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Abstract 20 

Epidemiological studies revealed that the elderly and those with co-morbidities are most 21 

susceptible to COVID-19. To understand how genetics affects the risk of COVID-19, we 22 

conducted a multi-instrument Mendelian randomization analysis and found that the genetic 23 

variation that supports a longer life is significantly associated with the lower risk of COVID-24 

19 infection. The odds ratio is 0.31 (95% CI: 0.18 to 0.52; P = 9.7× 10-6) per additional 10 25 

years of life, and 0.53 (95% CI: 0.43 to 0.65; P = 2.3 × 10-9) per unit higher log odds of 26 

surviving to the 90th percentile. On the other hand, there was no association between COVID-27 

19 susceptibility and healthspan (the lifespan free of the top seven age-related morbidities). We 28 

further applied aging clock models and detected an association between biological age 29 

acceleration and future incidence and severity of COVID-19 infection for all subjects as well 30 

as for individuals free of chronic disease. Biological age acceleration was also significantly 31 

associated with the risk of death in COVID-19 patients. Finally, a bivariate genomic scan for 32 

age-related COVID-19 infection identified a key contribution of the Notch signaling pathway. 33 

Our analysis suggests that Notch2 expression is associated with a higher risk of COVID-19 34 

infection, providing a druggable target. More generally, interventions that reduce biological 35 

age have the opportunity to reduce the risk of COVID-19. 36 
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Introduction 37 

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory coronavirus 2 38 

(SARS-CoV-2), first emerged in late 2019 and has led to an unprecedented global health crisis1. 39 

Notably, the aging population is particularly at risk of COVID-192, e.g. in Italy, 88% of the 40 

individuals tested positive for COVID-19 were 40 years or older3. A recent report based on 41 

epidemiological data from multiple countries showed that 69% of infections in people over 70 42 

are symptomatic, whereas this number drops to 21% for 10-19-year-olds4. Unsurprisingly, 43 

elderly people are also more likely to die from COVID-19, and the case fatality rate for 44 

COVID-19 grows exponentially with age3. As observational evidence implies a strong link 45 

between COVID-19 and age, COVID-19 can be considered a disease of aging3, and multiple 46 

clinical trials using potential lifespan-extending drugs (e.g., metformin, rapamycin, and 47 

senolytics) to protect the elderly from COVID-19 have been proposed5-7. Although 48 

observational data on metformin seems promising8,9, it is unclear if other lifespan-extending 49 

drugs should be prioritized in clinical trials, since the evidence of any causal link between 50 

lifespan and COVID-19 susceptibility is still missing. 51 

Mendelian Randomization (MR) is a genetic instrumental variable approach that 52 

assesses the causal effect of exposure of interest on an outcome, by ascertaining on genetic 53 

variants, e.g., single nucleotide polymorphisms (SNPs), strongly associated with the exposure 54 

phenotype. Since the alleles of the genetic variants are naturally randomly allocated at 55 

conception, when the genetic effects on the outcome are only mediated through the exposure, 56 

the causal effect inferred by MR is, in analogy to randomized clinical trials (RCTs), free of any 57 

environmental confounders and reverse causation. Although RCTs are considered a gold 58 

standard for establishing causal relationships, MR can provide valuable insights into causality 59 

when it is not feasible to perform an RCT or before an RCT is performed10.  60 

In this study, we performed a multi-SNP MR analysis to elucidate whether and how 61 

aging is associated with COVID-19. We considered four lifespan-related traits (parental 62 

lifespan, healthspan, longevity, and healthy aging, the combination of these three traits), four 63 

measures of epigenetic age acceleration, and four leading genetic risk factors associated with 64 

earlier death in humans (Alzheimer Disease (AD), cardiovascular disease (CVD), type 2 65 

diabetes (T2D), and smoking as exposures and evaluated their causal effects on COVID-19 66 

infection and related phenotypes. To support the argument, we also estimated the biological 67 

age acceleration (BAA) in COVID-19 patients from UK Biobank (UKBB) cohort and observed 68 

a significant association between the phenotypic indicators of aging progress (aging clocks) 69 
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and the risk and case fatality rate of COVID-19. To provide functional insight into how aging 70 

contributes to a higher risk of COVID-19, we further conducted a bivariate genomic scan to 71 

highlight the loci contribute to both aging and COVID-19 risk. The pathway enrichment of 72 

these loci points to the Notch signaling pathway and specifically to Notch2, whose expression 73 

supports an elevated risk of COVID-19 infection.  74 

Methods 75 

GWAS data for lifespan-related traits and diseases 76 

We studied four lifespan-related traits with publicly available GWAS summary statistics:  77 

