-step
end-point RT-PCR generates high-specificity and
uniform representation of correct amplicons across
samples and enables pooling of many samples for
analysis by NGS.
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Figure 1. Two-step RT-PCR coupled to NGS allows specific detection of SARS-CoV2 from crude respiratory samples. A.
Overview scheme to illustrate the envisioned analysis pipeline. B. Comparative analysis of SARS-CoV2 detection by TagMan RT-
gPCR on the N1 amplicon, following different RNA extraction treatments. Gargle samples from two SARS-CoV2 positive and one
negative person were collected in HBSS. RNA was purified (without concentrating) or crude lysates were produced using either heat
inactivation for 30 min'5, TCEP/EDTA (HUDSON buffer)22, or QuickExtract?3. Treated samples were incubated overnight at room
temperature or on ice to assess stability. C. lllustration of amplicon indexing either during RT or PCR. Colored boxes symbolize
different indices that label individual samples for identification by sequencing (by NGS). Arrows illustrate oligonucleotide hybridization
to RNA during RT or DNA in PCR. D. Comparison of amplicon levels measured by NGS after indexing either during RT or PCR.
Amplicon-specific primers carrying extensions which contain the sample indices (“long primers”) were either included as RT primers
(indexing during RT) or used only in the PCR step (indexing during PCRY); in the latter case, RT was performed with a mix of random
hexamers and two N gene-specific primers (“short primers”) (Suppl. Fig. 1). Indexing during RT was performed by either 1-step RT-
PCR (with hot start Taq polymerase already present during RT), or 2-step RT-PCR (with hot start Taq polymerase added after RT).
Black wedges symbolize a dilution series of synthetic SARS-CoV2 RNA from 3645, 1215, 405, 135, 45, 15, 5, to 0 molecules.
Thermo SS3: Superscript Il enzyme provided by Thermofisher; h.m. RT3: homemade Superscript lll-like enzyme; h.m. RT2.5:
homemade variant of Superscript ll-like enzyme; E. Total NGS read numbers per individual sample, for a set of 42 samples
containing from 5 to 3645 SARS-CoV2 RNA molecules; note the range compression from four to one order of magnitude, which

enables equal representation of all samples across the sequencing space and therefore high sensitivity and scalability.

A control primer pair targeting 18S rRNA provides
better specificity than the widely used RPP30 primers

In addition to the very large dynamic range of viral titers
between patients, non-specific PCR amplicons can
impair the detection of viral amplicons by NGS,
because the number of NGS reads is inherently limited
(and directly proportional to the total costs). For
example, the parallel analysis of approximately 40,000
(96 x 384) samples means that each sample can
receive a total of ~500 reads on a MiSeq, ~2,000 reads
on a HiSeq, and ~10,000 reads on a NextSeq platform.
If a substantial fraction of these reads were spent on
sequencing non-specific amplicons, assay sensitivity
would be severely impacted. It is thus pivotal to select
amplicons and primer pairs that i) show high sensitivity,
ii) generate amplicons of comparable short size, and iii)
generate few non-specific amplicons alone or in
combination with any other primer present in the same
reaction, which is of particular importance when using
primers with long extensions (here: up to 42 nucleotides
as PCR primers contain sample-identifying index
sequences, staggers of random nucleotides, and
primer-binding sites for a 2nd PCR as discussed
below).

We thus tested several published SARS-CoV2 specific
primer pairs26-29 after adding our index-containing
extensions. We settled on the N gene-specific primer
pairs N1 and N3 proposed by the Center for Disease
Control (CDC) as they produce an ideal amplicon length
of ~70 bp and performed best in SYBR-Green qPCR
(which does not control for amplicon identity) as well as
in initial sequencing runs (Suppl. Fig. 2). We then
tested the N1 amplicon together with the widely used
internal control primer pair targeting RPP30 (coding for
RNAse P). While the N1 primers showed up to 50% of
correct amplicons, in correlation with the amount of
synthetically spiked in template, the fraction of specific
amplicons for RPP30 was only 0.06-1.5% (Fig. 2A).
When analyzing all sequenced amplicons across all
samples shown in 2A, we detected various short
sequences that together made up >99% of all NGS
reads. The vast majority was generated by the RPP30-
specific primers (Fig. 2B), suggesting that these
primers are not compatible with multiplexed PCR and
NGS. We therefore set out to establish a new control
primer pair that would produce fewer non-specific
amplicons. We tested several primer pairs on gargle
samples obtained from 16 individuals, yet only a single
primer pair, specific for 18S ribosomal RNA, was
detected in all samples and showed a strong
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dependency on the presence of reverse transcriptase ribosomal RNA as a host control in our SARSeq panel.
(Fig. 2C). Ribosomal amplicons were detected at Ct Indeed, the ribosomal amplicon performed well and
values of 15-45, a range comparable to that of viral neither generated abundant unspecific amplicons alone,
amplicons in infected individuals. We therefore tested nor with N1 or N3 primer pairs (Fig. 2D).
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Figure 2. A control primer pair targeting 18S rRNA improves assay performance compared to the widely used RPP30
primers. A. NGS read counts obtained with the SARS-CoV2 N gene-specific primer pair N1 as well as the human RNAse P
(RPP30)-specific primer pair designed by the CDC28. RT-PCR was performed on inactivated gargle-QE samples spiked with a range
of 5120 to 5 molecules of synthetic template in a two-fold dilution series, as well as 0 molecules. Non-specific amplicons are defined
as amplicons generated by the respective matched primer pairs but with incorrect sequence in between. B. Analysis of all amplicons
generated in the pool of conditions shown in A. Non-specific amplicons typically incorporated a short stretch of sequence
complementary to some primer sequences and were almost exclusively generated by at least one RPP30-specific primer. Specific
amplicons add up to <1% of reads in this condition. C. SYBR Green qPCR analysis of RPP30 primers and two alternative internal
control primer pairs in the presence and absence of reverse transcriptase on RNA purified from gargle of 16 individuals. Ct values are
transformed to relative differences. D. Scheme of the RT control (RTC) spike-in; an amplicon with identical primer binding sites to the
ribosomal internal control yet different and longer intermediate sequence was synthesized, cloned, and T7 transcribed. The RTC was
added during the RT at 1000 molecules/reaction. The ratio of ribosomal to RTC reads serves as a sample quality measurement.
Reactions without reads for the ribosome or the RTC amplicons indicate an inhibited/failed RT-PCR reaction. E. Read distribution
from an NGS experiment similar to A, but with the ribosome amplicon as internal control, and addition of the RTC spike-in. The
number of non-specific reads is dramatically reduced, which impacts sensitivity and scalability.
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Since the 18S amplicon - like the RPP30 amplicon -
does not span an intron, it cannot discriminate against
genomic DNA templates abundant in respiratory
samples. We thus designed an additional internal RNA
control to assess successful reverse transcription in all
samples (reverse transcription control or RTC); we
produced an in vitro-transcribed RNA with identical
primer binding sites as the ribosomal amplicon, yet an
unrelated sequence in between (Fig. 2E). The RTC was
spiked into the reverse transcription mix at a
concentration of 1000 molecules/reaction (Fig. 2D).
Upon further optimization of RT- and PCR buffers (see
Methods), SARSeq reached high amplicon specificity
with >30% amplicons corresponding to expected
amplification products (Fig. 2D, see also Fig. 1D).
Moreover, the ratio between ribosomal amplicon and
RTC reads provided a good assessment of sample
quality: we observed that in the presence of good-
quality gargle, the ratio is high and the RTC is lowly
detected, but if the sample is low in nucleic acids the
RTC takes over and the ratio is low. We also
encountered clinical samples that likely contained RT
and/or PCR inhibitors in which neither amplicon was
efficiently detected (not shown). The high specificity of
amplicons achieved, and the even representation of
reads across samples set the stage to develop a high-
throughput indexing strategy that allows analysis of tens
of thousands of samples in parallel.

