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Abstract: 22 

Quantifying the effectiveness of large-scale non-pharmaceutical interventions (NPIs) 23 

against COVID-19 is critical to adapting responses against future waves of the 24 

pandemic. Most studies of NPIs thus far have relied on epidemiological data. Here, we 25 

report the impact of NPIs on the evolution of SARS-CoV-2, taking the perspective of the 26 

virus. We examined how variations through time and space of SARS-CoV-2 genomic 27 

divergence rates, which reflect variations of the epidemic reproduction number Rt, can 28 

be explained by NPIs and combinations thereof. Based on the analysis of 5,198 SARS-29 

CoV-2 genomes from 57 countries along with a detailed chronology of 9 non-30 

pharmaceutical interventions during the early epidemic phase up to May 2020, we find 31 

that home containment (35% Rt reduction) and education lockdown (26%) had the 32 

strongest predicted effectiveness. To estimate the cumulative effect of NPIs, we 33 

modelled the probability of reducing Rt below 1, which is required to stop the epidemic, 34 

for various intervention combinations and initial Rt values. In these models, no 35 

intervention implemented alone was sufficient to stop the epidemic for Rt’s above 2 and 36 

all interventions combined were required for Rt’s above 3. Our approach can help 37 

inform decisions on the minimal set of NPIs required to control the epidemic depending 38 

on the current Rt value.  39 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2020. ; https://doi.org/10.1101/2020.08.24.20180927doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180927
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 40 

syndrome coronavirus 2 (SARS-CoV-2), emerged in China in late 20191–3. Facing or 41 

anticipating the pandemic, the governments of most countries implemented a wide 42 

range of large-scale non-pharmaceutical interventions, such as lockdown measures, in 43 

order to reduce COVID-19 transmission4–6. Concerns have been raised regarding the 44 

impact of such interventions on the economy, education, and, indirectly, the healthcare 45 

system7. 46 

Understanding the effectiveness of each non-pharmaceutical intervention against 47 

COVID-19 is critical to implementing appropriate responses against current or future 48 

waves of the pandemic. Comparative studies of interventions typically rely on 49 

epidemiological data to estimate variations of the epidemic reproduction number, which 50 

are then correlated with the implementation or relaxation of interventions5,6,8. These 51 

studies yielded conflicting conclusions. Depending on data sources and epidemiological 52 

model design assumptions, some studies identified lockdown (stay at home order) as 53 

the most effective intervention5,9 while others found little additional impact, if any, 54 

compared to other interventions4,6,10. Epidemiological studies of interventions against an 55 

epidemic face several challenges. Models informed by counts of confirmed cases or 56 

deaths ignore the relationships and transmission patterns between cases. Counts 57 

themselves can vary in accuracy and timeliness depending on countries’ health 58 

facilities, surveillance systems, and the changing definitions of cases. Even when an 59 

intervention immediately reduces the transmission rate, a detectable reduction of 60 

disease incidence can be much delayed6, especially when testing and diagnoses are 61 

restricted to specific patient populations. This delay from intervention to incidence 62 

reduction, combined with the variety and simultaneous implementation of 63 

interventions4,5, complicates the identification of their individual effects. 64 

Unlike epidemiological case counts, viral genomes bear phylogenetic information 65 

relevant to disease transmission. Extracting this information is the goal of 66 

phylodynamics, which relies on evolutionary theory and bioinformatics to model the 67 

dynamics of an epidemic11. The dates of viral transmission events can also be inferred 68 

from genome sequences to alleviate, at least in part, the problems of delayed detection 69 
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of an intervention’s effect. Here, we conducted a phylodynamic analysis of 5,198 SARS-70 

CoV-2 genomes from 57 countries to estimate the independent effects of 9 large-scale 71 

non-pharmaceutical interventions on the transmission rate of COVID-19 during the early 72 

dissemination phase of the pandemic. We adapted an established phylogenetic 73 

method12,13 to model variations of the divergence rate of SARS-CoV-2 in response to 74 

interventions and combinations thereof. Building on known relationships between the 75 

viral divergence rate and the effective reproduction number 𝑅 14, we quantified the 76 

reduction of 𝑅  independently attributable to each intervention, exploiting 77 

heterogeneities in their nature and timing across countries in multivariable models. In 78 

turn, these results enabled estimating the probability of stopping the epidemic (𝑅 < 1) 79 

when implementing selected combinations of interventions. 80 

  81 
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 85 

Fig. 1. Conceptual overview of phylodynamic survival analysis. Under the 86 
assumption that each viral lineage in a phylogeny belongs to an infected patient, the 87 
dates of viral transmission and sampling events in a transmission tree (a) coincide with 88 
the dates of divergence events (nodes) and tips, respectively, of the dated phylogeny 89 
reconstructed from the viral genomes (b). Treating viral transmission as the event of 90 
interest for survival modelling, internal branches connecting two divergence events are 91 
interpreted as time-to-event intervals while terminal branches, that do not end with a 92 
transmission event, are interpreted as censored intervals (c). Translating the dated 93 
phylogeny in terms of survival events enables visualizing the probability of transmission 94 
through time as a Kaplan-Meier curve (d) and modelling the transmission rate using 95 
Cox proportional hazards regression.   96 

 97 

 98 
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Survival modelling of viral transmission 100 

The dissemination and detection of a virus in a population can be described as a 101 

transmission tree (Fig. 1a) whose shape reflects that of the dated phylogeny of the 102 

sampled pathogens (Fig. 1b). In a phylodynamic context, it is assumed that each 103 

lineage, represented by a branch in the phylogenetic tree, belongs to a single patient 104 

and that lineage divergence events, represented by tree nodes, coincide with 105 

transmission events11. Thus, branches in a dated phylogeny represent intervals of time 106 

between divergence events interpreted as transmission events. This situation can be 107 

translated in terms of survival analysis, which models rates of event occurrence, by 108 

considering divergence as the event of interest and by treating branch lengths as time-109 

to-event intervals (Fig. 1c, d). Phylogenetic survival analysis was devised by E. Paradis 110 

and applied to detecting temporal variations in the divergence rate of tanagers12 or 111 

fishes15, but it has not been applied to pathogens so far13,16,17. 112 

To quantify the effect of non-pharmaceutical interventions on the transmission 113 