The parental Lifespan GWAS includes unrelated, European-ancestry subjects (a total of 78 

512,047 mother and 500,193 father lifespans), 60% of which were complete. The statistics for 79 

every cohort was calculated by fitting Cox survival models to mother and father survival 80 

respectively, taking account of 10 principal components, study-specific covariates, and 81 

individual sex. Note that in the GWAS setting, parental lifespan is the same phenotype as 82 

general lifespan of individuals. This is due to the mathematical property that the genetic effect 83 

on a parental phenotype is simply half that on the individual’s phenotype itself. Therefore, the 84 

parental lifespan GWAS is a general lifespan GWAS with weaker power. But thanks to the 85 

large sample size especially in UK Biobank, such a GWAS is powerful enough to uncover 86 

some genetic architecture11. 87 

The longevity GWAS includes unrelated, European-ancestry subjects who had a lifespan 88 

above the 90th survival percentile (N = 11,262) or whose age at the last follow-up visit (or age 89 

at death) was before the 60th percentile age (N = 25,483). The statistics for each cohort were 90 

calculated using logistic regression and then combined using a fixed-effect meta-analysis12. 91 

The healthspan GWAS contains 300,477 unrelated, British-ancestry individuals from 92 

UKBB. The statistics were calculated by fitting Cox-Gompertz survival models, and the events 93 

are defined as the first incidence of dementia, congestive heart failure, diabetes, chronic 94 

obstructive pulmonary disease, stroke, cancer, myocardial infarction, or demise13. 95 

The summary association statistics of healthy aging is from the meta-analysis of 96 

healthspan, lifespan, and longevity summary statistics using MANOVA14, while accounting 97 

for correlations between studies due to sample overlap and correlation amongst the traits. 98 

Summary association statistics were calculated for the 7,320,282 SNPs shared between studies. 99 

These statistics represent the significance of each SNP affecting one or more of the traits, 100 

giving a P-value against the null hypothesis that effect sizes are zero in all studies14,15. 101 
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We investigated four additional traits genetically correlated with lifespan, using the 102 

published case-control studies: Alzheimer’s disease16, coronary artery disease17, type 2 103 

diabetes18, and smoking19 (Table S1).  104 

We also included GWAS for age acceleration measured by four epigenetic clocks, 105 

including Hannum age, Horvath age, PhenoAge, and GrimAge20. The epigenetic age was 106 

measured on 34,449 healthy individuals of European ancestry. 107 

GWAS data for 22 common diseases were from a community-based study, Genetic 108 

Epidemiology Research on Adult Health and Aging (GERA)21, and was analyzed in the 109 

original GSMR study22. There were 60,586 individuals of European ancestry in the GERA 110 

data. There is an additional trait “disease count”, which represents the number of diseases 111 

affecting each individual and the summary statistics of these diseases were adjusted with age, 112 

gender, and the first 20 PCs. 113 

We used 1000 Genomes Phase 3 reference (released in 2014 October) to map variants in 114 

the GWAS results to rsIDs by chromosome, position, and alleles. Only the autosomal SNPs 115 

available in the 1000 Genomes reference panel were used, and the 1000 Genomes European 116 

ancestry reference was used to estimate the linkage disequilibrium (LD) among these SNPs. 117 

Duplicated rsIDs in the data were removed prior to the analysis. 118 

COVID-19-related traits 119 

To extensively evaluate the genetic effects on COVID-19 risk, we used GWAS summary 120 

statistics data from 12 COVID-19-related traits (Table S1). The GWAS results for SARS-121 

COV-2 infection are from the National Institute of Health, Genome-Wide Repository of 122 

Associations Between SNPs and Phenotypes (NIH-GRASP), released in August 2020, which 123 

includes 1,503 positive cases and 11,409 negative or 457,747 UK Biobank controls with 124 

European ancestry. The GWAS summary statistics for severe COVID-19 with respiratory 125 

failure is from a genome-wide association study performed in 1,610 cases and 2,205 controls 126 

in Italy and Spain23. The rest of the 9 traits are from the COVID-19 Host Genetics Initiative 127 

(HGI), with the sample size varies from 1,332 to 1,079,76824. Among them, 3 are were from 128 