Two-dimensional redundant dual indexing allows
scaling to population-level testing

To exploit the high-throughput nature of NGS, we would
need a sample barcoding strategy that allows
multiplexing of tens of thousands of samples in a single
sequencing run while retaining strict sample specificity,
i.e., suppressing misassignment of reads to incorrect
samples, which can lead to false positive diagnoses.
Several strategies for sample indexing are possible.
First, samples can be individually indexed by a sample-
specific short DNA sequence (typically called index or
barcode) in the RT primer or one of the two PCR
primers (Fig. 3A). In such a setup, sample-specific
primers incorporate sample-indices into all amplicons
from each sample, and these are then sequenced as
part of the respective amplicon; e.g., Salis and
colleagues designed 19,000 RT indices'®. This strategy,
however, does not scale well as it requires distinct
primers for each amplicon and sample (linear/additive
scaling). More importantly, it cannot retain perfect
sample identity due to template-switching PCR
artifacts30.31 and index-hopping on flow cells32:33, which
can lead to incorrect associations between amplicon-
and index sequences. This problem is of particular
relevance when high-titer samples are analyzed next to
samples from healthy individuals as we demonstrated
by spiking synthetic SARS-CoV2 template into two
wells of a 96 well plate (wells B8 and F2) in which all
other wells are negative (Fig. 3B). The scalability
limitation can be overcome with a combinatorial
indexing strategy, such as a column index on the
forward primer and a row index on the reverse primer34
(combinatorial/multiplicative scaling; Fig. 3C). However,
such a strategy suffers from the same inability to retain
perfect sample identity, which in this case leads to a
characteristic cross-shaped pattern along the rows and
columns of the positive samples due to the
misassignment of the row or column indices (Fig. 3D).

We developed an indexing scheme for SARSeq that
achieves perfect sample specificity and combinatorial
scalability. Specificity regarding sample identity was
achieved by two indices that both point to the same
sample/well (Fig. 3E, F), a strategy termed redundant
dual indexing or unique dual indexing3435. These two
indices are introduced through forward and reverse
primers and redundantly encode each sample with
distinct indices at each end of the amplicon, thereby
eliminating illegitimate index combinations. Such an
approach requires two indices (=unique primers) per
sample and therefore does not scale well when a single
PCR is used (one dimension). We therefore use a two-
dimensional indexing strategy, which we realized by two
subsequent PCR steps: after the first PCR performed
with unique dual indexing, we pool all samples within
one plate into one well of a second plate and perform a
second PCR that again uses unique dual indexing. This
strategy of two-dimensional redundant dual indexing
allows combinatorial indexing between dimension 1 and
2, and thus multiplicative scaling, while retaining perfect
sample identity (Fig. 3G, H). It requires an only
modestly higher number of indexing primers for very
many samples and allows the encoding of 96x96 or
96x384 samples with 2x96 amplicon-specific primers (2
per amplicon; 1st dimension) plus 2x96 or 2x384 global
primers (irrespective of amplicon; 2nd dimension),
respectively.

In practice, we extended the amplicon-specific primers
for the 1st PCR (1st dimension) at their 3' ends to
include a sample-specific index and i5/i7 sequences as
primer-binding sites for the 2nd PCR. To ensure
sufficiently complex sequences of the NGS forward
reads for cluster identification and stable sequencing,
we staggered the sample-index and the amplicon-
specific sequence by a random offset of 1-4 base pairs
(see Fig. 3G and Suppl. Table 1). We tested a total of
110 primer pairs per amplicon (N1, N3 and 18S rRNA)
to establish a set of 96 primer pairs that show good
amplification behaviour for all amplicons (Suppl. Fig.
2). For the final set of primers, all amplicons within one
well obtain identical offsets and indices to prevent
recombination between amplicons and indices during
PCR and to simplify bioinformatic analysis. Pre-
prepared primer-plates and robotic pipetting pipelines
allow us to process thousands of samples in parallel.

After the indexing of individual samples (=wells of a 96-
well plate; 1st dimension), all samples of one plate were
pooled to one position of a new 96-well plate, and in a
second PCR, a plate-specific index was added (2nd
dimension). We implemented three measures to ensure
that sample identity was perfectly retained between the
1st and 2nd PCR. First, to ensure that primers from the
1st PCR were used up in PCR 1 and thus not present
during the 2nd PCR, we included an RNA template with
N1 and N3 primer binding sites similar to the RTC and
the normalization-spike-in used in the Swab-Seq
pipeline?s (Fig. 4A). Second, we treated the pools of
PCR 1 with DNA exonuclease to enzymatically degrade
all single-stranded DNA and thus all remaining primers
especially from SARS-CoV2 negative wells. Third, we
kept the cycle number for PCR 2 at a minimum to avoid
amplicon recombination during PCR and used a PCR
protocol that prevents premature termination of an
extension steps¢é. Indeed, all three measures
synergistically contributed to the robustness of read
assignment (Suppl. Fig. 3A). In each dimension we
used dual and redundant indices with a Hamming
distance of at least three mismatches. The primers used
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Figure 3. Two-dimensional redundant dual indexing allows scaling to population-level testing. A. Scheme depicting 96 well-
specific indices. These can be incorporated by forward or reverse primers. For the latter they can be incorporated during RT or
PCR. Red circles highlight the positions into which synthetic SARS-CoV2 RNA was added to test specificity of the indexing
strategy. B. N3 amplicon reads obtained by NGS and mapped to each well based on indices incorporated by reverse primers
during PCR. Forward primer indices were disregarded in this analysis. Note the frequent mis-assignment to incorrect positions. C.
Scheme depicting combinatorial indexing. Each well is identified as a unique combination of a forward and a reverse index. D. N3
NGS reads mapped to wells based on combinatorial indexing as in C. To simulate combinatorial indexing the identical dataset as in
B and F was used and primers were treated in pools pointing to columns or rows. E. Unique dual indexing is a redundant indexing
method that encodes each well both by a unique forward and a unique reverse index. Thus, illegitimate recombination products
between an amplicon and its associated indices can be bioinformatically rejected. F. NGS result for the same dataset as in B and D
analyzed with unique dual indices successfully filtered away all misassigned reads. G. Two rounds of unique dual indexing (in two
subsequent PCR reactions) can be used to index first wells and then plates, effectively achieving combinatorial (multiplicative)
scaling. Colored boxes represent indices. H. lllustration of the PCR workflow. RT and PCR 1 are performed on all samples
individually, adding well-specific indices. Subsequently each plate is pooled to one well position of a new plate, reactions are
treated with Exostar to remove excess primers and a second PCR is done, adding plate-specific indices and the lllumina flow cell
adaptors. Our currently used and validated index set allows pooling of up to 36,864 samples (96 in PCR1 x 384 in PCR2). Finally,
PCR 2 amplicons are pooled, gel purified and sequenced on any lllumina platform.

. plate 384

pooling
each plate

for PCR 2 (2nd dimension) are commercially-available facilities for multiplexing. This pipeline also suppressed
Nextera primer sets available as 384 unique pairs, read misassignment across plates, such that the highly-
which are frequently used in many NGS sequencing positive positions of Fig. 3A, C, E were not detected on
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other plates run in the same experiment (Suppl. Fig.
3B).

Our experimental design provides scalable and robust
indexing for SARS-CoV2 amplicons by using PCR to
incorporate two sets of redundant indices, and
bioinformatics to only allow legitimate combinations of
those four indices. The ability to encode 96 well indices
(1st dimension) and 384 plate indices (2nd dimension)
means this can be used to prepare 36,864 individual
samples simultaneously. To illustrate scalability of the
approach, a 4-fold increase in one dimension for
example by using 384 well indices in the 1st PCR,
would enable multiplexing of >145,000 samples. This
degree of multiplexing renders the sequencing price per
sample negligible and thus enables frequent population-
wide testing because sequencing capacity is also not
bottleneck with current NGS platforms. In summary,
redundant dual indexing ensures sample identity
specificity and two-dimensional indexing allows
scalability while preventing any spill of reads from
positive to negative samples even across multiple
orders of magnitude in signal intensity.

SARSeq is specific and sensitive when tested on a
large set of gargle samples

To test sensitivity, specificity, and scalability of SARSeq
we set out to run large sample cohorts in which we
diluted synthetic RNAs or a high-titer patient sample
into SARS-CoV2-negative gargle samples from
hundreds of different people. In addition, we also used
this setup to test the effect of spike-ins with identical
primer binding sites to the N1/N3 amplicons but
different sequences in between, as introduced
previously's (Fig. 4A). We processed multiple 96-well
sample plates in parallel using a robotic pipetting
platform.

