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Abstract 

Cytokines are the signalling molecules that underlie inflammatory processes. Here, we performed 

genome-wide association study (GWAS) analyses of 47 circulating cytokines in up to 13,365 

individuals to identify protein quantitative trait loci (pQTL). Applying a novel approach, we 

incorporated pQTL and expression quantitative trait loci (eQTL) data of 10,361 tissue samples in 635 

individuals to identify biologically plausible genetic instruments to proxy the effect of cytokines. 

Using Mendelian randomization analysis, we explored the causal determinants of inflammatory 

cytokines, investigated inflammatory cascades and evaluated their effects on 20 diseases. We show 

evidence of body mass index (BMI), smoking and systolic blood pressure (SBP) being associated with 

inflammation, and specifically BMI affecting levels of active PAI-1, HGF, MCP1, sE-Selectin, sICAM1, 

TRAIL, IL6 and CRP. Our analysis highlights a key role of VEGF in influencing the levels of eight other 

inflammatory cytokines. Finally, we report evidence of sICAM affecting waist circumference and risk 

of major depressive disorder, evidence for TRAIL affecting the risk of cardiovascular diseases, breast 

and prostate cancer, and evidence for MIG affecting the risk of stroke. Overall, our results offer 

insight into inflammatory mediators of BMI, smoking and SBP, pleiotropic effects of VEGF, and 

circulating cytokines that increase the risk of cancer, cardiovascular, metabolic and neuropsychiatric 

diseases. All the studied cytokines represent pharmacological targets and therefore offer 

opportunities for clinical translation in diseases with inflammatory components. 
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Introduction 

Cytokines, chemokines, growth factors and interferons (hereafter cytokines) are circulating protein 

signalling molecules that underlie inflammatory processes(1). Their levels are influenced by 

metabolic traits, and in turn have implications for various diseases(2). Cytokines are already targeted 

clinically for the prevention and treatment of a range of autoimmune and inflammatory 

processes(3), with further promise for cardiovascular(4), cancer(5), and neuropsychiatric diseases(6). 

Elucidation of the mechanisms relating cytokines to disease risk is important for the prioritisation of 

agents for study in clinical trials. 

Availability of genotyped populations in which circulating cytokines have been measured has 

allowed for an investigation into the genetic determinants of systemic cytokine levels(7, 8). Similarly, 

variants associated with expression of cytokine genes across different tissues have been 

described(9). These genetic variants that associate with circulating cytokine levels and gene 

expression may be used as instrumental variables in the Mendelian randomization (MR) paradigm to 

study potential causal effects of inflammatory cytokines on disease risk(10, 11). In MR, randomly 

allocated genetic variants are used as unconfounded proxies for the effects of the exposure. These 

genetically predicted exposures are then evaluated for their association with the outcome of 

interest. MR can help overcome the confounding and reverse causation that hamper causal 

inference in conventional observational research(10, 12), and adds to the triangulation of causal 

evidence from multiple sources. With an estimated median cost of $985 million required to take a 

new medicine to market(13), genetic data offers an opportunity to prioritise target candidates while 

saving on costs(14). 

In this study, we conducted the largest genome-wide association studies (GWAS) of 47 circulating 

cytokines (Table 1) in up to 13,365 individuals and performed MR analyses to investigate the effect 

of cardiometabolic traits on their levels. Further, incorporating gene expression GWAS data from 

10,361 samples on 53 tissues in 635 individuals, we aimed to identify genetic instruments with a 
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priori high biological relevance to proxy the effect of varying circulating cytokine levels. We applied 

these instruments to explore inflammatory cascades and effects on cancer, cardiovascular, 

metabolic and neuropsychiatric outcomes. 

 

Results 

Figure 1 shows the study design. We conducted GWAS on the circulating levels of 47 cytokines 

(Manhattan and QQ-plots are presented in Supplementary Figures 1-47) and used the summary 

statistics for the subsequent MR analysis. First, we examined potential causal effects of 

cardiometabolic traits on circulating cytokine levels. We found positive associations (P < 0.0011, 

applying a Bonferroni correction for testing of multiple cytokines) between:  

(i) genetically predicted body-mass index (BMI) and circulating levels of C-reactive protein 

(CRP), hepatic growth factor (HGF), interleukin (IL) 16, tumour necrosis factor related 

apoptosis-inducing ligand (TRAIL), monocyte chemoattractant protein-1 (MCP1), active 

plasminogen activator inhibitor-1 (activePAI1), soluble E-selectin (sE-selectin) and 

soluble vascular cell adhesion molecule-1 (sICAM1),  

(ii) genetically predicted smoking and levels of CRP and sICAM1, and  

(iii) genetically predicted systolic blood pressure (SBP) and CRP (Figure 2, Supplementary 

Figure 48, Supplementary Table 1). 