HGI release 2 (May 2020), including COVID-19 Hospitalization (versus non-hospitalized 129 

COVID-19), susceptibility (affected versus unaffected population), and COVID-19 predicted 130 

by flu-like symptoms; Other 6 traits are were in HGI release 3 (June 2020), including very 131 

severe respiratory confirmed COVID-19 (versus the general population), COVID-19 infection 132 

(versus negative control or population), hospitalized COVID-19 (versus not hospitalized 133 
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COVID-19 or population), and predicted COVID from self-reported symptoms (versus 134 

predicted or self-reported non-COVID-19). 135 

Expression quantitative trait loci (eQTLs) and age-related gene expression in blood 136 

Blood eQTL data were obtained from the eQTLGen Consortium (31,684 whole blood 137 

samples)25. Only the significant near-independent eQTLs (FDR-q < 0.05, r2 < 0.05) were used 138 

in the Mendelian Randomization analysis. 139 

The age-related transcriptomic change in whole blood was obtained from a large-scale 140 

meta-analysis26, which include six European-ancestry studies (n = 7,074 samples) and detected 141 

roughly half of the genes in the human genome (n = 11,908). The direction and P-value of age-142 

related differential expression were directly obtained from the published dataset. 143 

Mendelian Randomization analysis 144 

Mendelian randomization is a method that uses genetic variants as instrumental variables to 145 

determine whether an observational association between a risk factor and an outcome is 146 

consistent with a potential causal effect27. The multi-SNP MR analysis was implemented using 147 

GSMR (Generalized Summary-data-based Mendelian randomization) in GCTA22.  148 

As instruments for each exposure (four lifespan-related traits, four risk factors, and four 149 

epigenetic age acceleration traits), we selected near-independent SNPs (r2 < 0.1) with genome-150 

wide significant (P < 5×10-8) association with the exposure; For the expression of Notch1-4 in 151 

whole blood, we selected significant near-independent eQTLs (FDR-q < 0.05, r2 < 0.05); For 152 

22 diseases from GERA community-based study, we selected SNPs with suggestive genome-153 

wide significance (P < 1×10-6) as instruments and performed a separate analysis due to the 154 

limited case number in the community-based study. Full list of the genetic instruments are 155 

shown in Supplementary data 1. GSMR includes a HEIDI-outlier filter to remove potential 156 

pleiotropic SNPs that have effects on the exposures and the outcomes via different pathways. 157 

We set its p-value threshold to 0.01 and tested the remaining SNPs for association with the 158 

COVID-19-related traits. The required minimum number of instrumental SNPs for each 159 

exposure in the analysis is lowered to 1. 160 

Bivariate genomic scan and functional Annotation 161 

To identify genetic variants associated with aging-related COVID-19 risk, we meta-analyzed 162 

UKBB COVID-19 infection (with population control) and healthy aging (with the sign of effect 163 

size reversed) summary statistics, while accounting for correlations between studies due to 164 

sample overlap and correlation between the traits, as implemented in MultiABEL v1.1-61014,28. 165 
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Summary association statistics were calculated for the 7,318,649 SNPs shared between studies. 166 

These statistics represent the significance and consistency of each SNP affecting one or both 167 

of the traits (e.g. the SNPs that significantly contribute to both aging and COVID-19 risk in the 168 

same direction will have a smaller P-value). Therefore, we refer to this bivariate genomic scan 169 

result as the aging-related COVID-19 throughout this study.  170 

We then used the summary statistics of aging-related COVID-19 and performed 171 

functional annotation for all SNPs in genomic areas identified by lead SNPs (P < 1 × 10-6, 250 172 

Kb apart) using FUMA (Functional Mapping and Annotation)29. The annotated genes were 173 

then used for functional enrichment analysis using the default setting on the FUMA platform. 174 

Genetic correlation analysis 175 

We estimated the genetic correlations between lifespan-related traits, risk factors, epigenetic 176 

age acceleration, and COVID-19 using LD score regression (LDSC) and high-definition 177 

likelihood (HDL) methods30,31. SNPs that are imperfectly imputed (INFO < 0.9) or with low 178 

frequency (MAF < 0.05) were removed to reduce statistical noise. LDSC was performed using 179 

