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Abstract 
 
Human travel is one of the primary drivers of infectious disease spread. Models of travel are 
often used that assume the amount of travel to a specific destination decays as cost of travel 
increases and higher travel volumes to more populated destinations. Trip duration, the length of 
time spent in a destination, can also impact travel patterns.  We investigated the spatial 
distribution of travel conditioned on trip duration and find distinct differences between short and 
long duration trips. In short-trip duration travel networks, trips are skewed towards urban 
destinations, compared with long-trip duration networks where travel is more evenly spread 
among locations. Using gravity models imbedded in simulations of disease transmission, we 
show that pathogens with shorter generation times exhibit initial patterns of spatial propagation 
that are more predictable among urban locations, whereas longer generation time pathogens 
have more diffusive patterns of spatial spread reflecting more unpredictable disease dynamics. 
 
Introduction 
 
During an infectious disease outbreak, anticipating where a pathogen will spread is an important 
part of planning an effective response1,2. The initial stages of an outbreak are typically 
characterized by spatial dynamics through the population from an introduction event, such as 
the 2014 Ebola outbreak in West Africa3 and the 2019 COVID-19 pandemic4. These outbreaks 
provide clear examples of how quickly a pathogen can spread through a highly susceptible 
population. The speed of spatial propagation depends not only on population susceptibility and 
intrinsic biological properties of the pathogen, but also on connectivity patterns driven by human 
travel. Being able to predict the spatial dynamics can help inform where and when interventions 
should be deployed1,5. Thus, mathematical models have been used to predict these patterns for 
a range of pathogens including Ebola6–8, influenza9–11, SARS-CoV-112–14, and the ongoing 
COVID-19 pandemic caused by SARS-CoV-2 15–17. Predicting disease spread in this manner 
presents unique challenges because mathematical models of disease spread often exhibit 
complex dynamics18–20 that have a limited prediction horizon21 and rely on detailed information 
about human mobility patterns22–24. 
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Spatial connectivity in such models frequently relies on data and/or models of human mobility2,25 
which are derived from travel data such as travel surveys26,27, call data records28–30, air traffic 
data7,31,32 or App data33,34. In the absence of such data, mechanistic models of human 
movement are often used35–38. These data and models typically represent travel volume (raw 
number or relative magnitude of trips among locations per unit time) which is used as a proxy 
for actual travel patterns and to connect spatial locations, which is often represented as a 
metapopulation framework39. However, the manner in which travel volume scales directly with 
the rate of transmission among subpopulations depends on the specifics of epidemiological-
relevant movement among locations and the potentially infectious contacts that occur between 
individuals40–42, which ultimately determines the extent to which human mobility patterns can 
explain spatial disease dynamics. 
 
One way in which travel volume may not scale directly to transmission among subpopulations is 
if the amount of time that travelers spend in a destination (trip duration) varies spatially. Previous 
work has explored scaling transmission based on trip duration, typically as some return rate, 
which scales down transmission per route based on assumptions about travel behavior35,43–46. 
Return rate methods have been applied so that all routes are scaled down uniformly35 or 
according to the origin43, or in the case of Poletto et al.45,46 where return rate was determined 
functionally according to the degree distribution of the destination. It follows that the duration of 
trips may depend on the origin and destination location which would suggest that integrating trip 
duration data would not uniformly change spatial transmission patterns47,48. For example, 
studies of urban travel have found that trip duration is associated with the attractiveness of a 
destination (e.g. work, residence, recreation)49–52 and that differences among locations form 
discrete spatial regions with unique patterns of trip duration53–55. There is also a decay in travel 
volume with the cost of travel, which can be measured by physical characteristics of the travel 
network, such as geographic distance48,56,57, travel time58 or socio-economic57,59 differences 
among locations. To examine how spatial variability of trip duration alters connectivity and 
transmission, we analyzed mobility inferred using mobile phone data from Namibia. We find 
that, although short duration trips are strongly influenced by the cost of travel (measured by 
travel distance and population size), the cost of travel is less important for longer trips. Using 
measures of network heterogeneity and changepoint analysis, we show that this difference in 
perceived cost of travel changes the spatial distribution of trips, where short trip duration 
networks exhibit heterogeneous patterns of connectivity that shift to homogeneous patterns as 
trip duration increases. We find that gravity models can be adjusted to capture these different 
patterns and use these models to assess how this impacts the spatial predictability of 
transmission dynamics for a range of simulated pathogens.   
 