To examine the impact of circulating cytokine levels on each other and on disease outcomes, we 

selected genetic instruments for circulating cytokine levels using two different criteria. In the first 

approach, we selected instrument variants within 500 kb of their corresponding gene locus and 

associated with their circulating levels at P < 1×10-4, which we term cis-protein quantitative trait loci 

(cis-pQTL) variants (Table 1). In the second approach, we chose instrument variants within 500 kb of 

the corresponding gene locus and associated with both its gene expression aggregated across tissues 

at P < 1×10-4, and its circulating cytokine levels at P < 0.05, which we term cis-expression quantitative 
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trait loci (cis-eQTL) variants (Table 1). The cis-pQTL and cis-eQTL instrument variants were available 

for 22 and 10 cytokines, respectively, with both types of instruments available for nine cytokines 

(Table 1). F-statistics (as a measurement of instrument strength, based on circulating protein levels) 

for all instrument variants ranged from 15 to 928 for cis-pQTLs (Supplementary Table 2) and from 5 

to 178 for cis-eQTLs (Supplementary Table 3). 

Next, we investigated the potential causal effects of circulating cytokine levels on each other. There 

was MR evidence (P < 0.0011) for associations between higher genetically predicted circulating 

cytokine levels and both increased and decreased levels of other circulating cytokines when using 

the cis-pQTL or cis-eQTL instrument selection criteria (Figure 3, Supplementary Figure 49, 

Supplementary Table 4). Most associations were seen for genetically predicted vascular endothelial 

growth factor (VEGF) and IL18, which were associated with circulating levels of eight and four other 

cytokines, respectively (Figure 3). 

We used the GWAS-pairwise colocalization method(15) to further investigate the putative causal 

effects of circulating cytokine levels on each other based on our identified MR associations. We 

investigated proportionality of associations at the exposure gene locus with both the exposure and 

outcome traits, and thus any evidence for colocalization would further support a causal relationship. 

The results showed evidence of colocalization (posterior probability for shared variant > 0.9) for the 

associations of VEGF with interferon gamma (IFNγ), IL10, IL12p70, IL13, IL5 and IL17 at the VEGF 

gene locus, and for the association between monokine induced by interferon-gamma (MIG) and 

interferon gamma-induced protein 10 (IP10) at the MIG gene locus (Figure 4), providing supporting 

evidence for causality between the corresponding cytokines. 

We finally conducted MR to examine the effect of circulating cytokine levels on 20 disease traits 

using outcome summary statistics from largest available GWAS, including cancer, cardiovascular, 

metabolic and neuropsychiatric outcomes (Supplementary Table 5). All these traits are previously 

shown to be related to inflammation(2). Using the cis-pQTL instrument selection criteria and 
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applying a Bonferroni correction for 20 outcomes, there was evidence of an association (P < 0.0025) 

between higher genetically predicted macrophage inflammatory protein-1-beta (MIP1β) levels and 

increased risk of stroke, between higher genetically predicted sICAM1 levels and both increased risk 

of major depressive disorder (MDD) and lower waist circumference, and between higher genetically 

predicted TRAIL levels and both increased risk of coronary artery disease (CAD) and decreased risk of 

breast and prostate cancer (Figure 5, Supplementary Figure 50, Supplementary Table 4). Using the 

cis-eQTL criteria, there was evidence of an association between higher genetically predicted IL1α 

levels and lower BMI (Figure 5). For the 15 cytokines where there were three or more instrument 

variants available (Table 1), weighted median and MR-PRESSO sensitivity analyses produced 

consistent MR estimates to the main inverse-variance weighted (IVW) analysis (Methods, 

Supplementary Figure 51, Supplementary Table 4). We compared the results of the two types of 

instrumental variables for the effects of genetically predicted cytokine levels on outcome traits and 

found a positive correlation between the cis-pQTL main MR estimates and the cis-eQTL main MR 

estimates (Pearson’s correlation coefficient r = 0.45, P = 1.2×10-7, Figure 6). 

 

Discussion 

We performed a comprehensive MR analysis into the determinants, cascades, and effects of 

circulating cytokine levels by exploiting both pQTL and eQTL data. Our updated GWAS analyses of 47 

cytokines facilitated investigation into the effects of cardiometabolic traits on systemic 

inflammation, and identified associations of genetically predicted BMI, SBP and smoking on 

circulating cytokines. GWAS of circulating cytokines in up to 13,365 healthy individuals coupled with 

genome-wide eQTL data of 10,361 tissue samples identified robust genetic instruments, with 

plausible biological relevance, for circulating cytokines. We applied these instruments in MR to 

explore inflammatory cascades and cytokine effects on disease risk. Our results suggest pleiotropic 

inflammatory effects of VEGF, and various circulating cytokines and adhesion molecules that 

increase risk of cancer, cardiovascular, metabolic and neuropsychiatric diseases.  
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We replicate associations of smoking with elevation of CRP and sICAM1, and of SBP with elevation of 

CRP, representing validated markers of systemic inflammation and future cardiovascular risk(16). 