LDSC software v1.0.1 (https://github.com/bulik/ldsc); and the HDL was performed using R 180 

package "HDL" v1.3.8 (https://github.com/zhenin/HDL). 181 

Biological age estimation for UKBB cohorts 182 

All-cause mortality increases exponentially with age, and hence log-linear risk predictors from 183 

proportional hazards models can provide natural composite organism state representations 184 

characterizing the progress of aging based on biological and physiological measurements. We 185 

used two such biological age measures: Phenotypic Age based on blood biochemistry32, and 186 

Dynamic Organism State Indicator (DOSI) based on widely available Complete Blood Counts 187 

(CBC) only33. The latter is a proxy for the frailty index and is derived from the blood markers 188 

only, whereas the Phenotypic Age additionally employs the explicit age. We also used physical 189 

activity (the number of steps per day averaged over the week), which is also associated with 190 

all-cause mortality and hence can also be viewed as a measure of biological aging34.  191 

We investigated the association of the incidence of COVID-19 with biological aging 192 

acceleration (BAA, which is the difference between the biological age of a person and the 193 

average biological age in the cohort of individuals of the same age and sex) using logistic 194 

regression. Chronological age and biological sex were used as additional covariates in the 195 

analysis.  196 
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Following UKBB recommendations, we used the “result” label from the table “COVID-197 

19 test results table” as the proxy of disease severity. This implies that mostly those individuals 198 

that showed characteristic COVID-19 symptoms were selected for testing. We investigated 199 

BAA associations with the incidence of COVID-19 and its associated fatality using all 200 

available cases (All) and separately cohorts of individuals who have (Frail) or do not have (Not 201 

Frail) major chronic diseases (from the list including all kinds of cancer, angina pectoris, 202 

coronary heart disease, heart attack, heart failure, hypertension, stroke, diabetes, arthritis, 203 

bronchitis, and emphysema) at the time of infection. 204 

Results 205 

We applied GSMR to test for potential causal associations between four lifespan-related traits 206 

and COVID-19, including lifespan, longevity (i.e. surviving to the 90th percentile), healthspan 207 

(time to a first major age-related disease), and healthy aging (multivariate meta-analysis of all 208 

three traits combined) (Table S1). We employed summary-level GWAS data11-13,15 and selected 209 

near-independent SNPs at a genome-wide significance level as genetic instruments for each 210 

trait. The HEIDI-outlier filter was used to detect and eliminate genetic instruments with 211 

pleiotropic effects on both exposure and outcome, as described by Zhu et al.22. For the 212 

outcomes, we used 12 different sets of GWAS summary statistic data for COVID-19-related 213 

traits from case-control studies (Table S1).  214 

Strikingly, our GSMR analysis showed that long lifespan, longevity, as well as healthy 215 

aging were protective against COVID-19 infection based on UKBB reporting (Fig. 1 A-E, 216 

Table 1). The estimated odds ratio for lifespan was 0.31 (95% CI: 0.18 to 0.52; P = 9.7 × 10-217 

6), indicating that the risk of COVID-19 infection is decreased by 69% with approximately 218 

every additional 10 years of life11. For longevity, the odds ratio was 0.53 (95% CI: 0.43 to 0.65; 219 

P = 2.3 × 10-9), and for healthy aging, the odds ratio was 0.12 (95% CI: 0.05 to 0.32; P = 1.6 220 

× 10-5). As UKBB reporting on COVID-19 infection is biased toward severe cases of 221 

hospitalized subjects, this measure might also be related to COVID-19 severity and mortality35. 222 

We observed a similar effect of these three traits on COVID-19 susceptibility in the HGI dataset 223 

with overlapping confidential interval of estimated effect size, suggesting the association 224 

between lifespan-related traits and COVID-19 infection is robust across different cohorts (Fig. 225 

1A, Table 1). However, none of the lifespan-related traits showed a significant protective effect 226 

on COVID-19 with a severe respiratory disorder or respiratory failure, possibly due to the small 227 

case number of severe COVID-19 (Table S1). We also estimated the causal effect of genetically 228 
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proxied epigenetic age acceleration on the risk of COVID-1920, while none of them shown to 229 

have a significant effect on COVID-19 after Bonferroni correction for 144 tests (Fig. S1). 230 