rate of COVID-19, we adapted the original model in the Paradis study12 to account for 114 

the specific setting of viral phylodynamics (see Methods). Hereafter, we refer to the 115 

modified model as phylodynamic survival analysis. In survival analysis terms, we 116 

interpret internal branches of the phylogeny (those that end with a transmission event) 117 

as time-to-event intervals and terminal branches (those that end with a sampling event) 118 

as censored intervals (Fig. 1c; see Methods).  119 

The predictors of interest in our setting, namely, the non-pharmaceutical 120 

interventions, vary both through time and across lineages depending on their 121 

geographic location. To model this, we assigned each divergence event (and 122 

subsequent branch) to a country using maximum-likelihood ancestral state 123 

reconstruction. Each assigned branch was then associated with the set of non-124 

pharmaceutical interventions that were active or not in the country during the interval 125 

spanned by the branch. Intervals containing a change of intervention were split into 126 

subintervals18. These (sub)intervals were the final observations (statistical units) used in 127 
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the survival models. Models were adjusted for the hierarchical dependency structure 128 

introduced by interval splits and country assignations (see Methods). 129 

Phylodynamic survival models estimate variations of the reproduction number 130 

The evolution of lineages in a dated viral phylogeny can be described as a birth-death 131 

process with a divergence (or birth) rate 𝜆 and an extinction (or death) rate 𝜇19. In a 132 

phylodynamic context, the effective reproduction number 𝑅  equals the ratio of the 133 

divergence and extinction rates19. Coefficients of phylodynamic survival models (the so-134 

called hazard ratios of divergence; see Methods) act as multiplicative factors of the 135 

divergence rate 𝜆, independent of the true value of 𝜆 which needs not be specified nor 136 

evaluated. As 𝑅 = 𝜆 𝜇⁄ , multiplying 𝜆 by a coefficient also multiplies 𝑅 , independent of 137 

the true value of 𝜇. Thus, coefficients of phylodynamic survival models estimate 138 

variations of 𝑅  in response to predictor variables without requiring external knowledge 139 

or assumptions about 𝜆 and 𝜇. 140 

  141 
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 142 

Figure 2. Timing and reproduction numbers of the COVID-19 epidemic in 74 countries 143 
based on a dated phylogeny. a, Dated phylogeny of 5,198 SARS-CoV-2 genomes where 144 
internal (time-to-event) and terminal (time-to-censoring) branches are colored red and blue, 145 
respectively. b, Histogram of internal and terminal branch lengths. c, Box-and-whisker plots of 146 
the distribution over time of the inferred transmission events in each country, where boxes 147 
denote interquartile range (IQR) and median, whiskers extend to dates at most 1.5x the IQR 148 
away from the median date, and circle marks denote dates farther than 1.5 IQR from the 149 
median date. d, Point estimates and 95% confidence intervals of the relative effective 150 
reproduction number, expressed as percent changes relative to China, in 27 countries with ≥10 151 
assigned transmission events. Countries with <10 assigned transmission events (n=32) were 152 
pooled into the ‘Others’ category. e, f, Representative Kaplan-Meier survival curves of the 153 
probability of transmission through time in countries with comparable (e) or contrasting (f) 154 
transmission rates. ‘+’ marks denote censoring events. Numbers denote counts of internal 155 
branches and, in brackets, terminal branches.  g, h, Scatter plots showing correlations between 156 
the relative reproduction number and the reported cumulative numbers of COVID-19 cases 157 
(blue marks) and deaths (red marks) per country up to May 12, 2020 (53), in absolute values (g) 158 
and per million inhabitants (h).  159 
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Variations in COVID-19 transmission rates across countries 160 

We assembled a composite dataset by combining a dated phylogeny of SARS-CoV-2 161 

(Fig. 2a), publicly available from Nextstrain20 and built from the GISAID initiative data21, 162 

with a detailed timeline of non-pharmaceutical interventions available from the Oxford 163 

COVID-19 Government Response Tracker (OxCGRT)22. Extended Data Fig. 1 shows a 164 

flowchart outlining the data sources, sample sizes and selection steps of the study. 165 

Phylogenetic and intervention data covered the early phase of the epidemic up to May 166 

4, 2020. 167 

The 5,198 SARS-CoV-2 genomes used to reconstruct the dated phylogeny were 168 

collected from 74 countries. Detailed per-country data including sample sizes are shown 169 

in Extended Data Table 1. Among the 10,394 branches in the phylogeny, 2,162 170 

branches (20.8%) could not be assigned to a country with >95% confidence and were 171 

excluded, also reducing the number of represented countries from 74 to 59 (Extended 172 

Data Fig. 1; a comparison of included and excluded branches is shown in Extended 173 

Data Fig. 2). The remaining 4,025 internal branches had a mean time-to-event (delay 174 

between transmission events) of 4.4 days (Fig. 2b). These data were congruent with 175 

previous estimates of the mean serial interval of COVID-19 ranging from 3.1 days to 7.5 176 

days23. The 4,207 terminal branches had a mean time-to-censoring (delay from infection 177 

to detection) of 10.6 days (Fig. 2a, b). This pattern of longer terminal vs. internal 178 

branches is typical of a viral population in fast expansion11. 179 

We compared the timing and dynamics of COVID-19 spread in countries 180 

represented in our dataset (Fig. 2c, d), pooling countries with <10 assigned 181 

transmission events into an ‘others’ category. The estimated date of the first local 182 

transmission event in each country showed good concordance with the reported dates 183 

of the epidemic onset (Pearson correlation = 0.84; Extended Data Fig. 3). The relative 184 

effective reproduction number 𝑅  per country, taking China as reference, ranged from -185 

55.6% (95%CI, -71.4% to -29.9%) in Luxembourg to +11.7% (95% CI, -6.7% to +33.8%) 186 

in Spain (Fig. 2c). Notice that these estimates are averages over variations of 𝑅  187 

through time in each country, up to May 4, 2020. Exemplary survival curves of 188 
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transmission events are shown in Fig. 2e, f. Relative 𝑅 ’s are not expected to 189 

necessarily correlate with the reported counts of COVID-19 cases across all countries 190 

due to the confounding effects of population sizes, case detection policies and the 191 

number of genomes included. Nevertheless, the relative 𝑅 ’s across countries 192 

substantially correlated with the reported cumulative counts up to May 12 (Fig. 2g, h), 193 

including COVID-19 cases (Pearson correlation with log-transformed counts, 0.46, 95% 194 