We first assessed the sensitivity of SARSeq in this
setup by diluting viral templates to 1, 3, or 10 copies per
reaction (0.2-2 copies/ul in the 5 pl sample input). To
account for the contribution of QuickExtract as well as
to test RNA exposure from viral particles, we diluted
synthetic RNA in H20 as well as QuickExtract:HBSS but
also virions packaged in cell culture, in
QuickExtract:HBSS. We measured each dilution in 24
replicates using SARSeq as described above. Using
H20 for dilution we detected the 1 copy solution of
SARS-CoV2 RNA in 5 and 6 of 24 tested cases for N1
and N3, respectively. At such dilution, assuming a
Poisson distribution, 63% of wells are expected to
contain one or more viral copies, pointing towards a
detection efficiency of 30-40% per molecule.
QuickExtract increased that efficiency to 70% while
detection straight from viral particles was at 1.1 per
molecule (Fig. 4B and Suppl. Fig. 4). It is thought that
infectious COVID-19 patients show viral titers of >103/
Ml; our detection limit is thus at least 100 times more
sensitive than required for mitigation strategies for the
SARS-CoV2 pandemic.

We had designed spike-ins containing the N1 and N3
priming sites to ensure that these primers are used up
even in the absence of viral templates (Fig. 4A). We
wondered if possible primer competition would thus
decrease sensitivity of the assay. The presence of 100
copies of each the N1 and N3 spike-ins did not
decrease sensitivity but even showed slightly better
detection efficiencies, presumably also because the
spike-ins were longer than the viral amplicon (Fig. 4B).

Due to the endpoint PCR we perform, SARSeq
intentionally only returns semi-quantitative results, yet
as such spike-ins have been used to improve the
quantitative ability of other NGS approaches that rely on
endpoint PCR (the ratio between viral amplicon and
spike-in reads reflects the ratio of these two templates
in the starting reaction5), we tested the effect of spike-
ins on the quantitative behaviour of SARSeq (Fig. 4C).
At the level of 100 copies per reaction the number of
reads we obtained corresponding to the spike-ins was
too low to serve as a reliable "denominator".
Nevertheless, when testing a dilution series of synthetic
SARS-CoV2 RNA in quadruplicates, we noticed
improved reproducibility in the presence of these spike-
ins and therefore included them in the final setup. Also,
our assay retains a degree of semi-quantitativeness
over three orders of magnitude (Fig. 4C).

To challenge SARSeq with hundreds of real samples
omitting RNA purification and thus prepare for a clinical
performance study, we generated sample plates from
pharyngeal lavage (gargle) collected in HBSS from
healthy participants of routine SARS-CoV2 testing at
our institutes. Such diverse, crude samples may contain
reagents inhibitory to the RT or PCR step. All gargle
samples were previously tested negative through gPCR
but we added synthetic SARS-CoV2 RNA and a dilution
series of a positive gargle sample with Ct=30 in a
TagMan gPCR assay, into several marked positions
(Fig. 4D). Subsequent to PCR 1 we upscaled the
experiment by creating 6 replica each sample plate and
thus brought it to 180 virtual plates that were processed
in parallel in PCR 2 and sequenced on one NextSeq
high output lane. We therefore measured a total of
2,880 real and 17,280 replicated samples in this batch.
We detected all positive samples, with the exception of
a 105 dilution of a positive gargle sample with a Ct
value of 30, suggesting very high sensititivty. Notably,
the agreement between N1 and N3 amplicon-based
results was 100% (Fig. 4D).

Another critical parameter when testing large numbers
of patients is the false positive rate. We were therefore
pleased to see that our indexing strategy and pipeline
delivered typically zero and very rarely 1 read indicative
of SARS-CoV2 for gargle samples previously tested
negative by qPCR as well as for all H20 controls,
compared to hundreds or thousands of reads for
positive samples. In total we performed four runs using
gargle samples from our in-house testing pipeline,
adding up to 4952 negative samples and 728 positive
samples created by adding synthetic SARS-CoV2 RNA
or dilutions of a positive patient sample. We observed 2
unexpected N1-positive samples and 5 unexpected N3-
positive samples, estimating a false positive rate for our
pipeline of 0.04-0.1%. This binary result showcased an
unambiguous assessment of infection status by
SARSeq. Due to the absence of false positive reads we
also did not need to further use the N1 and N3 spike-in
"denominator" amplicons to set a threshold ratio for
calling positive results’s. In summary, SARSeq enables
the semiquantitative assessment of synthetic SARS-
CoV2 RNA in various buffers and in gargle samples and
allows the detection of SARS-CoV2 RNA with high
sensitivity and specificity.

SARSeq robustly detects SARS-CoV2 in patient
samples from a clinical setting

To test if SARSeq robustly detects real SARS-CoV2
virus in patient samples collected in clinical diagnostic
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Figure 4. SARSeq is specific and sensitive when tested on a large set of gargle samples. A. Schematic illustration of RNA
spike-ins to scavenge N1 and N3 primers during PCR 1 in SARS-CoV2 negative samples. Analogous to the RTC, primer binding
sites are identical to N1/3 amplicons, but intermediate sequence is distinct and longer so as not to compete with virus-derived
amplicons. B. Frequency of detection of SARS-CoV2 at minimal template concentration. Number of detected cases out of 24 trials
is depicted. Note that the expected frequency of detection is only 63% and 95% for one and three molecules respectively, assuming
a Poisson distribution of molecules in wells. C. Read counts of N1 and N3 amplicons in a synthetic SARS-CoV2 RNA dilution series
performed in four replicates. Note the reduced variability in the presence of N1/3 spike-ins. D. SARSeq performance on a test pool
of 864 gargle samples collected in HBSS from healthy participants of a routine SARS-CoV2 testing pipeline at our institutes. These
were spiked with synthetic SARS-CoV2 RNA or a dilution series generated from a positive patient sample(Ct=30). All negative
samples produced 0-1 N1/3 reads, while positive samples produced thousands. The only missed samples were 10-5-fold dilutions of
the patient sample, which presumably did not contain SARS-CoV2 RNA. Sample quality is assessed by the ratio or ribosomal reads
to RTC spike-in.
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Figure 5. SARSeq robustly detects SARS-CoV2 in patient samples. A. H20 control plate of SARSeq with three primer pairs,
namely N1, N3, and ribosome in the presence of RTC as well as N1 and N3 scavenger spike-ins. B. SARSeq on a gargle-
QuickExtract plate in the absence of reverse transcriptase. No false positive wells were detected. Sample QC scores high due to
the absence of RTC reads while DNA templated ribosomal amplicon is observed. C. Analysis of 576 samples obtained by swab and
collected in VTM. D. Independent replicate of C based on the same inactivated patient swab. Color codes depict read counts and
sample quality score for C and D. E. Two independent N1 TagMan gPCR runs on samples as in C and D. Ct values of both runs are
plotted against each other. Color code: red: sample scoring positive in both gPCR replicates, orange: sample scoring once, black:
sample scoring negative. Stochastic and latest detection of SARS-CoV2 at cycle 36. F. Venn diagram of reproducibility for all
samples scoring positive with Ct 36 or less for at least one qPCR replicate. G, H. Comparison of NGS results by SARSeq to Ct
values obtained by diagnostic gPCR. A set of 90 samples (including swabs and gargle in different buffers) was used for RNA
extraction and gPCR measurements and in parallel aliquots of these samples were mixed either with QuickExtract or TCEP/EDTA
and measured by SARSeq in triplicates and quadruplicates, respectively. We report the number of replicates in which we called a
sample positive by NGS (with the N1 or N3 amplicon) relative to the gqPCR Ct values. Not shown are 63 samples that were negative
by gPCR and NGS.
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settings, we measured a set of 564 swab samples from
independent patients collected at the Clinical Center of
the University of Sarajevo (Sarajevo, Bosnia and
Herzegovina). These samples were obtained in VTM
and further mixed with QuickExtract, in duplicates.
While we did not detect N1 or N3 amplicons in H20 or -
RT conditions (Fig. 5A, B) we frequently obtained
SARS-CoV2 reads across all plates with good
correspondence between amplicons and replicates
(Fig. 5C, D). To assay correspondence to the standard
test, we also measured the samples in a TagMan qPCR
assay in duplicates (also without prior RNA purification).
As expected, we observed a robust correlation of both
gPCR replicates until ~Ct=36 (Fig. 5E, red dots) and
stochastic behaviour beyond that detection limit (Fig.
5E, orange dots) with either one or two replicates
scoring positive. No SARS-CoV2 was detected in an
additional 354 samples. We analyzed the overlap
between detection by qPCR and NGS and found that
157 (96.3%) of samples that scored with a Ct value of
<36 in at least one gPCR scored positive in all four
assays, while six samples scored positive in one or two
assays only (Fig. 5F). We hypothesized that the
stochastic behaviour at the detection border is due to
the presence or absence of a single reverse transcribed
viral genome. If that was true, detecting that genome by
both amplicons in a single replicate should be more
likely than detecting one of the two amplicons in the two
independent replicates. In contrast, different sensitivies
towards the N1 and N3 amplicons would result in the
opposite outcome. Indeed, of the samples detected with
1-3 of these assays, 48 and 43 patient samples showed
detection of SARS-CoV2 with both amplicons within
one SARSeq replicate, while only 18 and 25 samples
were detected twice independently with N1 or N3
amplicon, respectively. We thus conclude that SARSeq
appears sensitive down to single reverse-transcribed
viral genomes. We also assessed the reproducibility of
SARSeq runs (Suppl. Fig. 5A, B). As anticipated, the
absolute read numbers are not necessarily correlated,
but there is very good correspondence regarding
whether or not a sample is positive. We observed the
expected upper end of N1/N3 read counts produced by
the end point PCR strategy to distribute sequencing
space evenly across samples (Fig. 1E). Given the
number of samples at the limit of detection, some
samples were undetected in NGS but present in one
gPCR replicate, and some samples were detected by
NGS that were missed by one or both qPCRs.
However, as mentioned above (Fig. 5F), 96.3% of all
samples with Ct <36 were detected in both NGS
replicates.