Results  
 
We used an anonymized data set of call data records (CDRs) collected in Namibia from October 
2010 to April 2014 to estimate mobility patterns. Previous studies have used versions of these 
CDRs and provide detailed descriptions of the data48,60,61. Briefly, mobile phone usage data from 
2.2 million unique subscribers was used to estimate travel patterns based on the estimated daily 
location of each subscriber, where the daily location is determined by recording the most 
frequently used mobile phone tower for each subscriber each day28,62. A trip was recorded when 
the location of a subscriber changed from location A to location B on subsequent days, 
otherwise the subscriber was recorded as staying in location A. For each trip, the date of travel 
and the number of days the subscriber remained in the destination location (trip duration) was 
recorded. The locations of the mobile phone towers were then aggregated to the 105 
administrative level 2 regions (districts) in Namibia. For each day, these data provide an 
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estimate for the number of trips made among the 105 districts and the duration of each trip, 
which include 259.2 million trips during the 40 months of data collection. 
 
To explore the impact of trip duration on connectivity patterns, we assessed travel by trip 
duration. Short-duration trips (e.g. trips lasting between 1-3 days) were characterized by a high 
proportion of trips to nearby and densely populated areas. There were fewer long-trip duration 
trips (30-60 days) that were more evenly distributed across all locations without a clear skew to 
nearby or higher population destinations (see Figure 2). These patterns change incrementally 
when assessed over a more continuous set of 20 duration-restricted subnetworks reflecting finer 
time intervals that are analogous to the generation times of several infectious pathogens (see 
Table 1). For each subnetwork, we calculated the statistical distributions of two network 
centrality measures: node strength (weighted degree per node) and node closeness (total 
weighted distance from all nodes), see Methods for more detailed description of these metrics. 
Although both measures capture overall network clustering, both have slightly different 
interpretations for epidemic dynamics. High node strength values occur when a subset of 
locations have higher than average number of trips which increases disease transmission since 
more travel among locations increase the likelihood of spatial spread. High node closeness 
values indicate the travel network has a few highly connected locations and many peripheral 
locations that are less connected. This type of structure can slow the rate spatial disease 
spread63. We found that for short-trip duration networks, both node strength and closeness 
values were high with an overall distribution that was heavy tailed, which implies that there are 
particular nodes (high population density urban locations) that are more highly connected 
(Figure S4). In contrast, the long-trip networks, had distributions of node strength and closeness 
that were lower and more uniform, which implies that these networks are less connected, and 
travel is more evenly distributed across all locations (see Figure 3A-B and S2).  
 
In general, analysis of these network centrality measures suggests that as trip duration 
increases, the spatial structure shifts from highly heterogenous connectivity (high level of 
variance in node strength and closeness) concentrated among urban centers to more 
homogenous connectivity (same overall degree distribution and lower closeness values). To 
more directly quantify the manner of this shift, we used a multivariate changepoint algorithm to 
identify statistically significant changes in node strength (ηstrength) and node closeness (ηclose� 
that indicate durations of travel at which network topology shifts significantly from 
heterogeneous to homogenous. We identified statistically significant shifts in network topology 
at 5 and 60 days (p-value = 1e-03 and 3e-04 respectively), which divides the duration-restricted 
subnetworks into three nominal classes: heterogeneous (1-5 days), intermediate (6-60 days), 
and homogeneous (>60 days; see Figure 3C). Overall, these results suggest that trips with a 
duration of less than 5 days display connectivity that is highly clustered among densely 
populated areas (Class 1 in Figure 3C), but trips longer than 60 days have more homogenously 
distributed trip volume among all locations (Class 3 in Figure 3C). In between these extremes is 
an intermediate class where trips are more evenly distributed among all locations, but there is 
still some clustering among more densely populated locations (Class 2 in Figure 3C). These 
results suggest that pathogens whose generation time is within the broad trip duration interval of 
the Class 1 heterogeneous topology (1-5 days) will depend more on short-trip networks for 
spatial propagation and may therefore exhibit patterns of disease spread along major routes of 
travel among urban population centers. Whereas pathogens with longer generation times may 
see more diffusive patterns of spread that are not dominated by urban travel.  
 