CI, 0.07 to 0.73), deaths (correlation 0.59, 95% CI, 0.24 to 0.80), cases per million 195 

inhabitants (correlation 0.39, 95% CI, -0.01 to 0.69) and deaths per million inhabitants 196 

(correlation 0.56, 95% CI, 0.21 to 0.79). 197 

  198 
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Table 1. Selected large-scale non-pharmaceutical interventions against COVID-19. 199 

Non-pharmaceutical intervention OxCGRT identifier Definition 

Information campaign H1 Coordinated public information 
campaign across traditional and social 

media 

Restrict international travel C8 Ban or quarantine arrivals from high-risk 
regions 

Education lockdown C1 Require closing for some or all 
education levels or categories, e.g., high 

schools, public schools, universities 

Cancel public events C3 Require cancelling of all public events 

Restrict gatherings >100 pers. C4 Prohibit gatherings over 100 persons 

Close workplaces C2 Require closing or working from home 
for some or all non-essential sectors or 

categories of workers 

Restrict internal movements C7 Require closing routes or prohibit most 
citizens from using them 

Close public transport C5 Require closing of public transport or 
prohibit most citizens from using it 

Home containment C6 Require not leaving house with or 
without exceptions for daily exercise, 
grocery shopping and essential trips 

NOTE. OxCGRT, Oxford COVID-19 Government Response Tracker initiative, 
www.bsg.ox.ac.uk/covidtracker 

 200 
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 201 

Figure 3. Non-pharmaceutical interventions variably reduce the reproduction number of 202 
COVID-19. Data derive from the phylogenetic survival analysis of 4,191 internal and 4,019 203 
terminal branches of a dated phylogeny of SARS-CoV-2 genomes, combined with a chronology 204 
of interventions in 57 countries. a, Box-and-whisker plots of the delay between the 1st SARS-205 
CoV-2 divergence event and the intervention. Plot interpretation is similar with Fig. 2c. b, Point 206 
estimates and 95% confidence intervals of the independent % change of the effective 207 
reproduction number predicted by each intervention in a multivariable, mixed-effect phylogenetic 208 
survival model adjusted for between-country variations. c, Matrix of pairwise interactions 209 
between the interventions (in rows) estimated using 9 multivariable models (in columns), where 210 
each model ignores exactly one intervention. Negative (positive) differences in blue (red) denote 211 
a stronger (lesser) predicted effect of the intervention in row when ignoring the intervention in 212 
column. d, e, Simulated impact of interventions implemented independently (d) or in sequential 213 
combination (e) on the count of simultaneous cases in an idealized population of 1 million 214 
susceptible individuals using compartmental SIR models with a basic reproduction number 𝑅 =215 
3 (black lines) and a mean infectious period of 2 weeks. Shaded areas in (d) denote 95% 216 
confidence bands.   217 
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Disentangling the individual effectiveness of non-pharmaceutical interventions 218 

The implementation and release dates of large-scale non-pharmaceutical interventions 219 

against COVID-19 were available for 57 countries out of the 59 represented in the dated 220 

phylogeny. Definitions of the selected interventions are shown in Table 1. Branches 221 

assigned to countries with missing intervention data, namely, Latvia and Senegal, were 222 

excluded from further analysis (n=22/8,262 (0.3%); see Extended Data Fig. 1). Up to 223 

May 4, 2020, the interventions most universally implemented were information 224 

campaigns, restrictions on international travel and education lockdown (>95% of 225 

countries) (Extended Data Fig. 4). The least frequent were the closure of public 226 

transportation (35%) and home containment (72%). Public information campaigns came 227 

first and home containment came last (median delay across countries, 5 days before 228 

and 24 days after the first local transmission event, respectively; Fig. 3a). Survival 229 

curves for each intervention are shown in Extended Data Fig. 5. Most interventions 230 

were implemented in combination and accumulated over time rather than replacing 231 

each other (Extended Data Fig. 4; median delays between interventions are shown in 232 

Extended Data Fig. 6; correlations in Extended Data Fig. 7; and a detailed timeline of 233 

interventions in Extended Data Table 2). However, we observed a substantial 234 

heterogeneity of intervention timing across the 57 countries (Fig. 3a), suggesting that 235 

individual intervention effects can be discriminated by multivariable analysis given the 236 

large sample size (n=8,210 subintervals). 237 

A multivariable phylogenetic survival model, including the 9 interventions and 238 

controlling for between-country 𝑅  variations (see Methods), showed a strong fit to the 239 

data (likelihood-ratio test compared to the null model, P < 10-196). In this model, the 240 

interventions most strongly and independently associated with a reduction of the 241 

effective reproduction number 𝑅  of SARS-CoV-2 were home containment (𝑅  percent 242 

change, -34.6%, 95%CI, -43.2 to -24.7%), education lockdown (-25.6%, 95%CI, -33.4 to 243 

-16.9%), restricting gatherings (-22.3%, 95%CI, -33.4 to -9.4%) and international travel 244 

(-16.9%, 95%CI, -27.5 to -4.8%). We failed to detect a substantial impact of other 245 

interventions, namely information campaigns, cancelling public events, closing 246 
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workplaces, restricting internal movement, and closing public transportation (Fig. 3b). 247 

Based on coefficient estimates, all interventions were independently predicted to reduce 248 