SARSeq robustly detects SARS-CoV2 in samples
from a human diagnostics setting

As a pilot for a systematic clinical performance study we
compared SARSeq to a gold standard qPCR assay
conducted in a human diagnostic setting. This test
included a 90 samples of diverse nature, including
swabs in VTM, gargle in isotonic NaCl, and others, of
which 28 were positive according to a gold standard
gPCR pipeline. This pipeline used the equivalent of 17
pl crude sample whereas we used 2.5 pl (for
QuickExtract mix) and 4.7 pl (for TCEP/EDTA mix)
crude original sample as input for SARSeq. We
performed seven replicates for SARSeq (3 in
QuickExtract and 4 in TCEP/EDTA) which yielded highly
consistent results: as expected, samples that were
negative by qPCR showed only 0 or 1 reads in all
replicates, whereas samples that were positive by

gPCR consistently displayed thousands of reads.
Specifically, we detected the N1 amplicon in 7/7
replicates for all positive samples with Ct values <36.5
and in at least 1/7 replicates for all others with Ct values
<38.9 (Fig. 5G). The N3 amplicon showed a similar
pattern but seems more sensitive to sample quality
(Fig. 5 H). We also assessed quantitativeness by
comparing Ct values from the gqPCR directly to the read
counts obtained by NGS (Suppl. Fig. 5C, D). As
intended by the endpoint PCR for dynamic-range
compression, SARSeq is blunted for high viral titers (Ct
values lower than ~33) but is semi-quantitative for
weakly positive samples. We therefore conclude that
SARSeq is a useful method to detect SARS-CoV2 in
clinical and diagnostic settings for samples of various
chemical compositions, robustly detecting samples with
Ct values ~36, but also samples up to Ct values of 39,
albeit with decreasing probabilities.

SARSeq can detect multiple respiratory viruses in a
single reaction

Multiple infectious agents cause diseases with
overlapping clinical symptoms to COVID-19, including
influenza A and B virus, parainfluenza virus,
rhinoviruses, and respiratory syncytial virus. It is
expected that, particularly in the winter season, various
respiratory symptoms will cause concerns and thereby
dramatically increase the demand for SARS-CoV2
tests. For SARSeq, adding amplicons corresponding to
other infectious agents comes at little extra cost as long
as it does not increase the required sequencing depth.
Therefore, we can further multiplex SARSeq to detect
other common respiratory viruses (or other pathogens)
found in the same sample used for SARS-CoV?2 testing.

As proof of principle, we optimized primers for influenza
A virus, influenza B virus, and rhinovirus to be
combined with our SARS-CoV2 specific SARSeq
pipeline. To this end we selected primers based on
gPCR performance, amplicon length, and an NGS pilot
experiment. For a pan-influenza A amplicon we settled
on combining a degenerated forward primer from Bose
et al. with a degenerate WHO reverse primer, both
targeting the M gene3738, For pan-influenza B, we
selected a previosuly characterized primer pair binding
to the M gene3s. Rhinovirus was detected using a
primer pair described previously3°.

To test performance across a large number of
specimens, we used sample plates from gargle
collected in HBSS via our in-house testing pipeline
(negative for SARS-CoV2) and spiked in purified RNA
obtained from HEK293T cells infected with respective
virus strains at a ratio of 1:100 (per gargle volume) or
dilutions thereof. Samples were processed using the
protocol and robotic pipeline as for other experiments,
except that we performed PCR 1 in the presence of six
primer pairs, two against SARS-CoV2 (N1 and N3), and
one each for ribosomal control, influenza A, influenza B,
and rhinovirus. Upon pooling of 12 samples each and
PCR 2, samples were sequenced and reads were
mapped back to individual wells (Fig. 6A). Of note, by
pipetting the viral RNAs prior to setting up the RT
reaction we apparently generated a contamination of
influenza B RNA that was stochastically distributed
across all reactions (including H20 controls but not -RT
controls) and obtained reproducibly lower read counts
than the samples to which we intentionally added this
viral RNA (Fig. 6B). This event emphasizes the
importance of complete local separation of reaction mix
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Figure 6. SARSeq can detect multiple respiratory viruses in a single reaction. A. Six 96 well plates filled with gargle in HBSS
and inactivated in QuickExtract from our in-house pipeline were spiked with RNA from various respiratory viruses. For SARS-CoV2,
a positive gargle sample with Ct value of 30 was diluted as indicated. RNA for all other viruses was obtained from HEK cells 48 h
after infection with the virus. Dilution indicated by voluminometric ratio. SARSeq was performed with six primer pairs in one reaction,
namely N1 and N3 for SARS-CoV2, Influenza A virus, Influenza B virus, human rhinovirus (HRV), and the ribosome. Influenza A
substrains and HRV substrains were distinguished based on amplicon sequence variants. B. Analysis of false positive and false
negative rate of the experiment in panel A. As expected, 1:100,000 dilutions of the SARS-CoV2 sample with a Ct of 30 were missed.
All other positive samples were detected for all viral spike-ins. False positive samples were detected for Influenza B virus
presumably due to sporadic contamination of reagents or equipment with purified RNA also in the H20 control plate (not shown).
False positive read counts did not reach numbers observed in truly positive samples. No false positive samples above threshold
were detected for any other virus.
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preparation and sample handling. All post-PCR steps
were always performed in a different lab from the initial
setup of the reaction and thus DNA amplicons did not
generate detectable contamination of our pipeline.
Nevertheless, we implemented incorporation of UTP
and a UDG digestion step prior to PCR in our protocol
to protect against contamination risk with DNA
amplicons (see Methods).