To understand factors driving differences in connectivity, we examined trip counts within each 
duration-restricted subnetwork and its dependence on: i) distance between origin and 
destination, and ii) the destination’s population density. Using log-linear models, we estimated 
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the effect size (fitted slope) and found that distance had a negative effect consistent with trip 
counts that decay as distance increases and destination population density had a net positive 
effect (i.e. more trips attracted to densely populated places). Since these covariates have rather 
different scales, we standardized them based on their standard deviation to allow for 
comparison and we found that on average, distance had an effect size approximately 10 times 
larger than destination population density (mean effect size across locations = -1.11 and 0.11 
respectively), indicating that in largely rural Namibia, distance remains the primary driver of trip 
volume regardless of trip duration. We also found that effect sizes for both covariates were 
strongest for short duration trips (� 5 days or less), but these effects are reduced to near-zero 
for longer trip durations (Figure 4C and D), and for some origin districts the effect of destination 
population was reversed for longer trips (> 60 days), which suggests that districts with lower 
population density may even attract more long duration trips (Figure 4B and D). 
 
A simple gravity model, the most commonly used spatial interaction model, was able to capture 
the changes in spatial connectivity over each of the 20 duration-restricted subnetworks (Table 
1). When we compared gravity models fitted to each subnetwork to that of a full travel network 
with all trips, we found that the duration-restricted models are similar to the full model containing 
all trip durations up to 7-10 days duration (subnetwork 6), after which both the number of trips 
and connectivity values estimated by the gravity models begin to decrease, becoming 
essentially uniformly distributed after 5-6 months (subnetwork 14; see Figure 5A). The changes 
in spatial connectivity in these models result from incremental decreases in the distance 
parameter γ and destination population size parameter ω�, where both were essentially zero 
after 5-6 months duration (Figures 5B and C), indicating that distance and population size have 
little influence on the spatial distribution of these longer duration trips. Further, model fit 
decreased as trip duration increased, with R-squared values showing good model fit up to 1-2 
months duration (subnetwork 10; R-squared = 0.51-0.55), but goodness of fit decreased for 
longer durations (see Figure S6). However, since the observed number of routes and trips 
decrease for trips of longer durations (Table 1 and Figure S1), this could spuriously cause the 
observed decrease in model fit (Figure S6). To ensure that connectivity patterns estimated by 
these models were not just due to the reduced number of observed routes or trip counts, we 
artificially down-sampled the full data according to the observed routes and sample sizes in 
Table 1.  We found that the connectivity values estimated by gravity models fitted to artificially 
down-sampled subnetworks were largely the same as the full model (Figures S7 and S8), which 
indicates that the difference in spatial patterns among the actual subnetworks are robust to the 
smaller numbers of observations or trip counts. 
 
Predictability of spatial spread 
Changes in network topology are likely to impact the pattern of spatial spread for pathogens 
based on the time scale of transmission. For example, subnetworks for longer-duration trips 
have more uniform spatial distribution which means that many locations are more evenly 
connected. Intuitively, this would impact the predictability of where a disease might spread 
because there is limited spatial structure and there is not a single destination that stands out as 
having higher risk of importation based on travel alone. To explore this concept of predictability, 
we first modeled the spatial connectivity of disease spread for a range of pathogen life histories 
(Table S1) and then estimated the spatial force of infection conditioned on the generation time 
of each pathogen (see Methods). Starting with an initially infected location, we then assessed 
how reliably we can identify the next location where the disease would spread for each 
successive generation using an index of spatial predictability (
). Spatial predictability 
 is 
based on the principle of maximum entropy and provides an easily interpretable index between 
0 and 1 that quantifies how the probability of disease importation is distributed among 
destinations—see Methods for detailed description. 
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When we analyzed the spatial simulations for each pathogen, we found that, given the same 
starting location (capital district of Windhoek), pathogens with shorter generation times and low �� had the most predictable spatial dynamics in the initial stages of an outbreak (Figure 6A). In 
comparison, pathogens with longer generation times had less predictable spatial dynamics. 
However, this varied by pathogen characteristics where a high �� can compensate for a short 
generation time making initial dynamics less predictable because these pathogens are able to 
spread to multiple destinations very quickly. Beyond initial dynamics, predictability decreased 
with successive generations for all pathogens although the rate of decrease varied by pathogen 
(Figure 6B). For example, measles and Ebola had comparable values of spatial predictability at 
the outset of the simulation due to their similar generation times. But in the case of measles, 
with a high ��, predictability declines more rapidly because it has a faster rate of transmission 
and associated spatial spread. This suggests that, while heterogeneity of the travel network has 
considerable effect on spatial predictability in initial outbreak stages, local dynamics driving the 
growth rate of the infected population in the index location (i.e. ��, proportion susceptible) 
determine the number of generations before spatial predictability rapidly decays.  
 