𝑅  (even by a negligible amount), in line with the intuition that no intervention should 249 

accelerate the epidemic. Contrasting with previous approaches that constrained 250 

coefficients5, this intuition was not enforced a priori in our multivariable model, in which 251 

positive coefficients (increasing 𝑅 ) might have arisen due to noise or collinearity 252 

between interventions. The absence of unexpectedly positive coefficients suggests that 253 

our model correctly captured the epidemic slowdown that accompanied the 254 

accumulation of interventions. 255 

Estimated intervention effects are robust to time-dependent confounders and 256 

collinearity 257 

A reduction of 𝑅  through time, independent of the implementation of interventions, 258 

might lead to overestimate their effect in our model. Several potential confounders might 259 

reduce 𝑅  through time but cannot be precisely estimated and included as control 260 

covariates. These included the progressive acquisition of herd immunity, the so-called 261 

artificial diversification slowdown possibly caused by incomplete sampling, and time-262 

dependent variations of the sampling effort (see Methods). To quantify this potential 263 

time-dependent bias, we constructed an additional model including the age of each 264 

branch as a covariate (Extended Data Table 1). The coefficients in this time-adjusted 265 

model only differed by small amounts compared to the base model. Moreover, the 266 

ranking by effectiveness of the major interventions remained unchanged, indicating that 267 

our estimates were robust to time-dependent confounders. 268 

We also quantified the sensitivity of the estimated intervention effects to the 269 

inclusion of other interventions (collinearity) by excluding interventions one by one in 9 270 

additional models (Fig. 3c). This pairwise interaction analysis confirmed that most of the 271 

estimated effects were strongly independent. Residual interferences were found for 272 

gathering restrictions, whose full-model effect of -22.3% was reinforced to -33.5% when 273 

ignoring home containment; and for cancelling public events, whose full-model effect of 274 

-0.97% was reinforced to -15.1% when ignoring gathering restrictions. These residual 275 
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interferences make epidemiological sense because home containment prevents 276 

gatherings and gathering restrictions also prohibit public events. Overall, the absence of 277 

strong interferences indicated that our multivariable model reasonably captured the 278 

independent, cumulative effect of interventions, enabling ranking their impact on 279 

COVID-19 spread. 280 

Table 2. Predicted reduction of the COVID-19 effective reproduction number under increasingly stringent 
combinations of non-pharmaceutical interventions. 
  Probability of reducing 𝑹𝒕 below 1 

Accumulated interventions 
Relative Rt 

(cumulative % change)  
R0=1.5 R0=2.0 R0=2.5 R0=3.0 R0=3.5 

Information campaign -6.0 (-17.0 to +6.5) <0.01 <0.01 <0.01 <0.01 <0.01 

+ Restrict intl. travel -21.9 (-35.0 to -6.1) 0.05 <0.01 <0.01 <0.01 <0.01 

+ Education lockdown -41.9 (-52.5 to -29.0) 0.91 0.07 <0.01 <0.01 <0.01 

+ Cancel public events -42.5 (-54.0 to -28.1) 0.90 0.11 <0.01 <0.01 <0.01 

+ Restrict gatherings >100 pers. -55.3 (-63.4 to -45.5) 1.00 0.86 0.14 <0.01 <0.01 

+ Close workplaces -59.7 (-67.6 to -50.0) 1.00 0.98 0.48 0.04 <0.01 

+ Restrict internal movements -60.6 (-67.9 to -51.6) 1.00 0.99 0.56 0.06 <0.01 

+ Close public transport -65.1 (-72.6 to -55.7) 1.00 1.00 0.87 0.36 0.05 

+ Home containment -77.2 (-81.5 to -71.9) 1.00 1.00 1.00 1.00 0.98 

 281 

 282 

Simulating intervention effectiveness in an idealized population 283 

To facilitate the interpretation of our estimates of the effectiveness of interventions 284 

against COVID-19, we simulated each intervention’s impact on the peak number of 285 

cases, whose reduction is critical to prevent overwhelming the healthcare system (Fig. 286 

3d and Extended Data Fig. 8). We used compartmental Susceptible-Infected-Recovered 287 

(SIR) models with a basic reproduction number 𝑅 = 3 and a mean infectious period of 288 

2 weeks based on previous estimates24,25, in an idealized population of 1 million 289 

susceptible individuals (see Methods). In each model, we simulated the implementation 290 

of a single intervention at a date chosen to reflect the median delay across countries 291 

(Fig. 3a) relative to the epidemic onset (see Methods). On implementation date, the 292 
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effective reproduction number was immediately reduced according to the estimated 293 

intervention’s effect shown in Fig. 3b.  294 

In this idealized setting, home containment, independent of all other restrictions, 295 

only halved the peak number of cases from 3.0x105 to 1.5x105 (95% CI, 1.0x105 to 296 

2.0x105) (Fig. 3d). However, a realistic implementation of home containment also 297 

implies other restrictions including, at least, restrictions on movements, gatherings, and 298 

public events. This combination resulted in a relative 𝑅  of -50.8% (95% CI, -59.4% to -299 

40.2%) and a 5-fold reduction of the peak number of cases to 6.0x104 (95% CI, 1.9x104 300 

to 1.2x105). Nevertheless, if 𝑅 = 3 then a 50% reduction is still insufficient to reduce 𝑅  301 

below 1 and stop the epidemic. This suggests that even when considering the most 302 

stringent interventions, combinations may be required. To further examine this issue, we 303 

estimated the effect of accumulating interventions by their average chronological order 304 

shown in Fig. 3a, from information campaigns alone to all interventions combined 305 

including home containment (Fig. 3e). Strikingly, only the combination of all 306 

interventions completely stopped the epidemic under our assumed value of 𝑅 . To 307 

estimate the effectiveness of combined interventions in other epidemic settings, we 308 

computed the probabilities of reducing 𝑅  below 1 for values of 𝑅  ranging from 1.5 to 309 

3.5 (Table 2; see Methods). The same probabilities for individual interventions are 310 

presented in Table S2, showing that no single intervention would stop the epidemic if 311 

𝑅 ≥ 2. These results may help inform decisions on the appropriate stringency of the 312 

restrictions required to control the epidemic under varying transmission regimes. 313 

  314 
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Discussion 315 

We present a phylodynamic analysis of how the divergence rate and reproduction 316 

number of SARS-CoV-2 varies in response to large-scale non-pharmaceutical 317 

interventions in 57 countries. Our results suggest that no single intervention, including 318 

home containment, is sufficient on its own to stop the epidemic (𝑅 < 1). Increasingly 319 

stringent combinations of interventions may be required depending on the effective 320 

reproduction number. 321 

 Home containment was repeatedly estimated to be the most effective response 322 

in epidemiological studies from China26, France27, the UK28, and Europe5. Other studies 323 

modelled the additional (or residual) reduction of 𝑅  by an intervention after taking into 324 

account those previously implemented4,6,10. Possibly because home containment was 325 

the last implemented intervention in many countries (Fig. 2a), these studies reported a 326 

weaker or even negligible additional effect compared to earlier interventions. In our 327 

study, home containment, even when implemented last, had the strongest independent 328 

impact on epidemic spread (𝑅  percent change, -34.6%), which was further amplified (-329 