The loci for AD, CVD, T2D, cancer, and smoking (or lung cancer) explained the most 231 

genetic variance of lifespan, as reported by Timmer et al.11. To investigate whether these risk 232 

factors contribute to the plausible causal association between lifespan and COVID-19, we 233 

conducted an MR analysis of late-onset AD, coronary artery disease (CAD, including 234 

myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass 235 

grafting, chronic ischemic heart disease, and angina), T2D, and smoking (the number of 236 

cigarettes smoked per day) as exposures (Fig. S1 A-C, Supplementary data 2). Only the late-237 

onset AD was found to significantly increase the risk of COVID-19 after Bonferroni correction 238 

for 144 tests (P = 4.3×10-6), with the odds ratio of 1.14 (95% CI: 1.08 to 1.21), suggesting the 239 

benefit of a longer lifespan on the risk of COVID-19 may be partially mediated by less severe 240 

or later occurring Alzheimer's disease. 241 

To further evaluate the risk factors for COVID-19 infection and severity, we conducted 242 

a separate MR analysis using GWAS data of 22 common diseases from GERA21 (Fig. S3, 243 

Table S3). None of the diseases reached the significance threshold after Bonferroni correction 244 

(P = 0.05/276 = 2 × 10-4). Among the nominally significant associations, asthma, dyslipidemia, 245 

hernia abdominopelvic cavity, peptic ulcer, hypertensive disease, age-related macular 246 

degeneration, and allergic rhinitis were the risk factors for COVID-19 infection; hypertensive 247 

disease, irritable bowel syndrome, peripheral vascular disease, age-related macular 248 

degeneration, and varicose veins were the risk factors for COVID-19 severity (Fig. S3, 249 

Supplementary data 2). Interestingly, the disease count, a trait that represents the number of 250 

comorbidities affecting each individual, was the risk factor for severe cases of COVID-19 251 

(hospitalization). The odds ratio was 3.57 (95% CI: 1.04 to 12.28, P = 0.04), suggesting a 252 

subject with roughly every two (one standard deviation) more comorbidities has a 3.6-fold 253 

higher risk of having a severe case of COVID-19 (Table S2). 254 

Healthspan is defined as the age period free of major age-related morbidities. In the 255 

healthspan GWAS study, the top seven age-related morbidities were included (see Method)13. 256 

In our analysis, healthspan did not show a significant effect on COVID-19-related traits (Fig 257 

1A). This is unlikely to be due to the power of healthspan GWAS since there were 17 near-258 

independent genome-wide significant SNPs (P < 5 × 10–8), which is more than lifespan and 259 

longevity. Therefore, we hypothesized that the strong protective effect of longevity against 260 

COVID-19 may not be explained by the delayed appearance of age-related morbidities, but 261 

rather by decelerated biological age that extends lifespan. 262 
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To address this hypothesis, we assessed in parallel the three different risk-based 263 

biological age predictions computed for the subjects in the UKBB cohort using blood 264 

biochemistry (Phenotypic Age), Complete Blood Counts (DOSI), and physical activity 265 

measurements32-34 (Fig. 2A). We found that COVID-19 incidence in all UKBB datasets was 266 

significantly associated with the BAA of Phenotypic Age, DOSI, and decreased physical 267 

activity (Fig. 2B-E, Table 2). The estimated odds ratio of COVID-19 infection is 1.28 (95% 268 

CI: 1.25 to 1.31; P = 8.4 × 10–82) and 1.31 (95% CI: 1.26 to 1.38; P = 9.5 × 10–32) for every ten 269 

years higher biological age measured by Phenotypic Age and DOSI, respectively. Phenotypic 270 

Age and DOSI were also significantly associated with COVID-19 incidence and case fatality 271 

independently from the BAA association with chronic diseases, i.e., separately in cohorts of 272 

UKBB individuals having (Frail) or not (Not frail) chronic age-related health conditions (Fig. 273 

2E, Table 2).  274 

We also observed elevated BAA levels of all measures of biological age (Fig. 2B-D, Fig. 275 

S2A-D) in cohorts of individuals died from COVID-19 compared to those tested (and most 276 

probably suffering from the disease), and, separately, in cohorts of those tested versus the rest 277 

of UKBB (and presumed free of the disease).  The number of UKBB subjects with data fields 278 

required for the Phenotypic Age and DOSI was comparable, and we found that Phenotypic Age 279 

comparisons produced a better statistical power. The number of UKBB subjects with physical 280 

activity metrics was small, but the association of BAA in the form of physical activity deficit 281 

and the incidence of COVID-19 was significant. 282 

To gain the mechanistic insight of how aging and COVID-19 intertwined at the genetic 283 

level, we performed a bivariate genomic scan using the GWAS of healthy aging and UKBB 284 