These patterns of spatial predictability were also dependent on the chosen starting location for 
the initial infected case in each simulation. For all pathogens, we found that predictability was 
sustained the longest for introduction into densely populated districts (Figure 7). Interestingly, 
we also found that the highest value of initial spatial predictability was � 
  0.63 (an influenza 
like simulation with an introduction even in the capital district) meaning that, given the 
connectivity patterns observed in Namibia, in the best-case scenario spatial spread appears to 
be marginally more predictable than unpredictable. We investigated this theoretically and found 
that a value of � 
  0.63 is functionally equivalent to the expectation that transmission is likely to 
occur from a given origin to 5 out of the 104 potential destinations (Figure S9A). In instances 
where the origin has more than one travel destination, which is common in highly connected 
travel networks, perfect certainty (� 
  1) is exceedingly unlikely (Figure S9B). Although these 
results suggest that predictability is higher for pathogens introduced into urban areas, in most 
cases we can expect that spatial spread in initial outbreak stages is generally more 
unpredictable than it is predictable and decreases with time. 
 
Discussion 
There is often limited data about both the number and duration of trips to model spatial 
connectivity in disease transmission models. Previous work has shown that trip duration is 
subject to economic constraints due to the cost of travel49,57 and these constraints often depend 
on characteristics of the destination49–52. The impact of these types of travel decisions on spatial 
connectivity and disease transmission has been explored theoretically using metapopulation 
models, but few studies have quantified this effect empirically with data that span larger spatial 
and temporal scales43–46,48. However, we show that a travel network can be broken down into 
subnetworks based on trip duration. When we account for travel of different durations in these 
subnetworks, we find different spatial patterns in connectivity, where short-trip networks can be 
characterized by high node degree strength and node closeness with connectivity that is 
concentrated among densely populated areas. Conversely, long-trip networks can be 
characterized by lower node degree strength and node closeness, suggesting a spatial pattern 
of connectivity that is more evenly dispersed across all nodes, including those in low density 
locations. These spatial differences in network topology are likely driven by travel decisions 
stemming from the cost of travel, where the different classes of subnetworks emerge from 
variable economic constraints on trips depending on the duration64. Accordingly, we find that 
short trips are more constrained by the cost of travel, thus these trips concentrate around 
densely populated locations and show more heterogeneous structure like scale-free networks. 
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But longer duration trips are less constrained by the cost of travel and therefore show more 
homogeneous network topology. 
 
Spatial heterogeneity in trip duration impacts infectious disease spread differentially through 
interaction with generation times of each pathogen. Keeling and Rohani44 provide a theoretical 
precedent for the interdependence between pathogen life history and patterns of spatial 
connectivity. They show that when trip duration is shorter than the infectious period of the 
pathogen, interdependence between pathogen transmission parameters and coupling among 
locations increases. Accordingly, the spatial force of infection for pathogens with longer 
generation times is less skewed towards the distribution of shorter trips because the duration of 
shorter trips comprises a much smaller proportion of the total infectious period, allowing fewer 
opportunities for onward transmission. By comparison, longer duration trips contribute more 
towards the spatial force of infection for a long generation time pathogen because the duration 
of these trips has greater overlap with the infectious period, translating into more infectious days 
spent travelling all else being equal. This proportional difference effectively dilutes the force of 
infection for longer generation time pathogens in discrete-time models, because individuals are 
assumed to be infectious for the entire timestep. Spatial transmission in this manner is most 
strongly driven by trips with a duration approximately equal to or greater than the generation 
time of the pathogen30. Therefore, we see intrinsic spatial bias in the transmission process, 
where spatial spread of pathogens with shorter or longer generation times are potentially driven 
by vastly different patterns of spatial connectivity with fundamental effects on the overall spatial 
predictability of disease spread. For example, the spatial force of infection for a short generation 
time pathogen like influenza will be primarily driven by the short-trip duration subnetworks which 
have higher heterogeneity and clustering around high-density urban areas. By comparison, 
spatial transmission of pathogens with longer generation times (e.g. pertussis or malaria) will be 
primarily driven by the long-trip duration subnetworks that have more homogenous spatial 
structure and lower overall connectivity. Therefore, short generation time pathogens may exhibit 
more predictable patterns of spatial spread that disseminate predominantly through densely 
populated areas whereas longer generation time pathogens may exhibit more unpredictable 
patterns since the spatial force of infection is distributed more evenly across many destination 
locations.  
 