50.8%) when taking into account implicit restrictions on movements, gatherings and 330 

public events. 331 

We found that education lockdown substantially decreased COVID-19 spread (𝑅  332 

percent change, -25.6%). Contrasting with home containment, the effectiveness of 333 

education lockdown has been more hotly debated. This intervention ranked among the 334 

most effective ones in two international studies4,6 but had virtually no effect on 335 

transmission in other reports from Europe5,10. Young children have been estimated to be 336 

poor spreaders of COVID-19 and less susceptible than adults to develop disease after 337 

an infectious contact, counteracting the effect of their higher contact rate29,30. However, 338 

the relative susceptibility to infection was shown to increase sharply between 15 and 25 339 

years, suggesting that older students might be more involved in epidemic spread30. 340 

Importantly, we could not differentiate the effect of closing schools and universities 341 

because both closures coincided in all countries. Thus, our finding that education 342 

lockdowns reduce COVID-19 transmission might be driven by contact rate reductions in 343 
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older students rather than in children, as hypothesized elsewhere4. This raises the 344 

question of whether education lockdown should be adapted to age groups, considering 345 

that: (1), education lockdown had a sizeable impact on COVID-19 transmission in our 346 

study and others4,6; (2), this impact might be preferentially driven by older students29,30; 347 

and (3) autonomous distance learning might be more effective in university students31 348 

compared to younger children who require parental presence and supervision following 349 

school closure, possibly widening the gap for children from under-resourced 350 

backgrounds32. Based on these elements, we speculate that closing universities, but not 351 

elementary schools, might strike the right balance between efficacy and social impact.  352 

Restrictions on gatherings of >100 persons appeared more effective than 353 

cancelling public events (𝑅  percent changes, -22.3% vs. -1.0%, respectively) in our 354 

phylodynamic model, in line with previous results from epidemiological models4. 355 

Notwithstanding that gathering restrictions prohibit public events, possibly causing 356 

interferences between estimates (Fig. 3c), this finding is intriguing. Indeed, several 357 

public events resulted in large case clusters, the so-called superspreading events, that 358 

triggered epidemic bursts in France33, South Korea34 or the U.S.35. A plausible 359 

explanation for not detecting the effectiveness of cancelling public events is that data-360 

driven models, including ours, better capture the cumulative effect of more frequent 361 

events such as gatherings than the massive effect of much rarer events such as 362 

superspreading public events. This bias towards ignoring the so-called ‘Black Swan’ 363 

exceptional events36 suggests that our findings (and others’4) regarding restrictions on 364 

public events should not be interpreted as an encouragement to relax these restrictions 365 

but as a potential limit of modelling approaches (but see37). 366 

There are other limitations to our study, including its retrospective design. Similar 367 

to previous work6, we did not consider targeted non-pharmaceutical interventions that 368 

are difficult to date and quantify, such as contact tracing or case isolation policies. Data 369 

were analyzed at the national level, although much virus transmission was often 370 

concentrated in specific areas and some non-pharmaceutical interventions were 371 

implemented at the sub-national level38. Our phylogeographic inferences did not 372 

consider the travel history of patients, whose inclusion in Bayesian models was recently 373 
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shown to alleviate sampling bias39. From a statistical standpoint, the interval lengths in 374 

the dated phylogeny were treated as fixed quantities in the survival models. Ignoring the 375 

uncertainty of the estimated lengths might underestimate the width of confidence 376 

intervals, although this is unlikely to have biased the pointwise estimates and the 377 

ranking of interventions’ effects. The number of genomes included by country did not 378 

necessarily reflect the true number of cases, which might have influenced country 379 

comparison results in Fig. 2, but not intervention effectiveness models in Fig. 3 which 380 

were adjusted for between-country variations of 𝑅 . Finally, our estimates represent 381 

averages over many countries with different epidemiological contexts, healthcare 382 

systems, cultural behaviors and nuances in intervention implementation details and 383 

population compliance. This global approach, similar to previous work4,6, facilitates 384 

unifying the interpretation of intervention effectiveness, but this interpretation still needs 385 

to be adjusted to local contexts by policy makers. 386 

Beyond the insights gained into the impact of interventions against COVID-19, 387 

our findings highlight how phylodynamic survival analysis can help leverage pathogen 388 

sequence data to estimate epidemiological parameters. Contrasting with the Bayesian 389 

approaches adopted by most, if not all, previous assessments of intervention 390 

effectiveness4,5,8, phylodynamic survival analysis does not require any quantitative prior 391 

assumption or constraint on model parameters. The method should also be simple to 392 

implement and extend by leveraging the extensive software arsenal of survival 393 

modelling. Phylodynamic survival analysis may complement epidemiological models as 394 

pathogen sequences accumulate, allowing to address increasingly complex questions 395 

relevant to public health strategies. 396 

  397 
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METHODS 398 

Definitions and chronology of non-pharmaceutical interventions 399 

The nature, stringency and timing of non-pharmaceutical interventions against COVID-400 

19 have been collected and aggregated daily since January 1, 2020 by the Oxford 401 

COVID-19 Government Response Tracker initiative of the Blavatnik School of 402 

Government, UK4,22. As of May 12, 2020, the interventions are grouped into three 403 

categories, namely: closures and containment (8 indicators), economic measures (4 404 

indicators) and health measures (5 indicators). Indicators use 2- to 4-level ordinal scales 405 

to represent each intervention’s stringency, and an additional flag indicating whether the 406 

intervention is localized or general. Details of the coding methods for indicators can be 407 

found in40. We focused on large-scale interventions against transmission that did not 408 

target specific patients (for instance, we did not consider contact tracing) and we 409 

excluded economic and health interventions except for information campaigns. This 410 

rationale led to the selection of the 9 indicators shown in Table 1. To facilitate 411 

interpretation while constraining model complexity, the ordinal-scale indicators in 412 

OxCGRT data were recoded as binary variables in which we only considered 413 

government requirements (as opposed to recommendations) where applicable. We did 414 

not distinguish between localized and nation-wide interventions because localized 415 

interventions, especially in larger countries, targeted the identified epidemic hotspots. 416 