Elevated BMI emerges as an exposure that predicts multiple indices of inflammation, including 

thrombosis (e.g. plasminogen activation inhibitor-1), metabolic disease and altered endothelial 

function or immune homeostasis (HGF, MCP1, TRAIL, sICAM1 and sE-selectin). Elevation of these 

mediators has been reported across human and murine studies of obesity, with fatty-acid excess and 

relative hypoxia emerging as drivers of the inflammatory stress response(17-19). Obesity is a leading 

preventable threat to global health in terms of premature cardiovascular and cancer morbidity and 

mortality(20), suggesting adipose tissue as a relevant setting to contextualise potential mechanisms.  

To better understand cytokine regulatory networks, we examined the effects of genetically 

predicted circulating cytokines on levels of other cytokines, as illustrated in Figure 3. For the MR 

findings that could be supported by evidence of colocalization at the relevant gene locus, we provide 

additional support for a causal mechanism. This innovative strategy enables unravelling of 

inflammatory pathways and insight into mediating mechanisms, which may be of relevance where a 

circulating cytokine is not suitable for clinical intervention, but its upstream or downstream 

mediators could instead be targeted. This is illustrated by strategies targeting MCP1, highlighted in 

recent work as a potential target to lower large-artery stroke and cardioembolic stroke risk(21). 

Since the MCP1/CCL2-CCR2 axis regulates monocyte emigration from the bone marrow, prolonged 

therapeutic blockade may cause adverse monocyte depletion(22), prompting the need for 

alternative intervention strategies to overcome the depletion(23). Our results point to MCP1 

affecting eotaxin expression, which would be consistent with their shared role in promotion and 

maintenance of the T helper cell 2 (Th2)-polarised immune response, illustrated by the co-

expression of their receptors (CCR2 and CCR3, respectively) across human eosinophils(24), innate 

lymphoid cell, and Th2 cell subsets(25). Targeting the eotaxin/CCR3 pathway may therefore 

represent a novel therapeutic avenue to reduce cardiovascular risk. This precision approach appears 
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convergent with recent mechanistic insights illuminating the contribution of eosinophils in the 

initiation of thrombotic events during cardiovascular disease(26).   

Our approach reveals network complexity, with evidence of VEGF appearing a master regulator. This 

is consistent with an earlier report identifying VEGF as an upstream controller of IL12p70, IL7, IL10, 

and IL137. We replicate and extend this analysis to reveal a wider range of cytokines within this 

cascade, including drivers of Th2-type responses (IL5 and IL13), TNFα, and IFNγ signalling (IFNγ, IL12) 

and immune resolution (IL10). With the exception of TNFα, the cytokines highlighted are notable for 

shared activation of the Jak-STAT signalling(27), a pathway which has evolved to sense and interpret 

changes in the tissue microenvironment and targetable by a range of therapeutics. Based on 

directionality, we infer VEGF blockade could lead to a reduction in multiple downstream molecules. 

Redundant angiogenic activity mediated by inflammatory and pro-angiogenic cytokines have 

recently been described in association with obesity, leading to treatment resistance to VEGF 

blockade in breast cancer(28). Thus, an overview of the cytokine regulatory network is, therefore, 

essential to support the discovery of common pathways and to explore cytokine redundancy. Our 

analysis highlights several putative cytokine networks, including the chemokines MIP1β, IL1α, and 

RANTES. This aligns with the shared potent pro-angiogenic effects of these molecules(29-31). 

We also examined the effects of circulating cytokine levels on 20 disease outcomes. The results link 

circulating levels of TRAIL with CAD, and a protective effect on breast and prostate cancer risk. TRAIL 

was first described as a molecule capable of selectively inducing cancer cell apoptosis(32), but is now 

also recognised to be a potent inhibitor of VEGF-stimulated angiogenesis(33). Of therapeutic 

relevance, some triple-negative/basal-like breast cancer cells retain sensitivity to TRAIL as a single 

agent(34)whilst chemotherapeutic agents show promise in restoring sensitivity to TRAIL in hormone-

refractory prostate cancer cells(35, 36). We saw evidence for associations between genetically 

predicted sICAM1 and increased risk of MDD, and lower waist circumference. Epidemiological 

studies have reported sICAM1 to be elevated in a range of neuropsychiatric disorders, but this 

association has been questioned due to confounders such as medication(37) and smoking(38). Our 
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study links genetically predicted smoking and BMI to increased sICAM1 levels, which in turn 

associate with elevated risk of MDD. Conversely, our MR association between genetically predicted 

MIP1β levels and risk of stroke is consistent with the ability of MIP1β to induce endothelial cell 

adhesion, and the formation of vascular plaques associated with stroke(39). 