Although we mainly investigated human mobility as the primary driver of spatial dynamics, the 
generalizability of our results to other disease systems also depends on spatial patterns in 
demographic and epidemiological factors specific to the pathogen. For example, transmission of 
childhood diseases, such as measles and rubella, depends on the rate at which children travel 
with adults and the demographic structure in each location. Heterogeneity in demographics 
among locations could change the patterns of spatial spread or introduce additional uncertainty. 
Population-level susceptibility also plays a significant role in the timing of spatial spread and is 
particularly important for pathogens with low population-level immunity65,66. Although we include 
a simple susceptibility parameter in our models of spatial spread, spatial heterogeneity in 
population susceptibility would also impact the locations that are at highest risk of spatial 
spread, as seen in instances where accumulation of susceptible individuals occurs due to 
vaccine refusal67 or spatially heterogeneous vaccination coverage68. Further, we used a 
discrete-time model with Susceptible-Infected-Recover disease dynamics which assumes 
individuals are uniformly infectious for the entirety of a timestep. However, it is less clear how 
the interdependence between trip duration and pathogen life history plays out when considering 
the precise timing of a trip in relation to different stages of disease (e.g. exposed, infectious, 
recovered) and whether infection has direct impact on the ability to travel. Addition work should 
be done to explore how the observed distribution of trip duration and uncertainty around latent 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.27.20215566doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20215566
http://creativecommons.org/licenses/by-nc-nd/4.0/


period and infectious period may cause different dispersal dynamics depending on pathogen life 
history. 
 
Methods for including trip duration have been proposed that include both theoretical44,46 and 
data-driven48 approaches. These methods offer a representation of spatial disease transmission 
that incorporates additional nuances of human travel decisions, but the resulting patterns of 
spatial spread may ultimately tend toward more unpredictable behavior (a persistent challenge 
when predicting the behavior of nonlinear systems in ecology and epidemiology18–21). Methods 
which account for uncertainty in human mobility and resulting disease dynamics therefore 
become especially important in order to make robust inferences about spatial transmission. For 
example, Kahn et al.69 showed that pathogens with longer incubation periods have patterns of 
spatial spread that are less predictable, which has important implications for vaccination 
campaigns. While the authors did not explicitly look at trip duration and network topology as we 
do here, these results lend support to our findings that the biological properties of pathogens 
that determine their speed of spatial propagation interact with the travel behavior of humans in a 
pathogen-specific manner, and suggests that this general relationship may be more widely 
applicable. However, the extent to which our results here fully generalize to disparate 
geographic settings is unclear due to the exceptionally low population density across much of 
Namibia with highly clustered populations in a few urban areas. This unique population 
distribution causes high variability in the size of administrative units, which are reflected in the 
physical placement of the network nodes in our analyses. The shifts in network topology that we 
observe here may be quite extreme on account of the unique population distribution in Namibia 
and could potentially exhibit different patterns in a country with a larger or more evenly 
distributed population. Future research will therefore benefit from analyzing mobility data from 
different contexts to establish the best predictors of trip duration that are generalizable and 
develop a simple data-driven mechanism, which includes these additional sources of 
heterogeneity, that can be easily incorporated into spatial transmission models.  
 
Methods 
 
Geographic data 
In addition to the CDR data, we used open source data to provide the static population sizes of 
each district (�
) and the distances between all districts (�
�). District population sizes were 
calculated by summing 2010 WorldPop Project (www.worldpop.org) estimates of the total 
number of people per 100m grid cell within each district (administrative level 2) in Namibia. 
District-level shapefiles were acquired from DIVA-GIS (www.diva-gis.org) and distances 
between districts were calculated as the Euclidean distance between district centroids. 
 
Definition of duration-restricted subnetworks 
We performed initial analyses of travel network topology by comparing relative edge weights for 
travel networks based on three broad intervals of trip duration. Relative edge weights were 
defined as �
�

� 
 �� �
� �� ��, �� �/max��
��� � 100 such that each sub-network contained only trips 
where duration of travel ��� was within the interval  ��, ��! and is scaled by the overall maximum 
edge weight observed in the full travel network max��
��. The broad intervals for this initial 
analysis were defined as 1–3, 7–14, and 30–60 days in duration (see Figure 2). To further 
explore how network topology changes on account of trip duration, we subset our data into 20 
duration-restricted subnetworks reflecting intervals of trip duration that are analogous to the 
generation times of several infectious pathogens (e.g. 2-3 days for influenza, 14-21 days for 
Ebola) with duration intervals continuing up to 12 months (see Table 1).  
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Measures of network centrality 
To characterize the overall topological structure of each duration-restricted subnetwork in Table 
1, we used two centrality measures: node strength (i.e. weighted degree per node) and node 
closeness (i.e. the cumulative weighted distance separating node " from all other nodes)70. 
Here, nodes represent geographic locations (districts). Specifically, we calculated node strength 
as the out-strength of node i as $
 