As the data did not allow to differentiate closures of schools and universities, we use the 417 

term ‘education lockdown’ (as opposed to ‘school closure’ in22) to avoid 418 

misinterpretation regarding the education levels concerned. 419 

Phylodynamic survival analysis in measurably evolving populations  420 

The original phylogenetic survival model in12 and its later extensions41 considered 421 

intervals backward in time, from the tips to the root of the tree, and were restricted to 422 

trees with all tips sampled at the same date relative to the root (ultrametric trees). 423 

Censored intervals (intervals that do not end with an event) in12 were used to represent 424 

lineages with known sampling date but unknown age. In contrast, viral samples in 425 
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ongoing epidemics such as COVID-19 are typically collected through time. A significant 426 

evolution of the viruses during the sampling period violates the ultrametric assumption. 427 

To handle phylogenies of these so-called measurably evolving populations42, we 428 

propose a different interpretation of censoring compared to12. Going forward in time, the 429 

internal branches of a tree connect two divergence events while terminal branches, 430 

those that end with a tip, connect a divergence event and a sampling event (Fig. 1b). 431 

Thus, we considered internal branches as time-to-event intervals and terminal branches 432 

as censored intervals representing the minimal duration during which no divergence 433 

occurred (Fig. 1c). 434 

SARS-CoV-2 phylogenetic data 435 

SARS-CoV-2 genome sequences have been continuously submitted to the Global 436 

Initiative on Sharing All Influenza Data (GISAID) by laboratories worldwide21. To 437 

circumvent the computational limits of phylogeny reconstruction and time calibration 438 

techniques, the sequences of the GISAID database are subsampled before analysis by 439 

the Nextstrain initiative, using a balanced subsampling scheme through time and 440 

space20,43. Phylogenetic reconstruction uses maximum-likelihood phylogenetic inference 441 

based on IQ-TREE44 and time-calibration uses TreeTime45. See46 for further details on 442 

the Nextstrain bioinformatics pipeline. A dated phylogeny of 5,211 SARS-CoV-2 443 

genomes, along with sampling dates and locations, was retrieved from 444 

nextstrain.org/ncov on May 12, 2020. Genomes of non-human origin (n = 13) were 445 

discarded from analysis. Polytomies (unresolved divergences represented as a node 446 

with >2 descendants) were resolved as branches with an arbitrarily small length of 1 447 

hour, as recommended for adjustment of zero-length risk intervals in Cox regression47. 448 

Of note, excluding these zero-length branches would bias the analysis by 449 

underestimating the number of divergence events in specific regions of the phylogeny. 450 

Maximum-likelihood ancestral state reconstruction was used to assign internal nodes of 451 

the phylogeny to countries in a probabilistic fashion, taking the tree shape and sampling 452 

locations as input data48. To prepare data for survival analysis, we decomposed the 453 

branches of the dated phylogeny into a set of time-to-event and time-to-censoring 454 
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intervals (Fig. 1c). Intervals were assigned to the most likely country at the origin of the 455 

branch when this country’s likelihood was >0.95. Intervals in which no country reached 456 

a likelihood of 0.95 were excluded from further analysis (Extended Data Figs. 1, 2). 457 

Finally, intervals during which a change of intervention occurred were split into sub-458 

intervals, such that all covariates, including the country and interventions, were held 459 

constant within each sub-interval and only the last subinterval of an internal branch was 460 

treated as a time-to-event interval. This interval-splitting approach is consistent with an 461 

interpretation of interventions as external time-dependent covariates18, which are not 462 

dependent on the event under study, namely, the viral divergence event.  463 

Mixed-effect Cox proportional hazard models 464 

Variations of the divergence rate 𝜆 in response to non-pharmaceutical interventions 465 

were modelled using mixed-effect Cox proportional hazard regression (reviewed in49). 466 

Models treated the country and phylogenetic branch as random effects to account for 467 

non-independence between sub-intervals of the same branch and between branches 468 

assigned to the same country. The predictors of interest were not heritable traits of 469 

SARS-CoV-2, thus, phylogenetic autocorrelation between intervals was not corrected 470 

for. Time-to-event data were visualized using Kaplan-Meier curves with 95% confidence 471 

intervals. The regression models had the form 472 

𝜆 (𝑡) = 𝜆 (𝑡) ⋅ exp(𝑋 ⋅ 𝛽 +  𝛼 + 𝛾 ) 473 

where 𝜆 (𝑡) is the hazard function (here, the divergence rate) at time 𝑡 for the 𝑖th 474 

observation, 𝜆 (𝑡) is the baseline hazard function, which is neither specified or explicitly 475 

evaluated, 𝑋  is the set of predictors of the 𝑖th observation (the binary vector of active 476 

non-pharmaceutical interventions), 𝛽 is the vector of fixed-effect coefficients, 𝛼  is the 477 

random intercept associated with the 𝑗th phylogenetic branch and 𝛾  is the random 478 

intercept associated with the 𝑘th country. Country comparison models (Fig. 2d), in 479 

which the country was the only predictor and branches were not divided into 480 

subintervals, did not include random intercepts. Raw model coefficients (the log-hazard 481 

ratios) additively shift the logarithm of the divergence rate 𝜆.  Exponentiated coefficients 482 
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exp 𝛽 (the hazard ratios) are multiplicative factors (fold-changes) of the divergence rate. 483 

To ease interpretation, hazard ratios were reported as percentage changes of the 484 

divergence rate or, equivalently, of the effective reproduction number 𝑅 , equal to 485 

(exp 𝛽 − 1) × 100. Analyses were conducted using R 3.6.1 (the R Foundation for 486 

Statistical Computing, Vienna, Austria) with additional packages ape, survival and 487 

coxme. 488 

Estimating the effect of combined interventions 489 

Pointwise estimates and confidence intervals of combined interventions were estimated 490 

by adding individual coefficients and their variance-covariances. Cox regression 491 

coefficients have approximately normal distribution with mean vector 𝑚 and variance-492 

covariance matrix 𝑉, estimated from the inverse Hessian matrix of the likelihood 493 

function evaluated at 𝑚. From well-known properties of the normal distribution, the 494 

distribution of a sum of normal deviates is normal with mean equal to the sum of the 495 

means and variance equal to the sum of the variance-covariance matrix of the deviates. 496 