Our multiplexed pipeline to detect RNA of various viral
respiratory diseases in parallel performed robustly
across six 96-well plates. We obtained no false
negative samples besides, as expected, the 1/1mio
dilutions of a SARS-CoV2 sample with Ct=30. Aside
from the apparent influenza B contamination, we also
did not see any other false positives. Moreover, the
amplicon sequence of influenza A virus allowed us to
distinguish between two different sub-strains we had
used, namely A/Wy and A/WSN (Fig. 6B) the latter of
which is anticipated to circulate in the northern
hemisphere 2020/21 flu season40. Similarly, with a
single primer pair we were able to distinguish between
the three rhinoviral strains, namely HRV A1a, A1b, and
A2 by polymorphisms in respective amplicons. Taken
together, our pipeline in its current form differentially
detects seven different viral respiratory agents in a
single reaction, contains various internal controls, a
sample quality control, and by design has particular
sensitivity for SARS-CoV2. SARSeq thus represents a
multiplexed, massively parallelized assay for saliva
analysis by RNA sequencing to detect respiratory
infections by means of RT-PCR and NGS.

Discussion

It has been proposed that mass testing for SARS-CoV2,
with a focus on surveillance of asymptomatic
individuals, can help mitigate the effects of the
COVID-19 pandemic, and this strategy has shown good
results in South Korea, Taiwan and Singapore’. To
further expand this to other nations, the assays used for
such large-scale testing must meet a number technical
considerations: i) the tests themselves must be highly
specific to avoid false positives leading to the isolation
of individuals based on erroneous results; ii) the costs
for mass testing must be as low as possible to
reasonably enable scaling; iii) the assay must be
massively scalable and return results in a short
timeframe; iv) mass testing must not interfere with
testing in medical/diagnostic facilities, it is thus
preferable that it is neither carried out at the same
facilities nor competes for supplies required to diagnose
symptomatic patients.

Here, we described SARSeq, an NGS-based testing
method that meets the technical considerations outlined
above. The current design enables analysis of up to
36,000 samples in parallel, and we demonstrated the
analysis of >18,000 samples in a single sequencing run.
SARSeq shows high specificity at two levels: at the
amplicon level it has maximal specificity as it detects
the precise sequence of two independent SARS-CoV2
amplicons; at the sample identification level, SARSeq
employs a number of measures to completely suppress
mis-assignment between samples. Moreover, the cost
per sample analyzed by SARSeq is low compared to
other available tests; it relies on common reagents and
enzymes that can be purchased at scale or produced
in-house with standard biochemical methods. The costs
of sequencing per sample also become negligible

considering that they are divided over thousands of
samples. Finally, SARSeq, with the exception of NGS,
relies exclusively on equipment available in most
molecular biology facilities in academia and industry,
and does not compete for resources with other
diagnostic tests.

Several alternative methods to detect SARS-CoV2 by
NGS have been developed. While some focus on viral
genome sequencing and are thus of lower
throughput2041, others aim to be used for detection of
viral infection by amplicon sequencing at high
throughput similar to SARSeq. In one strategy, samples
are indexed during the RT step and PCR is performed
in pool™. This approach has the advantage that early
sample pooling circumvents the need for large numbers
of individual PCR reactions. We anticipate however,
that such an approach would maintain the vast dynamic
range in viral titers between samples. As explained
above, this leads to highly positive samples dominating
the available NGS read space, thereby prohibiting true
scalability while maintaining sensitivity.

In contrast, SwabSeq and SARSeq use individual PCR
reactions for each sample, which allows dynamic-range
compression by end-point PCR. In addition, both
methods use a dual indexing strategy to gain the
required robustness in sample recall that is key for
diagnostic assays. However, SwabSeq and SARSeq
differ in several important aspects that directly impact
scalability and the multiplexed detection of different
amplicons:

SwabSeq uses a 1-step RT-PCR reaction, whereas
SARSeq performs RT and PCR in two steps, which we
found to significantly suppress unspecific amplicons
and thus make efficient use of the read space, a
prerequisite for sensitivity, scalability and multiplexing of
amplicons. However, a one-step RT-PCR reaction is
also compatible with SARSeq, albeit with slightly lower
amplicon specificity (Fig. 1D).

More importantly, due to a single indexing step,
upscaling of SwabSeq is linear rather than
combinatorial — every additional sample requires one
additional primer pair per amplicon. In contrast,
SARSeq uses a two-dimensional indexing strategy,
which allows combinatorial (multiplicative) scaling of up
to tens of thousands of samples with just a few hundred
primer pairs and therefore leverages the sequencing
capacities offered by NGS. By linear indexing, such
dimensions would neither be cost effective nor
logistically feasible.

Another important difference is that the amplicons
generated by SwabSeq contain the flow cell adaptors
but not the i5/i7 sequencing primer bindings sites and
thus require a mix of custom sequencing primers, one
for each amplicon. This limits the number of different
amplicons that can be surveyed in parallel and also can
cause heterogeneity in cluster signal intensity and thus
impact sequencing quality. In contrast, all SARSeq
amplicons contain standard i5/i7 sequencing primer
bindings sites and are directly compatible with the
regular sequencing protocols and reagents on all
lllumina platforms. This facilitates the addition of further
amplicons to the assay and since all are read out by the
same standard i5/i7 binding sequencing primers.
Therefore the extra PCR reaction that SARSeq
requires, is small technical burden, which however
allows dramatic improvements in scalibity of samples
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and amplicons and yields amplicons with homogenous
sequencing properties.

Together, these advantages allowed the detection of
other respiratory RNA viruses beyond SARS-CoV2.
Specifically, we used SARSeq to detect influenza A
virus, influenza B virus, and human rhinovirus and this
list can be easily expanded to additional infectious
agents, both circulating and also newly emerging
pathogens. Moreover, SARSeq is not limited to
respiratory specimens, but we envision that this pipeline
could be used for other human and animal samples or
even monitoring pipelines such as those that sample
wastewater.

SARSeq solves the technical challenges downstream of
sample acquisition, shifting the bottleneck towards truly
high-scale testing from the actual assay to developing
matching logistics for sample collection, maintaining
supply chains, developing appropriate data
management tools, and also often overcoming legal
hurdles. However, we envision ways in which SARSeq
can be implemented right away, to already significantly
contribute to detecting infection events before they
spread. In the first, samples can be collected and
inactivated locally, potentially also first PCR might be
performed using prepared and distributed primer arrays,
then shipment to centralized location for PCR2,
sequencing and analysis. Importantly, depending on the
legal situation and aim, this pipeline does not
necessarily need to a human diagnostics lab and would
thus not block important infrastructure. In the second,
companies, universities, other types of institutions could
implement a regular sample collection strategy among
employees/students/other members and team up with a
local academic or industry lab that can with relatively
little effort implement this protocol.

Different SARS-CoV2 detection assays have been
optimized over the last few months, each with strengths
and limitations. For SARSeq, a potential limitation is the
time requirement of the assay. Two PCR reactions must
be performed followed by NGS and analysis, so the
theoretical minimum time required is around 15 hours.
In practice, our tests took at least 24 hours from sample
preparation to results. Therefore, SARSeq is not ideally
suited for situations where immediate results are
required. In such cases, antigen tests42 or RT-LAMP43:44
are superior methods. Rather, SARSeq is ideally suited
for regular (e.g., once or twice a week) surveillance of
infections in a large scale population, with high
sensitivity and specificity (i.e. negligible false positive
and false negative rates). SARSeq might also be
suitable to test symptomatic persons if a turnaround of
24h for the test itself is acceptable. In addition, SARSeq
can be implemented in epidemiology studies to
understand the spreading dynamics of infections4® and
to investigate interaction between different pathogens
across large populations4é. However, the main
advantage of SARSeq is that the same turnaround time
of 15-24 hours can be used to simultaneously test tens
of thousands of samples. Therefore, SARSeq
complements available diagnostic tests, increasing
capacity to enable large-scale monitoring efforts.
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Supplemental Figures

Mix of RT primers N gene
AACCAAGACGCY —
GGTGGGAATGTL '
NNNNNN ~__

I negative for SARS-CoV2
6 Bl positive for SARS-CoV2

Total reads per sample (log, )
T

192 samples processed and sequenced together
(independent run to that shown in Fig. 1)