Furthermore, using eQTL instruments, our results suggest an effect of higher IL1α levels on 

decreasing BMI. IL1α is active following translation(40), and some in vitro evidence implies IL1α 

attenuating differentiation of pre-adipocytes and suppressing lipid accumulation(41), suggesting 

biological relevance. 

Thus, through analysis of genetically proxied cytokines, we suggest a pattern of pro- and anti-

angiogenic and inflammatory effectors linking obesity to multi-morbidity. Given that all cytokines 

investigated in our study represent viable targets for pharmacological intervention3, these findings 

could have important clinical implications for the prevention of disease, and therefore warrant 

further investigation. 

Our use of genetic instruments encompassed the cumulative lifelong effects of natural variation in 

circulating cytokine levels, thus making progress towards overcoming the confounding, reverse 

causation and measurement error biases that can cloud causal interpretation of associations 

identified in conventional observational research(42). This is particularly relevant given the complex 

interactions that underlie levels of circulating cytokines(43), and therefore similarly relates to our 

investigation of cytokine pathways and effects on disease risk. In our analyses, we aimed to 

maximise the validity of instruments selected to proxy levels of circulating cytokines by only 

considering variants that located at the corresponding gene locus. This strategy for selecting 

instruments is likely to both increase the biological relevance of the instrument, and decrease the 

possibility of horizontal pleiotropy(44). Our use of complementary pQTL and eQTL instrument 

selection criteria offered distinct but consistent findings and provided a time-efficient and cost-

effective approach for identifying potential drug targets for the prevention of a broad range of 
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common and serious diseases. Furthermore, for associations between cytokines, we used 

colocalization analyses to strengthen the evidence for causal effects.  

There are also limitations to our work. The MR analyses should not be directly extrapolated to infer 

the effect of a clinical intervention25, as the instruments employed represent the cumulative effect 

of lifelong genetic predisposition, while a clinical intervention typically represents a discrete event at 

a particular time point(45). Our ability to assess causality between complex cytokine networks based 

on genetic methods remains limited by the availability of genetic instruments and the expression 

profiles of these molecules. Furthermore, the MR estimates may be biased by possible pleiotropic 

effects of the variants employed as instruments, where they influence the outcome under 

consideration through pathways independent of the cytokine being investigated. To minimise this 

risk, instruments for cytokines were selected from their corresponding gene loci to increase their 

specificity(44). Where possible, MR sensitivity analyses using methods that are more robust to the 

inclusion of pleiotropic variants were also incorporated(46), and provided consistent results. 

Another potential source of bias in the MR analyses relates to the use of weak instruments(47, 48). 

However, 29 out of 32 instruments included only variants with F-statistics > 10,  the only exceptions 

being cis-eQTL instruments for IL1α, MIF and sICAM1(49). Finally, our approach considered 

circulating cytokine levels and cytokine gene expression aggregated across tissues, rather than 

restricting to biologically relevant sites, thus potentially having impact on the generalizability of our 

findings. 

In conclusion, we used large-scale genetic data relating to cytokine levels to assess causal links 

between cardiometabolic traits and systemic inflammation. By incorporating gene expression data, 

we identified valid and biologically plausible instruments for use in MR analyses and investigated 

effects of circulating cytokines on inflammatory pathways and disease risk. Our findings are 

supported by existing work and add insight into the role of distinct inflammatory processes in the 

aetiology of a broad range of common cardiovascular, malignant, metabolic and neuropsychiatric 
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diseases. Our work provides suggestive causal associations for further validation, after which efforts 

could be made towards identifying therapeutic opportunities in clinical practice. 

 

Methods 

Genome-wide association study cohorts 

Northern Finland Birth Cohort 1966 

Northern Finland Birth Cohort 1966 (NFBC1966) recruited pregnant women with expected date of 

delivery between 1st January and 31st December 1966(50). Overall, 12,055 mothers (over 96% of 

eligible women) were followed from pregnancy onwards, with 12,058 live-born children in the 

cohort. In the offspring 31-year data collection in 1997, all cohort members with known addresses in 

either the Northern Finland or Helsinki area were invited to a clinical examination(51). In total, data 

were received for 6033 participants, and DNA was successfully extracted for 5753 participants from 

fasted blood samples. Cytokines were quantified from overnight fasting plasma samples using Bio-

Rad’s Bio-Plex 200 system (Bio-Rad Laboratories, California, USA) with Milliplex Human 

Chemokine/Cytokine and CVD/Cytokine kits (Cat# HCYTOMAG-60K-12 and Cat# SPR349; Millipore, St 

Charles, Missouri, USA) and Bio-Plex Manager Software V.4.3 as previously described(52, 53). 