Thus, the coefficient corresponding to a sum of coefficients with mean 𝑚 and variance 𝑉 497 

has mean ∑𝑚 and variance ∑𝑉, from which we derive the point estimates and 498 

confidence intervals of a combination of predictors. Importantly, summing over the 499 

covariances captures the correlation between coefficients when estimating the 500 

uncertainty of the combined coefficient. 501 

Probability of stopping an epidemic 502 

A central question regarding the effectiveness of interventions or combinations thereof 503 

is whether their implementation can stop an epidemic by reducing 𝑅  below 1 (Table 2). 504 

Suppose that some intervention has an estimated log-hazard ratio 𝛽. 𝛽 has 505 

approximately normal distribution with mean 𝛽 and variance 𝜎 , written 𝛽 ∼ 𝑁(𝛽, 𝜎 ). 506 

For some fixed value of 𝑅 , the estimated post-intervention reproduction number 𝑅 =507 

𝑅 ⋅ exp 𝛽. The probability 𝑝 that 𝑅 < 1 is ∫ 𝑑 𝑅  d𝑅  where 𝑑 denotes the probability 508 

density function. To solve the integral, remark that log 𝑅 = log 𝑅 + 𝛽 ∼ 𝑁 log 𝑅 +509 
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𝛽, 𝜎 . Using a change of variables in the integral and noting that log 1 = 0, we obtain 510 

the closed-form solution  511 

𝑝 = 𝑑 log 𝑅  d log 𝑅 = Φ 0 log 𝑅 + 𝛽, 𝜎 , 512 

where Φ is the cumulative density function of the normal distribution with mean log 𝑅 +513 

𝛽 and variance 𝜎 . By integrating over the coefficient distribution, this method explicitly 514 

considers the estimation uncertainty of 𝛽 when estimating 𝑝. 515 

Potential time-dependent confounders 516 

Time-dependent phylodynamic survival analysis assumes that variations of branch 517 

lengths though time directly reflect variations of the divergence rate, which implies that 518 

branch lengths are conditionally independent of time given the divergence rate. When 519 

the phylogeny is reconstructed from a fraction of the individuals, as is the case in 520 

virtually all phylodynamic studies including ours, this conditional independence 521 

assumption can be violated. This is because incomplete sampling increases the length 522 

of more recent branches relative to older branches50, an effect called the diversification 523 

slowdown51,52. Noteworthy, this effect can be counteracted by a high extinction rate17,50, 524 

which is expected in our setting and mimicks an acceleration of diversification. 525 

Moreover, whether the diversification slowdown should be interpreted as a pure artifact 526 

has been controversial52,53. Notwithstanding, we considered incomplete sampling as a 527 

potential source of bias in our analyses because a diversification slowdown might lead 528 

to an overestimation of the effect of non-pharmaceutical interventions. Additionally, the 529 

selection procedure used by Nextstrain to collect genomes included in the dated 530 

phylogeny possibly amplified the diversification slowdown by using a higher sampling 531 

fraction in earlier phases of the epidemic43. To verify whether the conclusions of our 532 

models were robust to this potential bias, we built an additional multivariable model 533 

including the estimated date of each divergence event (the origin of the branch) as a 534 

covariate. The possible relation between time and the divergence rate is expectedly 535 

non-linear50 and coefficient variations resulting from controlling for time were moderate 536 
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(Extended Data Table 1), thus, we refrained from including a time covariate in the 537 

reported regression models as this might lead to overcontrol. Further research is 538 

warranted to identify an optimal function of time that might be included as a covariate in 539 

phylodynamic survival models to control for sources of diversification slowdown. 540 

Compartmental epidemiological models 541 

Epidemic dynamics can be described by partitioning a population of size 𝑁 into three 542 

compartments, the susceptible hosts 𝑆, the infected hosts 𝐼, and the recovered hosts 𝑅. 543 

The infection rate 𝑏 governs the transitions from 𝑆 to 𝐼 and the recovery rate 𝑔 governs 544 

the transitions from 𝐼 to 𝑅 (we avoid the standard notation 𝛽 and 𝛾 for infection and 545 

recovery rates to prevent confusion with Cox model parameters). The SIR model 546 

describes the transition rates between compartments as a set of differential equations 547 

with respect to time 𝑡, 548 

d𝑆

d𝑡
= −𝑏𝑆𝐼,

d𝐼

d𝑡
= 𝑏𝑆𝐼 − 𝑔𝐼,

d𝑅

d𝑡
= 𝑔𝐼. 549 

The transition rates of the SIR model define the basic reproduction number of the 550 

epidemic, 𝑅 = 𝑏/𝑔. From a phylodynamic standpoint, if the population dynamics of a 551 

pathogen is described as a birth-death model with divergence rate 𝜆 and extinction rate 552 

𝜇, then 𝑅 = 𝜆 𝜇⁄  or, alternatively, 𝑅 = + 154. We simulated the epidemiological 553 

impact of each individual intervention in SIR models with 𝑅 = 3 and 𝑔 = 2 weeks 554 

based on previous estimates24,25, yielding a baseline infection rate 𝑏 = 𝑔𝑅 = 6. In each 555 

model, the effective infection rate changed from 𝑏 to 𝑏 ⋅ exp 𝛽 on the implementation 556 

date of an intervention with log-hazard ratio 𝛽. To determine realistic implementation 557 

delays, the starting time of the simulation was set at the date of the first local divergence 558 

event in each country and the implementation date was set to the observed median 559 

delay across countries (see Fig. 3a). All models started with 100 infected individuals at 560 

𝑡 = 0, a value assumed to reflect the number of unobserved cases at the date of the 561 

first divergence event, based on the temporality between the divergence events and the 562 

reported cases (Extended Data Fig. 3) and on a previous estimate from the U.S. 563 
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suggesting that the total number of cases might be two orders of magnitude larger than 564 

the reported count55. Evaluation of the SIR models used the R package deSolve. 565 

Data and software availability 566 

All data and software code used to generate the results are available at 567 

github.com/rasigadelab/covid-npi.  568 
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 781 