Suppl. Fig. 1. Two-step RT-PCR strategy enables specificity and even read distribution. A. The RT primer mix
contains two N-gene specific 12-mers (actual sequences shown) in addition to random hexamers. B. Scheme of the
RT priming sites relative to the specific PCR primers. For SARS-CoV2 the 12-mers generate a cDNA into which the
PCR primers are nested. C. Total reads per sample across a set of 192 samples that contain several negative
samples as well as positive samples with titers spanning 4 orders of magnitude. Our 2-step RT-PCR strategy followed
by end-point PCR lead to a very even distribution of NGS reads per sample independent of viral titer, ensuring equal
representation on the sequencing flow cell.
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Suppl. Fig. 2. Choice of SARS-CoV2 specific primers. A. SYBR green based gPCR on samples generated by
mixing gargle from a healthy individual or water, with 1000 copies of synthetic SARS-CoV2 RNA. Primers used were
based on previous publications?847, but were extended at the 5’ by the sequences required for NGS, namely i5/i7, a
random stagger, and a barcode. Several primer pairs showed a good template dependent generation of double
stranded DNA. B. A next generation sequencing pilot showed good amplification for N1 and N3, thus we chose N1
and N3 amplicons to detect SARS-CoV2 in the presented setup.
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Selected a set of 96 pairs of indices
that work well for all amplicons

Final primer plate

5 6 7 8 9 0 11 12 13 14 15 16
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Suppl. Fig. 3. Validation of the amplicon-specific primer pairs containing 96 unique dual indices. Testing of
primer pairs for three amplicons (SARS-CoV2 N1 and N3, and human ribosome) carrying extensions with 110 unique
dual indices. Primer pairs with indices #29 were excluded as they did not efficiently produce the ribosome amplicon;
primer pairs with indices #74 were excluded as they did not efficiently produce the N3 amplicon. Primer pairs 1-4 can
be used efficiently but were not included in the final set because these indices were frequently used in the lab during
initial setup of the method and we wanted to eliminate all possible sources of cross contamination.
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Suppl. Fig. 4. A. Contribution of the different measures taken to completely suppress mis-assignment of indices to
incorrect samples (and in that way avoid false positives). SARS-CoV2 synthetic RNA was added to positions B8 and
F2. Assigning sample identities based on single indices or combinatorial indices produces a substantial amount of
misassignments. These can be reduced with three independent measures: addition of a competitive spike-in and
treatment with Exostar to remove any left-over primers after PCR1, and limiting the number of cycles in PCR2 to
prevent recombination between amplicons and their indices. Whereas all these measures help reduce
misassignments, adding dual redundant indices (or unique dual indices) completely suppresses this. B. Shown are
N1 and N3 reads for two negative control plates (-RT and H20) that were run together with numerous other positive
plates in the same run. The fact that we detect 0 reads shows that there is no misassignment of well identities across
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Suppl. Fig. 5. Raw data for limit of detection experiments presented in Fig. 4B. A. Read count table obtained in
absence of N1- and N3- control-spike-in. B. Read count table obtained in presence of N1- and N3- control-spike-in.
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Suppl. Fig. 6. Semiquantitative behaviour of SARSeq on patient samples. A, B. Correlation of read counts of N1
(A) and N3 (B) amplicons across two independent SARSeq runs of the samples shown in Figure 5C, D. In red are
individual samples also detected in two qPCR replicates, in orange are samples detected in one out of two qPCR
replicates, and in gray those that were not detected by qPCR. C, D. Correlation between read counts for N1 (C) and
N3 (D) amplicons and Ct values obtained by diagnostic gqPCR. The gPCR analysis was performed on purified RNA, in
parallel crude samples were measured in seven replicates by SARSeq, all replicates are shown as individual circles.
SARSeq is robust until ~Ct 36 and becomes probabilistic in samples with lower viral titers.
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Materials and Methods

Sample material and ethics

The present study includes preliminary investigations and results of a clinical performance study approved

by the local Ethic Committee of Vienna (#EK 20-208-0920). For that, left-over samples from healthy
participants were obtained from an anonymous routine SARS-CoV2 screening pipeline, and left-over patient

samples in Fig. 5G,H were obtained by the Austrian Agency for Health and Food Safety (AGES) in

a

diagnostic pipeline and provided to us fully anonymized. For VTM samples used for Figure 5 A-F, an
additional approval (#06-04-9-33163 from 21/07/2020) was obtained from the Ethics Committee of the

Clinical Center of the University of Sarajevo. The study was conducted in accordance with the Declaration of

Helsinki.

Input sample preparation

The pipeline we describe can start from a variety of different input samples. The types of samples we
have tried are:

*  Purified RNA from gargle samples
*  Gargle samples mixed with DNA QuickExtract solution from Lucigen (1:1 ratio)
¢ Swabs in VTM mixed with DNA QuickExtract (1:1 ratio)

Samples mixed directly with QuickExtract were incubated for 5 min at 95°C for inactivation and used
directly or stored frozen at -80°C. We did not observe a decline in positive signals upon freezing and
thawing (even after two cycles of freeze-thaw).

The samples were arrayed in 96-well plates. The described reaction setup uses up to 5 uL of any of the
above described samples.

Reverse transcription

Reverse transcription was performed with reverse transcriptase, homemade Ribonuclease inhibitor and a
primer mix containing random hexamers as well as two 12-mer oligonucleotides that prime on the SARS-
CoV2 N gene.

A master mix containing all components listed below was prepared and distributed to 96-well plates (20
ML per well). Using a liquid-handling robot (or multi-channel pipettes), 5 yL of each sample were
transferred to each individual well containing the RT reaction mix. RT reactions were set up at room
temperature. Plates were sealed with aluminum sealing foil (facilitates easy removal after RT reaction that
reduces vibrations in wells avoiding generation of aerosols which may cause cross contamination
between samples) and incubated in a thermocycler following conditions listed below.

Master mix composition per reaction/well (volumes in pL)

10x RT BufferA 25
25 mM each dNTP 0.5
1M DTT 0.1
RT primer mixB 2.0

Ribonuclease inhibitor 0.5
Reverse transcriptase 0.5
Water 13.8

Wherever mentioned, for each reaction 1000 copies of Ribosome synthetic RNA spike-in and 50 copies of
each N1 and N3 RNA synthetic spike-in were included in the RT reaction master mix. Also, wherever
mentioned Thermofisher/Invitrogen™ SuperScript™ IIl or Luna Universal One-Step RT-qPCR Kit (NEB)
or homemade reverse transcriptase 2.5 (see below for details) was used for reverse transcription. In all
other experiments, homemade reverse transcriptase 3 was used for reverse transcription.

Thermocycler program:

5 min at 25°C (primer annealing)

15 min at 55°C (reverse transcription/RT was carried out at 42°C for reverse transcriptase 2.5)
3 min at 95°C (RT inactivation)
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Cool down to 12°C (removing the plate while it is still hot will cause bending of the plastic, making further
pipetting and sealing more difficult)

A10x RT Buffer composition:
200 mM Tris-HCI pH 8.3

500 mM KCI

50 mM MgCl2

200 mM (NH4)2S04

1% Triton X-100

BRT primer mix composition: 12.5 mM of each random hexamer, N gene specific 12-mer #1 and N
gene specific 12-mer #2 (final concentration in the complete 25 uL RT reaction is 1 mM each)

In-vitro transcription of spike-in synthetic RNA templates for reverse transcription controls.

For Reverse Transcription Control (RTC), gBlock was obtained from IDT. Using IDT synthetic template
RTC was PCR amplified and cloned into pCR2.1 plasmid by TOPO cloning. For cloning N1 spike-in N1FF,
N1FR, N1FR, N1RR, insertF and insertR, oligos were annealed and cloned into pCR2.1 plasmid by
ligation at Spel and EcoRl sites. Similarly, for cloning N3 spike-in N3FF, N3RF, N3FR, N3RR, insertF and
insertR, oligos were annealed and cloned into pCR2.1 plasmid by ligation at Spel and EcoRI sites. RTC
gBlock sequence and oligo sequences used to clone N1 and N3 spike-in templates are given below in
table. Spike-in template containing plasmid clones are confirmed with Sanger sequencing. For efficient in-
vitro transcription, plasmids were linearized downstream of the T7 promoter and spike-in template by
cutting with a unique restriction enzyme. In-vitro transcription was carried out using NEB HiScribe™ kit
according to manufacturer's instructions. Transcribed reactions were treated with Turbo DNAse/
Thermofisher for 1 hr and RNA is purified using Zymo RNA clean and concentrator spin columns. RNA
was aliquoted and stored at -80°C.