Genotyping was conducted using Illumina HumanCNV‐370DUO Analysis BeadChip (Illumina, 

California, USA) and imputed using Haplotype Reference Consortium imputation reference panel.  

The Cardiovascular Risk in Young Finns Study 

The Cardiovascular Risk in Young Finns (YFS) is an ongoing follow-up study of 3,596 children and 

adolescents aged 3, 6, 9, 12, 15, or 18 years. The subjects were randomly chosen from five university 

cities and their rural surroundings using Finnish population register. The baseline survey was held in 

1980 and subsequent follow-up visits involving all five centres have been arranged in 1983, 1986, 

1989, 2001, 2007, 2011 and 2017. The latest follow-up included also children and parents of the 

original participants. 
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Genotyping have been performed using the blood samples drawn at 2001 follow-up visit. 

Genotyping was performed with custom-build Illumina 670K array. The custom content replaced 

some poor performing SNPs on the Human610 BeadChip and added more CNV content after which 

the customized chip shared 562,643 SNPs with Illumina Human610 chip. Genotyping was performed 

for 2,556 samples. Prior to imputation, samples and probes with high missingness were excluded 

(MIND > 0.05 and GENO < 0.05). To exclude poorly functioning probes, we excluded SNPs deviating 

from Hardy-Weinberg equilibrium (HWE p-value < 1× 10-6). To exclude related samples, we used 𝜋̂ 

cut-off of 0.20. The pair with greater missingness was removed. After the QC steps, the data set 

included 2,443 individuals and 546,674 probes. The imputation was performed with IMPUTE2 

software by using 1000 Genomes Phase 3 release as reference panel. After imputation, poorly 

imputed and rare variants (INFO < 0.7 and MAC < 3) were removed. 

Biorad’s Bio-Plex Pro Human Cytokine 27-plex Assay and 21-plex Assay were used to quantify 

circulating concentrations of 48 cytokines from serum samples drawn at 2007 follow-up visit as 

previously described(54). Depending on the cytokine, imputed genotypes and cytokine 

concentrations were available for 116-2019 samples. 

FINRISK 

FINRISK surveys are population-based cross-sectional studies which began in 1972. A new sample is 

recruited every five years to monitor the health status of Finnish population. Subset of individual-

level data from 1992-2012 surveys is available through THL Biobank. Cytokine quantification for 

FINRISK1997 and FINRISK2002 samples was performed similarly as in YFS, but quantification was 

done using EDTA plasma in FINRISK1997 and heparin plasma in FINRISK2002(55). In FINRISK1997, a 

custom 20-plex array was used in cytokine quantification. In FINRISK2002, only participants between 

51 and 74 years were selected for the analysis. Imputation was performed using 1000 Genomes 

Phase 3 as reference panel. Poorly imputed variants (INFO < 0.7) and variants with low minor allele 

count (MAC < 3) were excluded. Depending on the cytokine, imputed genotypes and cytokine 
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concentrations were available for 3440-4613 samples from FINRISK1997 and 843-1705 samples from 

FINRISK2002. 

Cytokine genome-wide association study 

We conducted GWAS for 41 cytokines in FINRISK+YFS population and for 16 cytokines in NFBC1966 

(Supplementary Table 6)(8). The data pre-processing was done in a similar manner to previous 

GWAS analyses(7, 8). Inverse-normal rank transformation was first applied to the traits, before 

regressing the transformed measures on age, sex and the first 10 genetic principal components. In 

contrast to the previous analyses(7, 8), we did not add BMI as a covariate, as this could potentially 

introduce collider bias into consequent MR analyses(56). The inverse-normal rank transformation 

was again applied to the residuals of this regression, and these transformed residual estimates were 

used as response variables in the GWAS. The GWAS was conducted in each study using an additive 

genetic model with SNPTEST2 software(57). The results for variants which showed poor imputation 

quality (model info < 0.7) or low minor allele frequency (MAF, < 0.05) were discarded. For the ten 

cytokines available in both NFBC1966 and FINRISK+YFS (Supplementary Table 6), the summary 

statistics were pooled by inverse variance weighted fixed-effects meta-analysis using Metal 

software(58). 

Gene expression GWAS summary statistics were obtained from the GTEx project (release version 7), 

and related to 10,361 samples from a multi-ethnic group of 635 individuals(9). Results from 53 

tissues were pooled using fixed-effects meta-analysis to produce cross-tissue estimates of 

association with gene expression(9).  