 782 

 783 

Extended Data Figure 1. Flowchart of data selection. Events are phylogenetic divergences 784 
(tree nodes in the SARS-CoV-2 phylogeny), excluding tree root. Polytomies are unresolved tree 785 
nodes representing >1 divergence event. Polytomies were resolved into dichotomies (nodes 786 
with exactly 1 divergence) with arbitrarily small interval length. NPI, non-pharmaceutical 787 
intervention against COVID-19. 788 
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 790 

 791 

Extended Data Figure 2. Length distribution in phylogenetic branches with uncertain 792 
country assignation. Shown are box-and-whisker plots of the lengths of internal and terminal 793 
branches, depending on branch exclusion due to uncertain (<95% confidence) country 794 
assignation. Boxes denote interquartile range (IQR) and median, whiskers extend to lengths at 795 
most 1.5x the IQR away from the median length, and circle marks denote lengths farther than 796 
1.5 IQR from the median length.   797 
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 798 

 799 

Extended Data Figure 3. Correlation of reported and estimated epidemic onset dates. 800 
Dates of first estimated autochtonous SARS-CoV-2 transmission per country relative to the 801 
dates of the 10th reported case (left panel) and the 10th reported death (right panel) in countries 802 
with at least 15 assigned internal branches.  803 
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 805 

 806 

 807 

Extended Data Figure 4. Frequency and timing of implementation of non-pharmaceutical 808 
interventions in 57 countries. The first column shows the number and percentage of countries 809 
implementing each intervention, independent of other interventions. Matrix cells show the 810 
proportion of countries implementing the intervention in column conditional on the 811 
implementation of the intervention in row. 812 
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 815 

 816 

Extended Data Figure 5. Non-pharmaceutical interventions against COVID-19 correlate 817 
with reduced effective reproduction numbers. Data derive from a dated phylogeny of SARS-818 
CoV-2 genomes from 57 countries, with 4,191 internal branches interpreted as time-to-event 819 
intervals, and 4,019 terminal branches interpreted as censored intervals, after exclusion of 820 
branches with uncertain country assignation. Shown are Kaplan-Meier survival curves of the 821 
waiting time without a viral transmission event, stratified on the presence of nine non-822 
pharmaceutical interventions active or not in each country. Sample sizes denote, for each 823 
stratum, the no. of time-to-event subintervals (possibly resulting from splitting intervals 824 
containing a change of intervention) and, in brackets, the no. of censored subintervals. Percent 825 
changes of the effective reproduction number 𝑅  were derived from separate time-dependent 826 
mixed-effect Cox regression models treating the country and the branch as random effects. 827 

 828 
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 830 

 831 

Extended Data Figure 6. Median delay between implementation of non-pharmaceutical 832 
interventions. Shown are the median days elapsed between the implementation of the 833 
intervention in the row and that of the intervention in the column, where median is taken across 834 
countries that implemented both interventions. 835 
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 837 

 838 

Extended Data Figure 7. Pearson correlation between non-pharmaceutical interventions. 839 
Data derive from 14,829 sub-intervals, including 4,019 time-to-event sub-intervals and 10,810 840 
censored sub-intervals. Sub-intervals result from splitting phylogenetic branches (n = 8,210) in 841 
which a change of intervention (activation or release) occurs. Smaller absolute correlations 842 
(white) favor the identifiability of intervention effects in multivariable analysis while larger 843 
absolute correlations (orange/red) can result into dependencies between model coefficients 844 
(see Fig. 3c).  845 
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 847 

 848 

Extended Data Figure 8. Predicted individual impact of 9 non-pharmaceutical 849 
interventions (NPIs) on the number of simultaneous COVID-19 cases in an idealized 850 
population of 1 million susceptible individuals. Gray lines represent the case count 851 
predicted by an epidemiological SIR model with a basic reproduction number 𝑅 = 3, as 852 
estimated in the absence of NPIs, and a mean infectious period of 2 weeks. For each NPI, the 853 
simultaneous case count (red line) and 95% confidence band are derived from an SIR model in 854 
which the basic reproduction number is altered as predicted by the mutivariate model 855 
coefficients shown in Fig. 3b. The delay between the 100th case and NPI implementation in SIR 856 
models coincides with the median delay between the 1st transmission event and the NPI 857 
implementation shown in Fig. 3a. 858 
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Extended Data Table 1. Predicted percent change of COVID-19 effective 

reproduction number in response to non-pharmaceutical interventions with and 

without adjustment for time. Data derive from multivariable mixed-effect Cox 

regression models including one random intercept per country and phylogenetic branch. 

 Relative 𝑹𝒕 (% change) 

Factor Base model Time-adjusted model 

Elapsed time (per month) - -31.4 (-38.9 to -22.9) 

Information campaign -6.0 (-17.0 to 6.5) 3.2 (-9.6 to 17.8) 

Restrict intl. travel -16.9 (-27.5 to -4.8) -11.0 (-22.8 to 2.7) 

Education lockdown -25.6 (-33.4 to -16.9) -21.0 (-29.6 to -11.2) 

Cancel public events -1.0 (-14.7 to 15.0) 1.1 (-13.5 to 18.0) 

Restrict gatherings >100 pers. -22.3 (-33.4 to -9.3) -17.3 (-29.5 to -2.9) 

Close workplaces -10.0 (-22.8 to 5.0) -8.8 (-22.2 to 6.9) 

Restrict internal movements -2.2 (-16.8 to 15.0) 0.8 (-14.8 to 19.2) 

Close public transport -11.5 (-26.6 to 6.7) -9.7 (-25.6 to 9.5) 

Home containment -34.6 (-43.2 to -24.7) -35.4 (-44.0 to -25.4) 

 860 
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Extended Data Table 2. Predicted reduction of the COVID-

19 effective reproduction number by non-pharmaceutical 

interventions implemented alone. 

Intervention  
Probability that  

𝑹𝒕< 1 if 𝑹𝟎=1.5 

Information campaign  <0.01 

Restrict intl. travel  <0.01 

Education lockdown  0.03 

Cancel public events  <0.01 

Restrict gatherings >100 pers.  0.03 

Close workplaces  <0.01 

Restrict internal movements  <0.01 

Close public transport  <0.01 

Home containment  0.61 

NOTE. The probability that 𝑅 < 1 was less than 0.01 for all 

interventions if 𝑅  ≥ 2. 
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