 ∑ &
��
�

�
��� , where n is the total number of nodes and �
� is 

a matrix of weights given by the total number of trips between i ( ) nodes71. We calculated 
node closeness according to Opsahl et al.70 using the ‘tnet’ R package72, which is defined as *
 
 1/ ∑ d�i, j-w��, α��

��� , with tuning parameter α 
 0.5 so that both edge weight and the number 
of intermediate nodes are used to calculate the shortest path between two nodes. We then 
condensed the information from these statistical distributions into two metrics of network 
heterogeneity. 
 
Measuring the level of heterogeneity in travel networks 
To investigate potential threshold(s) of trip duration at which network topology undergoes 
significant shifts, we used measures of network heterogeneity and changepoint analysis to 
evaluate the range of duration-restricted subnetworks for points where there are significant  
changes in the network structure. Here, a heterogeneous network is characterized by network 
centrality measures with skewed and/or long-tailed distributions compared to a more 
homogeneous network which is characterized by centrality measures that have shorter-tailed 
distributions. A mathematical definition of the level of heterogeneity in a network has been 
previously described in Barrat et al.73 where the first and second moment of a centrality 
measure’s distribution is concisely translated into a heterogeneity parameter, which we have 
dubbed η. Following Barrat et al.73 we defined the heterogeneity parameter η for the 
distributions of both node strength and closeness, denoted as 1strength and 1close respectively. 
For example, network heterogeneity as measured by node strength $ is: 
 

ηstrength 
 2$�3 4 2$3�

2$3 5 2$�32$3 . 
 
Where, the denominator here represents the expected value of node strength across all " nodes 2$3 
 6 $7�$��$�

�
 and the numerator represents the variance σ� 
 2$�3 4 2$3�, where the second 

moment is 2$�3 
 6 $��

�
7�$��$. In this case of node strength, we estimated its statistical 

distribution for all nodes in the given travel network using a kernel density estimator with an 
equally-weighted mixture of Gaussian kernels74 as the probability density function 7�$�. Defined 
as such, η can be considered analogous to the normalized variance of the given centrality 
measure for the entire travel network. Heterogeneity 1strength and 1close are thus heuristic 
measures that indicate the magnitude of fluctuations in node strength and closeness relative to 
the mean, such that a highly heterogenous network will have large variance compared to the 
mean (i.e. 1strength 9 2$3) in comparison with a homogenous one (i.e. 1strength � 2$3)73. 
 
Estimating shifts in travel network structure 
To identify potential thresholds of trip duration at which travel network structure shifts from a 
heterogeneous to homogenous structure, we performed a multivariate changepoint analysis75 
based on the joint distribution of the heterogeneity metrics η� and η� calculated for networks 
comprised of trips falling within each of the trip duration intervals in Table 1. We estimated the 
changepoint network heterogeneity using the Energy Divisive algorithm in the ‘ecp’ R package76 
which estimates both the number and position of changepoints in a multivariate space. The 
algorithm estimates the : changepoints hierarchically by sequentially segmenting observations 
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into groups and iteratively maximizing the divergence of zero-, first-, and second-moment 
measures among the : ; 1 groups so that they are mutually independent and identically 
distributed77. We estimated the changepoints by enforcing a minimum group size of 2 with a 
significance level of 0.05 and 10,000 permutations. Based on the estimated changepoints in �η� , η�� space, we inferred the thresholds of trip duration at which the travel network shifts 
significantly from heterogeneous to homogeneous. 
 
Identifying drivers of travel network structure 
To explore potential drivers of this shift, we examined the distribution of raw trip counts 
emanating from each origin and its dependence on two covariates: distance between origin and 
destination �
�, and population density of the destination (people per km2 calculated as ��/<�). 
We fit log-linear regression models to these trip counts for each origin " and trip duration interval  ��, ��! in Table 1.  

log� y� �� t�, t� � 
 α� ; B�β�d�� ; γ��N�/A���
�

; FG� 

Here, the linear predictor is fitted to the duration-restricted trip counts � H
 �� ��, �� � using a log link 
function with origin-level intercept α�, coefficients β� and γ
, and error term G�. The models were 
fit to each origin and duration interval using Maximum Likelihood Estimation. We then compared 
the effect of the two covariates on duration-restricted travel volume by calculating the effect size 
(fitted slope) of each origin-specific model and then plotted them against each trip duration 
interval. 
 