Metabolic trait instrument selection 

The metabolic traits considered were BMI, low-density lipoprotein cholesterol (LDL-C), lifetime 

smoking (referred to as smoking), systolic blood pressure (SBP) and type 2 diabetes mellitus 

(referred to as diabetes). Genetic association estimates for BMI were obtained from the GIANT 

Consortium GWAS meta-analysis of 806,834 individuals of Europeanancestry(59). Genetic 
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association estimates for fasting serum LDL-C were obtained from the Global Lipids Genetic 

Consortium GWAS of 188,577 individuals of European-ancestry(60). Genetic association estimates 

for smoking were obtained from a GWAS of 462,690 European-ancestry individuals, with a 

continuous measure of smoking created based on self-reported age at initiation, age at cessation 

and cigarettes smoked per day(61). Genetic association estimates for SBP were obtained from a 

GWAS of 318,417 White British individuals, with correction made for any self-reported anti-

hypertensive medication use by adding 10mmHg(62). Genetic association estimates for liability to 

type 2 diabetes mellitus came from the DIAGRAM Consortium GWAS meta-analysis of 74,124 cases 

and 824,006 controls of European ancestry(63). Instruments for each trait were selected as single-

nucleotide polymorphisms (SNPs) that associated with that trait at genome-wide significance 

(P<5x10-8) and were in pair-wise linkage disequilibrium (LD) r2<0.001. All clumping was performed 

using the TwoSampleMR package in R(64). 

Cytokine instrument selection 

Two distinct instrument selection criteria were used to identify variants to proxy the effect of 

circulating cytokine levels in MR analyses. Firstly, variants located within 500 kb of the gene locus 

corresponding to a cytokine under study that also related to circulating levels of that cytokine with 

association P-value < 1×10-4 were selected. These are referred to as cis-pQTL. Secondly, variants 

located within 500 kb of the gene locus corresponding to a cytokine under study that related to both 

expression of that gene at P < 1×10-4 and circulating levels of that cytokine at P < 0.05 were selected. 

These are referred to as cis-eQTL. The gene locations were extracted per human genome build 19 

(released February 2009) using UCSC Genome Browser (accessed on 18th June 2019) (65). Only 

variants for which both exposure and outcome genetic association estimates were available for any 

given MR analysis were considered as potential instruments for that analysis. All variants were 

clumped to a pairwise linkage disequilibrium threshold of r2<0.1 using the TwoSampleMR package in 

R(64). The F statistic was calculated as a measure of the strength of the instruments(66). 
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Outcome genetic association estimates 

Disease outcomes falling into the categories of cardiovascular (CAD and stroke), cancer (breast and 

prostate), metabolic (BMI, fasting glucose, fasting insulin, type 2 diabetes mellitus, low-density 

lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) and neuropsychiatric 

(attention-deficit hyperactivity disorder, autism spectrum disorder, bipolar disorder, major 

depressive disorder and schizophrenia) traits were investigated, based on the availability of large-

scale GWAS summary data. In addition, the effects of circulating cytokine levels on C-reactive 

protein levels, an established biomarker of inflammation, were investigated. Trait definitions and 

details of the original GWAS analyses are provided in Supplementary Table 5. 

Mendelian randomization analysis 

MR analysis was performed using the two sets of instruments (cis-pQTL and cis-eQTL) to investigate 

effects of genetically predicted circulating cytokine levels on levels of other circulating cytokines 

(Supplementary Table 6) and the considered disease outcomes (Supplementary Table 5). The 

Pearson correlation coefficient was used to estimate the similarity between MR estimates obtained 

for the same exposure-disease outcome associations when using the two different instrument 

selection criteria (pQTL and eQTL). The ratio method was used to obtain MR estimates, with first 

order weights used to generate standard errors(67). Where more than one instrument variant was 

available for a given analysis, MR estimates obtained from different instruments were pooled using 

the multiplicative random-effects inverse-variance weighted (IVW) MR method. MR is prone to bias 

when the genetic variants used as instruments affect the outcome through some pathway that is 

independent of the exposure under consideration, a phenomenon termed pleiotropy(68). To explore 

this possibility, MR methods that make distinct assumptions on the inclusion of pleiotropic variants 

were performed in sensitivity analyses where three or more instrument variants were available. 

Specifically, the weighted median and MR-PRESSO methods were used(69, 70). Briefly, the weighted 

median approach orders the MR estimates produced by each instrument by their magnitude 

weighted for their precision and produces an overall MR estimate based on the median value, with 
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standard error estimated by bootstrapping(69). It is a consistent approach when more than half of 

the weight for the analysis is derived from valid instruments (69). The MR-PRESSO detects outliers 

using the squared residuals from the regression of the variant-outcome association estimates on the 

variant-exposure association estimates with the intercept fixed to zero, and repeats such regression-

based MR analysis after excluding any identified outlier variants(70). To account for multiple testing, 

we applied a Bonferroni correction accounting for the number of outcomes for each analysis; thus, 

for the MR analysis on 20 disease outcomes and 47 cytokines, the thresholds for statistical 

significance were 0.0025 and 0.0011, respectively. The MR sensitivity analyses were only performed 

to explore the robustness of the main IVW analysis to potential pleiotropy and as such no statistical 

sensitivity threshold was applied for these. 