Name Sequence

RTC GCCTACGAGATAATACGACTCACTATAGGGNNNggcattegtattgegecgetaTGA

gBlock GTCATAGAAAACAATGCCTAATCCGCAAGGTCGTGATCTCCAATAAAGGAG
TAGGACCAGAGCGAAAGCATTTGCCATAGCTCC

N1F-F CTAGTGACCCCAAAATCAGCGAAATGTAG

N1F-R ATTTCGCTGATTTTGGGGTCA

N1R-F CAGATTCAACTGGCAGTAACCAGAG

N1R-R AATTCTCTGGTTACTGCCAGTTGAATCTGGTTG

N3F-F CTAGTGGGAGCCTTGAATACACCAAAAGTAG

N3F-R TTTTGGTGTATTCAAGGCTCCCA

N3R-F CAATGCTGCAATCGTGCTACAG

N3R-R AATTCTGTAGCACGATTGCAGCATTGGTTG

Insert-F ACAGAAAGCACGTAAGCGCTTCTATAGTGGGAAGAGAAGTTATACCAAC

Insert-R GTATAACTTCTCTTCCCACTATAGAAGCGCTTACGTGCTTTCTGTCTAC

First PCR (sample indexing)

A master mix containing all components listed below, including homemade HotStart Tag Polymerase and
Uracil DNA glycosylase (Antarctic Thermolabile UDG from NEB) was prepared and distributed to a deep-
well 96-well plate. The 96-primer pair combinations® containing dual well barcodes were also arrayed in
96-well plates (multiple primer plates can be prepared simultaneously and stored frozen at -20°C). Using
a liquid-handling robot, the 96 sets of barcoded primers were added to the PCR master mix and mixed
thoroughly. 25 pL of this complete 2x PCR mix were added to the 25 yL RT reactions prepared as above.
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Plates were sealed with aluminum sealing foil and incubated in a thermocycler following the conditions
listed below.

All components were kept at room temperature during reaction set up; together with the first step in the
thermocycler, a 10 min incubation at 30°C, this provides the right conditions for UDG to act on Uracil-
containing amplification products of previous PCR reactions, thereby removing spurious carry over
contaminants. After UDG heat inactivation, the subsequent PCR reaction was again carried out in the
presence of UTP to prevent carry over contamination in following runs.

Master mix composition per reaction/well (volumes in pL)

10x PCR top up BufferP 2.5
100 mM dUTP 0.07
Hotstart Taq Polymerase 0.5
Antarctic thermolabile UDG 0.5
Water 16.43

Thermocycler program:

10 min at 30°C (for high UDG activity)

3 min at 95°C (UDG inactivation and Hotstart Taq activation)

45 cycles of: 20 sec at 95°C, 30 sec at 58°C, 20 sec at 72°C

2 min at 72°C

Cool down to 12°C (removing the plate while it is still hot will cause bending of the plastic, making further
pipetting and sealing more difficult)

CPCR primer mix composition: 2 mM of each forward and reverse primer, for all viral amplicons and 1
mM of each forward and reverse primer for the rRNA amplicon (final concentration of each primer pair in
the complete 50 yL reaction was 200 and 100 nM, respectively)

D10x PCR Top Up Buffer composition:
750 mM Tris-HCI pH 8.3

200 mM (NH4)2S04

1% Triton X-100

Plate pooling

All well-barcoded PCR products from a single 96-well plate were pooled, typically 20 pL of each reaction
was combined in a plastic reservoir using a multi-channel pipette, and after mixing thoroughly 1 mL was
transferred to an Eppendorf tube. This was repeated for every PCR plate. 5 yL from each plate pool were
re-arrayed in a new 96-well plate and treated with 2 uL of illustra ExoProStar 1-step for 30min at 37°C
followed by 15 min at 80°C to remove any left-over primer.

Second PCR (plate indexing and addition of sequencing adaptors)

A master mix with all components listed below was distributed across a 96-well plate (37.5 uL/well). To
each we added 10 pL of unique dual-indexed i5/i7 primer pairs (Custom synthesized index primers with
Nextflex barcodes, arrayed in 96-well plates) and 2.5 pL of ExoProStar-treated PCR1 pool. The reactions
were run for 8 cycles to add sequencing adaptors with plate barcodes.

Master mix composition per reaction/well (volumes in pL)
10x Sequencing-ready PCR Buffert 5

25 mM each dNTPs 0.5

100 mM dUTP 0.07

Hotstart Taq Polymerase 0.5

Water 31.43
Thermocycler program:

3 min at 95°C

8 cycles of: 15 sec at 95°C, 30 sec at 65°C, 30 sec at 72°C
2 min at 72°C

Cool down to 12°C

E10x Sequencing-ready PCR Buffer composition:
750 mM Tris-HCI pH 8.3
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200 mM (NH4)2SO4
20 mM MgCl»
0.1% Tween 20

Pooling and preparation for sequencing

All samples from a 96-well plate (20ul from each well) were pooled and 250ul of pooled sample was
resolved on a 2% agarose gel and 220-260 bp amplicons were excised and gel purified using Qiagen gel
extraction kit.

To ensure fast turnaround, the preparation of libraries for lllumina sequencing was optimized empirically.
In the first four sequencing runs, standard quality control of the library, including Qubit measurement, a
size analysis and gPCR, was performed. A correlation between the concentration measurement by Qubit
and the gPCR was detected. In every case the molarity determined by qPCR was 10x higher than the
concentration measured by Qubit. Thus, we were able to omit the size analysis and the gPCR, which are
both time consuming. The library concentration was determined by three independent Qubit
measurements, the obtained value in ng/ul was multiplied by 10 and used as the molarity of the sample in
nanomolar. This procedure enables us to start the sequencer within 15 min after receiving the sequencing
library. Final preparation of the sequencing run happens according to lllumina’s guidelines, including
denaturation of the sample, neutralization and final dilution for sequencing.

Sequencing

Depending on the sequencer type, the following concentrations were used for sequencing: 10 pM for
MiSeq V2 chemistry, 15 pM for MiSeq V3 chemistry, 2.2 pM for NextSeq550 high output and 1.3 pM for
NextSeq550 medium output. In every sequencing run 10% of PhiX library were spiked-in to increase
complexity. To avoid contaminations with barcodes from previous sequencing runs, the sequencers were
washed with bleach according to lllumina’s guidelines before every runs. In addition, that to avoid cross
contamination of barcodes from previous runs, in practice, even if running a smaller number of samples,
having 384 plate barcodes (2nd dimension) allowed us to alternate the subsets of indices used and
thereby filter against any DNA remnants from previous runs that might be in the sequencer.

Data analysis

The NGS data (fastq.gz files) were mapped in a single pass to sets of expected amplicon sequences and
to sets of expected well- and plate indices using dedicated shell and awk scripts based on string-hashing
that allows for 0 or 1 mismatch per amplicon and index. During method development, different parameters
were tested and optimized, including single- versus paired-end sequencing, the sequencing platforms
(MiSeq vs. NextSeq), and the exact positions of the indices in the primers (and thus in the reads) and the
analysis was adjusted accordingly (the analysis script we make available is compatible with the final
primer- and parameter set recommended for use). For redundant dual indexing, we required the correct
redundant encoding of plate and well. The i5 and i7 index reads signify the plate-indices, and parts of the
forward and reverse reads (in the case of paired-end sequencing) signify the well-indices. As the well-
index in the forward read starts at random offsets, we first determine the amplicon identity and position,
then infer the position of the well index, and finally compare the well index to the valid well index pairs; all
reads with invalid plate- or well-index pairs were excluded. For the final set of primers, the offsets are
made consistent for all amplicons of a given well, changing between 1 and 4 between wells such that the
well-index starts between positions 2 and 5.

The analysis script is available on GitHub at https://github.com/alex-stark-imp/SARSeq and at
https://starklab.org.