The impact of trip duration and network structure on spatial disease dynamics 
We used a simple model of importation probability to assess the predictability of spatial disease 
spread under different network structures observed in the travel data from Namibia. We 
assumed a single introduction of one infected individual in origin location " where the proportion 
of the population susceptible is given by I. Exponential growth of infected individuals is given by J
� 
 β���I. The probability of importation from " into each of the ) populations at time � is: 
 K
�� 
 F1 4 L������� 
where 
 M
�� 
 J
� F · �π
��-FP�. 
 
As in most discrete-time models, we make the simplifying assumption that pathogens are 
infectious for the entirety of the generation time, therefore the transmission rate β is equal to the 
basic reproductive number ��. The conditional term �π�� � g� is the fitted value of connectivity π
��given the number of observed trips with a duration equal to the generation time P of the 
pathogen (y�� � g). Connectivity was estimated using a gravity model: 
 �H
��-FP� Q Pois�π
� , FF�
� 
         

π
� 5 θ U�

����

��

�

�

� V. 
 
Where, θ is the proportionality constant, ω� and ω�Fare exponential parameters that control the 
attractive force between the origin �
 and destination �� population sizes, and γ scales the 
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distance penalty. Gravity model parameters were estimated using Bayesian inference and 
Markov Chain Monte Carlo (MCMC) sampling with the ‘mobility’ R package. 
 
To calculate the general distribution of spatial predictability we calculated K
� for all unique 
combinations of �� from 1 to 30 and generation times from 1 to 30 days. We then calculated the 
uncertainty in importation to all other potential destinations as the Shannon entropy of the vector K
· as H�K
� 
 4 ∑ K
�log��K
��� .  
To more easily compare values of importation uncertainty across all scenarios of �� and 
generation time, we defined the overall predictability of spatial spread from the index location " 
as 

: 
 



 
 1F 4 F X Y�K
�
Ymax�K
�Z . F 

 
Here the Hmax�p�� function represents the principle of maximum entropy78 for a system with an 
equivalent number of locations n: K
$ 
 1/nFfor allFdestinationsFj _ `1, a , nb. This formulation 
gives a value of 0 for the least predictable scenario where probability of importation to all 
locations is equal (i.e. maximum entropy) and a value of 1 for a perfectly predictable scenario (a 
single location with importation probability of 1).  
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Figures 
 

 
 
Figure 1. The Administrative districts and population distribution in Namibia. A) shows the 
locations of the 105 districts (administrative level 2) in Namibia with district centroids of each 
shown with white circles. B) The population density of each district in calculated as the number 
of people per square kilometer from the 2010 WorldPop Project estimates of the total number of 
people per 100m grid cell within each district (www.worldpop.org).  
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Figure 2. Travel network topology shifts from heterogeneous to homogeneous as trip 
duration increases. Maps of Namibia with travel volumes between districts that fall within three 
broad intervals of trip duration: A) 1-3 days, B) 7-14 days, and C) 30-60 days. For comparison, 
connectivity is defined as relative edge weight from 0 to 100%, which is calculated by scaling 
trip volume along the edges in each sub-network by the overall maximum trip volume observed 
in the full travel network. District centroids (nodes of the network) are indicated by the white 
circles. 
 
 
 
 
 
 

Heterogeneous
(High dispersion in node strength and closeness)

Homogeneous
(Low dispersion in node strength and closeness)
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Figure 3.  Distribution of node strength and node centrality for models with different trip 
duration intervals and changepoint analysis showing which trip durations constitute 
shifts in network topology. The empirical distributions of A) node strength (weighted degree 
per node) and B) node closeness (total weighted distance from all nodes) are plotted for four 
duration-restricted subnetworks which include trips of 1) 0-1 days, 5) 5-7 days, 11) 2-3 months, 
and 20) 11-12 months. C) The joint distribution of 1strength and 1close which measures the amount 
of network heterogeneity and structure based on the distributions of node strength and node 
closeness respectively. Each point represents one of the duration-restricted subnetworks and is 
colored according the duration interval shown in the color key to the right. The multivariate 
changepoint algorithm identified two significant shifts in network topology based on the joint 
distribution of ηstrength and ηclose that are placed at 5 and 60 days trip duration. The three 
nominal classes delineated by these thresholds are indicated by a circle for the heterogeneous 
class (1-5 days), a triangle for the homogeneous class (>60 days), and a square for 
intermediate class (6-60 days).  
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Figure 4. The drivers of trip volume across varying trip durations. The effect of distance to 
destination (A) and destination population size (B) on trip volume plotted across the 20 duration-
restricted subnetworks. Each colored line represents one of the 105 districts with the population 
density of the origin district is indicated by the color bar. Dashed vertical lines indicate the 
network topology thresholds identified by the changepoint analysis. Scatterplots showing the 
joint distribution of effect sizes for distance (x-axis) and destination population (y-axis) for C) the 
model with the shortest duration (Model 1, 0-1 days) and D) the model with the longest duration 
(Model 20, 11-12 months). Comparison of C and D show that the effect size of both covariates 
is reduced to near-zero effect for longer trip durations. 
 