Colocalization 

We used GWAS-pairwise for colocalization to further evaluate the cytokine pairs for which there was 

MR evidence of causal effect in either direction(15). The colocalization analysis investigates whether 

the same variant within a genetic locus is associated with both exposure and outcome trait. We used 

the Z scores from the cytokine GWAS summary statistics. The number of variants included in each 

analysed chunk was set automatically by using an approximately linkage disequilibrium independent 

block file(15). Results with a posterior probability of association > 0.9 within the gene locus of the 

putative causal cytokine of each pair were deemed statistically significant. We only considered the 

gene region for the exposure cytokine, and thus any evidence for colocalization would imply 

supporting evidence for our MR results. 

Data availability and ethical approval 

All supporting data for this work are available within the article, its supplementary files and the 

citations provided. The GWAS summary statistics generated in this work will be made publicly 

available upon the publication of the article. All study cohorts used in this work had already obtained 
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relevant ethical approval and written participant consent. Statistical analysis was performed using R 

(version 3.6.0). The software code for the analyses are available from the authors upon request.
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Figure 1. Schematic presentation of the study. The analyses conducted within this study are highlighted with bolded box edges. 
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Figure 2. Mendelian Randomization effect size estimates (Z-scores) of genetically predicted cardiometabolic traits on circulating cytokine levels. The 

asterisks represent significance after Bonferroni correction for testing of multiple cytokines (P < 0.0011 (0.05/number of cytokines)). BMI: body-mass index; 

LDL-C: low-density lipoprotein cholesterol; SBP: systolic blood pressure; T2DM: type 2 diabetes mellitus. CRP: C-reactive protein. The abbreviations for 

other cytokines are given in Table 1. 
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Figure 3. Mendelian randomization results of genetically predicted cytokine levels on levels of 

other circulating cytokines when considering cis- protein quantitative trait loci (solid lines) and cis- 

expression quantitative trait loci (dashed lines) instruments. The results are plotted only for effects 

with P < 0.0011 (0.05/number of cytokines). Red and blue lines indicate positive and negative 

associations respectively. The thickness of the line represents the absolute value of the effect size. 

The colours of the cytokines represent separate cytokine groups based on the results. 
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Figure 4. Colocalization for genome-wide association study summary statistics between selected cytokine pairs. Cytokine pairs that showed MR evidence for both 

causality (P < 0.0011 (0.05/number of cytokines)) and colocalization (posterior probability > 0.9) are plotted, within ±500 kb of the gene locus of the exposure cytokine. The 

y-axis of –log10(p) values is smoothed using generalized additive models. 
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Figure 5. Mendelian randomization estimates for the effects of genetically predicted cytokine 

levels on disease outcomes when considering cis-pQTL (left – part A) and cis-eQTL (right – part B) 

instruments. After performing a Bonferroni correction for testing of multiple disease outcomes, 

associations with P < 0.0025 are denoted with an asterisk. pQTL: protein quantitative trait loci; eQTL: 

expression quantitative trait loci. ADHD: attention-deficit hyperactivity disorder; ASD: autism 

spectrum disorder; BPD: bipolar disease; MDD: major depressive disorder; Schz: schizophrenia; BMI: 

body-mass index; WC: waist circumference T2DM: type 2 diabetes mellitus; TC: total cholesterol; 

HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FI: fasting 

insulin; TG: triglycerides; CRP: C-reactive protein; CAD: coronary artery disease. 
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Figure 6. Scatter plot comparing Mendelian randomization (MR) estimates for the effects of 

genetically predicted cytokine levels on disease outcome traits when using the two different 

instrument selection criteria. The correlation between the MR estimates was quantified using 

Pearson’s coefficient and a linear fit between effect estimates (blue line). x-axis: MR effect estimates 

using cis- protein quantitative trait loci instrument selection; y-axis: MR effect estimates using cis- 

expression quantitative trait loci instrument selection. r: correlation coefficient; P: p value. 
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Table 1. Cytokines examined in this study. Chr: chromosome; GWAS: genome-wide association 

study; pQTL: protein quantitative trait loci; eQTL: expression quantitative trait loci. *Interleukin-

12p70 has two coding genes. 