Viral amplicons

The following amplicons were extracted from the NGS reads:

Amplicon Sequence

N1 gaccccaaaatcagcgaaatgcaccccgcattacgtttggtggaccctcagattcaactggcagtaaccaga
N1-spike- gaccccaaaatcagcgaaatGTAGACAGAAAGCACGTAAGCGCTTCTATAGTGGGAAG

in AGAAGTTATACCAACcagattcaactggcagtaaccaga

N3 gggagccttgaatacaccaaaagatcacattggcacccgcaatcctgctaacaatgctgcaatcgtgctaca
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N3-spike- gggagccttgaatacaccaaaaGTAGACAGAAAGCACGTAAGCGCTTCTATAGTGGGAA
in GAGAAGTTATACCAACc caatgctgcaatcgtgctaca
rRNA ggcattcgtattgcgccgctagaggtgaaattctiggaccggcgcaagacggaccagagcgaaagcatttgec
RTC ggcattcgtattgcgecgctaTGAGTCATAGAAAACAATGCCTAATCCGCAAGGTCGTGAT
CTCCAATAAAGGAGTAggaccagagcgaaagcatttgcc
InNfA-WSN ctcatggaatggctaaagacaagaccaatcctgtcacctctgactaaggggattttaggatttgtgttcacgcetcacc
gtgcccagtgagcggggactgcagcgtagacgctttgtcca
InfA-Wy ctcatggagtggctaaagacaagaccaattctgtcacctctgactaaggggattctggggtttgtgttcacgctcacc
gtgcccagtgagcgaggactgcagcgtagacgatttgtcct
InfB-Lee gccttctecatcttetgttagtgaaagcaggtaggceaattgtgtctccaaacagecgac
HRVA1a tcectecggeccctgaatgeggctaaccttaaacctgcagecatggcetcataagccaatgagtttatggtcgtaacga

gtaattgcgggatgggaccgactactttgggtgtccgtgtttc

HRVA1b tcectecggeccctgaatgeggctaaccttaaacctgcagecatggticataaaccaatgagattatggtcgtaatgag
caattgcgggatgggaccgactactttgggtgtccgtgtttc

HRVA2 tcctcecggeccctgaatgtggctaaccttaaccctgcagctagagcacgtaacccaacgtgtatctagtcgtaatga
gcaattgcgggatgggaccaactactttgggtgtccgtgtttc

Expression and purification of homemade enzymes

Reverse transcriptase 2.5:

Transformed pET15b-His6-Reverse transcriptase 2.5 plasmid into E. coli strain Rosetta and plated on LB
plates containing Ampicillin and Chloramphenicol. After selection, inoculated plasmid containing colony in
5ml of LB+Amp (100 g/ml) + Chloramphenicol (30 g/ml) and incubated in orbital shaker at 37°C until a
visible turbidity. Transferred this inoculum to 100ml LB+ Amp + Chloramphenicol and incubated for
overnight. Next day, inoculated overnight culture into 2 liters of pre-warmed LB + Amp + Chloramphenicol
and incubated on orbital shaker at 37°C until ODeoo reaches 0.5 - 0.6. Protein expression is induced by
adding IPTG to 1mM final and incubated in orbital shaker at 37C for an extra 3 hours. Cells were
harvested by centrifugation at 4500 rpm/15min/4°C. Resuspended bacterial pellet in 200ml of lysis buffer
(40 mM Tris pH 8.0, 100 mM KCI, 10% Glycerol, 0.01% Triton X-100) supplemented with 2 X Protease
Inhibitors cocktail (Roche) and 4mg/ml of lysozyme and incubated for 30 min. Sonicated suspension for 3
X 2min at 80% power of the tip. Pellet cell debris by centrifugation at 30 min at 4°C/ 20,000rpm. Transfer
supernatant to a clean bottle and spin again if necessary. If there are still chunks pass supernatant
through 0.45 um filter (do not load chunky lysates on the resin). Load the clear supernatant on Ni-NTA
column or beads pre-equilibrated with the lysis buffer. Wash with wash buffer. Eluted protein with the
elution buffer (40 mM Tris pH 8.0, 100 mM KCI, 10% Glycerol, 0.01% Triton X-100 and 250 mM Imidazole
for batch elution or 500mM for on column elution). Step elution is carried out, if column is used. Applied
the Ni-NTA eluate (protein rich fraction diluted till 50mM KCI) to Mono-S column pre-equilibrated with 10
column volumes of buffer MS1 (40 mM Tris pH 8.0, 50 mM KCI,10% Glycerol, 0.01% Triton X-100, 0.1
mM EDTA and 1mM DTT). Washed the protein loaded Mono-S column with 10 column volumes of buffer
MS1. Elute the reverse transcriptase with a linear gradient from 50mM to 1M KCI (buffer MS1 and buffer
MS2(40 mM Tris pH 8.0, 1M KCI,10% Glycerol, 0.01% Triton X-100, 0.1 mM EDTA and 1mM DTT).
Dialyzed fractions containing the protein of interest against 2 liters of dialysis buffer (40mM Tris pH 8.0,
100mM KCI, 0.1 mM EDTA, 1mM DTT, 0.01% Triton X-100 and 50% Glycerol) for overnight in the cold
room. For long term storage Reverse transcriptase 2.5 is storage at -80°C and for short term at -20°C.
Protein concentration was estimated with Bradford and different dilutions of the enzyme are assayed for
the final optimal working concentration of reverse transcription.

Ribonuclease inhibitor:
Ribonuclease inhibitor is expressed and purified as described previously48.

Hot-start Taq polymerase:

Transformed Taq polymerase expression plasmid into E. coli strain DH5 alpha and plated on LB plates
containing Ampicillin. After selection, inoculated 5 ml (LB-medium with 100 g/ml ampicillin) with a single
colony of E. coli expressing Taq polymerase and incubated in orbital shaker at 37°C until a visible
turbidity. Transferred this inoculum to 100ml LB+ Amp and incubated for overnight. Next day, inoculated
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overnight culture into 2 liters of pre-warmed LB + Amp and incubated on orbital shaker at 37°C until ODeoo
reaches 0.5 - 0.6. Protein expression is induced by adding IPTG to 1mM final and incubated in orbital
shaker at 37C for an extra 3 hours. Cells were harvested by centrifugation at 4500 rpm/15min/4 C and
washed the cell pellet with 1X PBS. Resuspended cell pellet in 100ml Buffer A (25mM HEPES-KOH pH
7.5, 25mM Glucose, 200mM KCI, 1mM EDTA, 0.5% Tween-20 and 0.5% NP-40) with Protease inhibitors
(Roche). Incubate suspension in a 250 ml Erlenmeyer flask for 1 hour at 75°C. Pellet cell debris by
centrifugation at 30 min at 4°C/ 35,000 rpm and collect supernatant. Equilibrate DE-52 (DE-52, pre-
swollen form, Whatman) or DEAE resin (BioRad #156-0021) by washing it 3 to 4 times with Buffer A and
centrifuge 2 min at 4000 rpm, 4°C. Batch incubate the supernatant with DE-52 or DEAE for 15 min at 4°C
(resin should not settle down). Centrifuge 2 min at 4000 rpm, 4°C and collected supernatant. Wash one
time DE-52 or DEAE resin with 100 ml Buffer A, centrifuge for 2 min at 4000 rpm, 4°C and collect the
supernatant. Both supernatant fractions combined and diluted to 40 mM KCI with Buffer B (20mM
HEPES-KOH pH 7.5, 1mM EDTA, 0.5% Tween-20 and 0.5% NP-40). Apply the supernatant on a Poros
20 CM 16mmD/100mmL column (this column is not produced any longer. Therefore, if you don’t have it,
you could use any strong cation exchange column). Before loading the samples equilibrate the column
with 40mM KCI. After applying the sample, wash the column with 40mM KClI, till there is a stable baseline.
Step elute the Taq polymerase with 300mM KCI in buffer B. Collected the peak fractions and dialyzed in
dialysis buffer (20mM HEPES-KOH pH 7.5, 100mM KCI, 50% glycerol, 1mM EDTA, 0.5% Tween-20 and
0.5% NP-40 and 1mM DTT) for overnight at 4°C. Volume will reduce to about 1/3 and protein should be
ready for storage (long term storage at -80°C, short term at -20°C). Measured the activity of Taq
polymerase and diluted accordingly with dialysis buffer. Taqg polymerase is made Hotstart compatible by
using method described previously4°.
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