COVID-19 infection, to identify the genetic variants that contribute to both aging and the risk 285 

COVID-19 infection i.e., aging-related COVID-19 risk (Fig. S4, see Method). We identified 286 

twenty bivariate loci at genome-wide significance (P < 5 × 10-8), where the null hypothesis is 287 

no association with healthy aging and COVID-19 infection (Fig. S4). The summary statistics 288 

of aging-related COVID-19 risk were then annotated using FUMA and a functional enrichment 289 

analysis in 2868 canonical pathways (including gene sets from BIOCARTA, KEGG, PID, 290 

REACTOME, and WikiPathways) and 7350 Gene Ontology (GO) biological processes was 291 

performed. We find significant enrichment (Padjusted < 0.05) in 67 canonical pathways and 26 292 

biological processes. The canonical pathways with the strongest enrichment include pre-Notch 293 

expression and processing (P = 3.0 × 10-8), signaling by Notch (P = 3.6 × 10-7), and oxidative 294 

stress-induced senescence (P = 1.4 × 10-6) (Fig. 3A, Supplementary Data 3). Top enriched 295 
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biological processes are immune system development (P = 2.3 × 10-7) and myeloid cell 296 

differentiation (P = 2.4 × 10-6), among others (Fig. 3B, Supplementary Data 3).  297 

The Notch pathway is an evolutionally conserved signaling pathway, which is suggested 298 

to be involved in both age-related inflammation and the development of age-related disease36. 299 

Moreover, the Notch signaling is related to the entry of SARS-CoV-2 through the positive 300 

regulation of the host proteins that promote the entrance of the virus into the cell (e.g. FURIN 301 

and ACE2)37. In humans, there are four paralogs in the Notch family (Notch1-4)38. We 302 

hypothesized that the Notch signaling is a mediator for aging-related COVID-19 infection and 303 

its effect may be related to the expression of Notch. This hypothesis was investigated with MR 304 

of blood eQTLs of Notch1-4 from eQTLgen39, against five traits that representing COVID-19 305 

infection. We found that the expression of Notch2 significantly (P < 0.05/20) increases the risk 306 

of COVID-19 infection (Fig. 3 B-D). The odds ratio estimated from HGI COVID-19 GWAS 307 

was 1.31 (95% CI: 1.1 to 1.55; P = 0.002) per standard deviation higher Notch2 expression in 308 

blood. We also observed a similar odds ratio estimate with overlapping 95% CI in other four 309 

COVID-19 infection traits. This result suggests a causal role of Notch2 and more generally 310 

Notch signaling in COVID-19 infection. To determine the age-related expression of Notch, we 311 

examined the dataset of Peters et al.26, which contains associations of genes with age in humans, 312 

estimated from 7,074 whole blood samples. Among Notch1-4, only the Notch2 significantly 313 

(P = 0.007) increased during aging, suggesting that the age-related increase of COVID-19 risk 314 

is partially mediated through the increase of Notch2 expression. Moreover, we found that 315 

Notch2 is primarily expressed in monocytes based on DICE (database of immune cell 316 

expression, eQTLs, and epigenomics) project (Fig. S5)40, which is also implicated in aging and 317 

COVID-1941. This finding offers a new druggable target for preventing COVID-19 in the 318 

elderly and is worthy of further experimental studies. 319 

Finally, we estimated the genetic correlations between lifespan-related traits and 320 

COVID-19 using LD score regression and high-definition likelihood (HDL) methods (Fig. 4, 321 

supplementary data 4)30,31. However, among 12 COVID-19-related traits, we only observed the 322 

the positive genetic correlation between COVID-19 infection and AD at nominal significance 323 

level, suggesting the case sample sizes of COVID-19 GWAS studies were too small to support 324 

a sufficient power for estimating genetic correlations among these traits. Future genetic 325 

analyses utilizing larger sample sizes should provide opportunities to improve these estimates. 326 
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Discussion 327 

In this study, we explored a potential causal relationship between aging and the risk of COVID-328 

19 by conducting a multi-instrument MR analysis using four different lifespan-related traits as 329 

exposures and eleven COVID-19-related traits as outcomes. We found that genetically proxied 330 

longer lifespan and longevity were significantly associated with the decreased risk of COVID-331 