Cytokine Abbreviation Gene Chr 

Start 

position 

(hg19) 

End 

position 

(hg19) 

GWAS 

sample 

size 

Number of 

cis-pQTL 

instrument 

variants 

Number of 

cis-eQTL 

instrument 

variants 

Active plasminogen activator inhibitor-1 activePAI1 SERPINE1 7 100770370 100782547 5199 1 0 

Beta nerve growth factor βNGF NGF 1 115828537 115880857 3531 0 0 

Cutaneous T-cell attracting (CCL27) CTACK CCL27 9 34661893 34662689 3631 3 1 

Eotaxin (CCL11) Eotaxin CCL11 17 32612687 32615199 8153 2 1 

Basic fibroblast growth factor FGFBasic FGF2 4 123747863 123819390 7565 0 0 

Granulocyte colony-stimulating factor GCSF CSF3 17 38171614 38174066 7904 0 0 

Growth regulated oncogene-alpha (CXCL1) GROα CXCL1 4 74735109 74737019 3505 5 0 

Hepatocyte growth factor HGF HGF 7 81331444 81399452 8292 0 0 

Interferon-gamma IFNγ IFNG 12 68548550 68553521 7701 0 0 

Interleukin-10 IL10 IL10 1 206940948 206945839 7681 0 0 

Interleukin-12p70 IL12p70 

IL12A* 3 159706623 159713806 

8270 

1 0 

IL12B* 5 158741791 158757481 0 0 

Interleukin-13 IL13 IL13 5 131993865 131996801 3557 0 0 

Interleukin-16 IL16 IL16 15 81517640 81605104 3483 1 0 

Interleukin-17 IL17 IL17A 6 52051185 52055436 12831 0 0 

Interleukin-18 IL18 IL18 11 112013974 112034840 3636 6 1 

Interleukin-1-alpha IL1α IL1A 2 113531492 113542971 5014 0 1 

Interleukin-1-beta IL1β IL1B 2 113587337 113594356 8376 0 0 

Interleukin-1 receptor antagonist IL1ra IL1RN 2 113885138 113891593 8595 0 0 

Interleukin-2 IL2 IL2 4 123372626 123377650 3475 0 0 
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Interleukin-2 receptor, alpha subunit IL2rα IL2RA 10 6052657 6104333 3677 10 1 

Interleukin-4 IL4 IL4 5 132009678 132018370 13183 0 0 

Interleukin-5 IL5 IL5 5 131877136 131879214 3364 0 0 

Interleukin-6 IL6 IL6 7 22766766 22771621 13252 0 0 

Interleukin-7 IL7 IL7 8 79645007 79717758 3409 1 0 

Interleukin-8 (CXCL8) IL8 IL8 4 74606223 74609433 8597 0 0 

Interleukin-9 IL9 IL9 5 135227935 135231516 3634 0 0 

Interferon gamma-induced protein 10 (CXCL10) IP10 CXCL10 4 76942269 76944689 8757 4 1 

Monocyte chemotactic protein-1 (CCL2) MCP1 CCL2 17 32582296 32584220 13365 1 0 

Monocyte specific chemokine 3 (CCL7) MCP3 CCL7 17 32597235 32599261 843 0 0 

Macrophage colony-stimulating factor MCSF CSF1 1 110453233 110473616 840 0 0 

Macrophage migration inhibitory factor (glycosylation-

inhibiting factor) 
MIF MIF 22 24236565 24237409 3494 2 3 

Monokine induced by interferon-gamma (CXCL9) MIG CXCL9 4 76922623 76928641 3685 2 0 

Macrophage inflammatory protein-1a (CCL3) MIP1α CCL3 17 34415603 34417506 3522 0 0 

Macrophage inflammatory protein-1b (CCL4) MIP1β CCL4 17 34431220 34433014 8243 22 0 

Platelet derived growth factor BB PDGFbb PDGFB 22 39619685 39640957 8293 0 0 

Regulated on Activation, Normal T Cell Expressed and 

Secreted (CCL5) 
RANTES CCL5 17 34198496 34207377 3421 1 0 

Soluble CD40 ligand sCD40L CD40LG X 135730336 135742549 5067 0 0 

Stem cell factor SCF KITLG 12 88886570 88974250 8290 0 0 

Stem cell growth factor beta SCGFβ CLEC11A 19 51226605 51228981 3682 3 1 

Stromal cell-derived factor-1 alpha (CXCL12) SDF1α CXCL12 10 44872510 44880545 5998 0 0 

soluble E-selectin sE-selectin SELE 1 169691781 169703220 5199 3 0 

soluble intercellular adhesion molecule-1 sICAM1 ICAM1 19 10381517 10397291 5199 20 1 

soluble vascular cell adhesion molecule-1 sVCAM1 VCAM1 1 101185196 101204601 5199 1 1 

Tumor necrosis factor-alpha TNFα TNF 6 31543344 31546112 8522 2 0 

Tumor necrosis factor-beta TNFβ LTA 6 31539876 31542100 1559 0 0 
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TNF-related apoptosis inducing ligand TRAIL TNFSF10 3 172223298 172241297 8186 13 0 

Vascular endothelial growth factor VEGF VEGFA 6 43737946 43754223 12155 26 0 
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