 

-
n 

 
n 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.27.20215566doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20215566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Change in connectivity and gravity model parameters fitted to travel data with 
increasing duration intervals compared to full model. A) The distribution of connectivity 
values for duration-restricted models (y-axis) in comparison to the full model that includes all 
data (x-axis). The smoothed lines indicate the change in connectivity for duration-restricted 
models with larger duration intervals showing a more evenly distributed pattern across all 
locations compared to the null model. The dashed red line indicates connectivity values that are 
equal to the full model. In B) and C), the change in fitted gravity model parameters (distance 
parameter γ and destination population parameter ω� respectively) for increasing trip duration 
intervals. The color gradient indicates the duration interval of each model and the dashed red 
line shows the fitted parameter value for the full model, which includes all trip durations. 

Distance parameter ( )γ

Destination population�
 parameter ( )ω2

A B

C

Subnetwork (trip duration)

Full model

Full model

Subnetwork
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Figure 6. Predictability of spatial spread for a range of R0 and generation time values and 
the change in spatial predictability over time for 6 pathogens. A) A heatmap with contour 
lines showing the values of initial spatial predictability (
) calculated for hypothetical 
combinations of R0 and generation time (days). Example pathogens (influenza, SARS-CoV-2, 
measles, Ebola, pertussis, and P. falciparum malaria) are indicated by the colored circles. The 
level of spatial predictability shown in the color bar to the right with schematic representations 
for scenarios where patterns of spatial spread are perfectly predictable (
 
 1) or completely 
unpredictable (
 
 0). B) The the change in these initial values of spatial predictability over 
successive generations for each of the 6 example pathogens. In both analyses, the capital 
district of Namibia, Windhoek East was used as the introduction district. 
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Figure 7. The change in spatial predictability for 6 pathogens plotted over time for 
outbreaks introduced to districts with a range of population densities. The results from 
simulations of outbreaks for 6 example pathogens (influenza, SARS-CoV-2, measles, Ebola, 
pertussis, and P. falciparum malaria). For each pathogen, outbreaks were introduced into each 
of the 105 districts in Namibia and the change in spatial predictability for successive generations 
was calculated. The heatmaps and contour lines show values of spatial predictability (
) as they 
change over successive generations (x-axis) and the population density of the introduction 
district (y-axis). The number of days since the introduction is indicated on the top-axis. 
Annotations in the lower right indicate the pathogen, basic reproduction number (R0), generation 
time in days (γ), and proportion of the population that is susceptible (s) used in spatial 
simulations. Transmission parameters used in simulations were drawn from the literature and 
shown in Table S1.  
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Table 1. Table of trip duration intervals used, with number observations and total trip counts   
 
 

Duration interval 

(days) 
 

Number 

routes 

observed 

Number total trips 

(10,000s) Start Stop Subnetwork Description 

0 Inf 0 All durations 10843 25926 

0 1 1 0 to 1 days 10508 12083 

1 2 2 1 to 2 days 10629 16324 

2 3 3 2 to 3 days 10391 6376 

3 5 4 3 to 5 days 10379 4455 

5 7 5 5 to 7 days 10173 2169 

7 10 6 7 to 10 days 10127 1444 

10 14 7 10 to 14 days 9977 1076 

14 21 8 2 to 3 weeks 10013 863 

21 28 9 3 to 4 weeks 9740 475 

30 60 10 1 to 2 months 10044 617 

60 90 11 2 to 3 months 9274 203 

90 120 12 3 to 4 months 8505 98 

120 150 13 4 to 5 months 7594 49 

150 180 14 5 to 6 months 6892 29 

180 210 15 6 to 7 months 6173 19 

210 240 16 7 to 8 months 5706 13 

240 270 17 8 to 9 months 4943 9 

270 300 18 9 to 10 months 4379 6 

300 330 19 10 to 11 months 4052 5 

330 360 20 11 to 12 months 3819 4 
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