19 (P = 9.7× 10-6 and 2.3 × 10-9, respectively), and further analyses revealed a key role of an 332 

elevated biological age and severity of chronic age-related diseases in this association. One of 333 

the contributing factors is likely the immune response. The competence of the immune system 334 

declines as people age, which is known as "immunosenescence"42. The hallmarks of 335 

immunosenescence include an impaired response to new antigens, unsustained memory 336 

responses, increased autoimmune responses, and prolonged inflammation. As a result, elderly 337 

subjects are more susceptible to infectious diseases, including COVID-19, and have a poor 338 

response to vaccines42,43. On the other hand, it has been reported that the circulating immune 339 

cells in centenarians possess unique characteristics that sustain immune responses to 340 

infections44. Moreover, the offspring of centenarians were shown to have a lower level of 341 

inflammation45, suggesting that the benefits on the immune system in centenarians are 342 

heritable. Therefore, a better immunological profile in people with pro-longevity genetics may 343 

help support the causal effect of longevity on COVID-19 we observed. 344 

Notch pathway is an evolutionally conserved signaling pathway involved in age-related 345 

inflammation and disease36. Moreover, Notch signaling is related to the entry of SARS-CoV-346 

2 through the positive regulation of host proteins that promote entrance of the virus into the 347 

cell37. The entry of SARS-CoV-2 is mediated by binding of its S (spike) glycoprotein to the 348 

Angiotensin Converting Enzyme 2 (ACE2)46. Therefore, upregulation of ACE2 could 349 

potentially increase the risk of viral infection. ADAM17 (A Disintegrin And Metalloproteases 350 

17) is a metalloprotease that supports the shedding of ACE2 on the cell membrane47. It is 351 

negatively regulated by Notch signaling, whereas downregulation of ADAM17 significantly 352 

reduced the shedding of ACE237. Besides ADAM17, a proteolytic cut of the S protein mediated 353 

by furin after S glycoprotein binds to ACE2 is also required for the entry of SARS-CoV-2 into 354 

the cell. The expression of furin is positively regulated by Notch signaling, and furin is also 355 

involved in the maturation of Notch precursor37. This evidence is in line with our finding that 356 

Notch signaling plays an important role in aging-related COVID-19.  357 

Notch2 is one of the four Notch paralogs in mammals. In our MR analysis, we found 358 

evidence of the causal relationship between Notch2 expression and COVID-19 infection (Fig. 359 
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3 B-D). A previous study suggests that Notch2 promotes goblet cell metaplasia in the lung, 360 

which is the hallmark of airway diseases48. Moreover, the goblet cells are the major source of 361 

ACE2 in the lung and were indicated to play a significant role in enabling COVID-19 infections. 362 

Therefore, the increased Notch2 expression during aging might play a causal role in the 363 

increased risk of COVID-19 infection in the elderly. We observed a relatively large effect size 364 

(31% increased risk of infection for every 1 standard deviation higher Notch2 expression), 365 

suggesting the Notch2 might provide a desirable target for the prevention and treatment of 366 

COVID-19, as well as identifying population with a higher potential risk of infection. Further 367 

experimental and clinical study on Notch2 and COVID-19 is needed to validate the causal 368 

relationship. 369 

Aging manifests as progressive remodeling of the organism, and hence a great number 370 

of biological measurements are associated with age. Several sets of physiological and 371 

biological indices have been proposed for quantification of aging progression in the form of a 372 

single number – the biological age49,50, or frailty index51,52. One popular approach is to regress 373 

relevant variables to predict chronological age and thus produce the “biological age” 374 

prediction. Popular Hannum's and Horvath's methylation age-clock models, as well as other 375 

clocks, are the widely used examples of such an approach53,54.  376 

An interesting alternative is to produce the log-linear all-cause mortality estimate with a 377 

proportional hazard model and treat the resulting value as a measure of biological age. 378 

Phenotypic Age from blood biochemistry markers32, DOSI from CBC33, averaged physical 379 

activity levels34, and more sophisticated machine learning algorithms used to predict the risk 380 

of death from physical activity time series of wearable devices55, or even self-reported health 381 

questionnaires, are all examples of this approach56. All reliable biological age predictors are 382 

associated with chronic disease burden, unhealthy lifestyles such as smoking (both overall and 383 

in disease-free population), and future incidence of chronic diseases in healthy subjects32-384 

34,49,50,52,57,58. In our work, we also established the association of BAA with the risk of non-385 

chronic diseases, such as COVID-19 and the corresponding case fatality in the UKBB cohort 386 

independent of disease burden. The association was significant for BAA measures obtained 387 

from blood biochemistry (Phenotypic Age)32, CBC (DOSI)33 and mean physical activity 388 

(number of steps per day recorded by wearable devices over a week-long period of time34; the 389 

number of UKBB subjects with physical activity measurements was too low for separate BAA 390 

characterization in frail and non-frail cohorts).  391 

Decreased physical activity was associated with an increased risk of COVID-19 in the 392 

UKBB cohort. This observation may be interesting on its own since the widespread lockdown 393 
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measures brought about a dramatic (up to 27.3%, which is 1,432 steps per day, within 30 days) 394 

decline of average physical activity59. Our association study suggests a more than 10% risk 395 

increase corresponding to 1.5 thousand steps per day loss. There are feedback loop effects of 396 

decreased mobility on BAA measures, and as such, the associated risk adjustments must be 397 

taken into account in advanced epidemiological models of lockdown effects.  398 

One advantage of our study design is that all of the BAA predictors were measured prior 399 

to the pandemic. Therefore, the association between BAA and the risk of COVID-19 (and 400 

probably other dangerous infectious diseases) is free of reverse causation (like in MR) and 401 

likely to be causal if there are no other confounders. Thus, our research supports the idea of the 402 

pro-active application of anti-aging (that is BAA-reducing) drugs in a prophylaxis mode to 403 

protect the biomarker-defined vulnerable individuals. And, reversely, a significant reduction 404 

of BA by an experimental drug in a clinical trial (probably as early as phase I) could warrant 405 

further clinical studies in elderly subjects.  406 

The association of BAA with case fatality was weaker (only Phenotypic Age BAA 407 

exhibited a significant effect). This can be explained by the considerably smaller number of 408 

UKBB subjects involved in the statistical analysis (346 of dead individuals compared to 11,619 409 

tested (and presumed sick) and 459,872 overall subjects in UKBB). The case fatality rate 410 

increases exponentially with age, and therefore it would be reasonable to expect the association 411 

of BAA with the risk of death in COVID-19 patients3. We expect future studies to corroborate 412 

our findings. Whether or not this association is causative could not be established in our study. 413 

The age-dependent severity of COVID-19 has been demonstrated in many epidemiological 414 

studies3,60. However, we did not observe a significant association between longevity and 415 

COVID-19 severity-related traits. This could be largely due to a small number of cases 416 

included in GWAS analyses, varying from 536 to 1,610. Moreover, there is an underlying 417 

selection bias toward symptomatic cases in the GWAS of COVID-19 positive cases, especially 418 

in the UKBB study, which is overrepresented by severe and hospitalized cases35. Therefore, 419 

our results on UKBB may also be interpreted as a protective effect of longevity on the severe 420 

form of COVID-19 infection. 421 

It has been reported that people with comorbidities are more likely to suffer from 422 

COVID-19 and have poor prognosis61. The most prevalent comorbidities were hypertension, 423 

diabetes, and cardiovascular disease3,61. Based on our Mendelian randomization analysis, 424 

genetically predicted CAD, one of the most common types of cardiovascular disease, increases 425 

COVID-19 susceptibility and the chance of being hospitalized after infection at a nominal 426 

significance level, which is consistent with the result of recent study62. However, we didn't find 427 
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evidence of the causal effect of T2D and smoking on COVID-19-related traits. There are two 428 

possible explanations: (1) the observed link between T2D and COVID-19 in epidemiological 429 

studies is confounded by other factors; (2) the power of current COVID-19 GWAS results is 430 

limited to reveal its potential causal link to T2D/smoking. Notably, a nominally significant 431 

association (P = 0.03) between the life-time smoking index and risk of severe COVID-19 was 432 

reported63, suggesting a potential causal role of smoking on COVID-19. Future genetic 433 

analyses with larger sample sizes or clinical experiments are required to fully identify the 434 

relationship between smoking and COVID-19. The genetically predicted late-onset AD was 435 

also shown to be significantly associated with a higher risk of infection based on both UKBB 436 

and HGI report, which is not observed in another recent MR analysis64. This is possibly due to 437 

the larger case number (35,274 compared with 17,008) was included in late-onset AD GWAS, 438 

thus increased the power of the MR analysis. 439 

There are multiple clinical trials proposed to employ potential lifespan-extending drugs 440 

to protect the elderly from COVID-19, based on promising observational data on metformin5-441 

9. However, epidemiological studies are prone to confounding, reverse causation, and various 442 

biases, and therefore are an unreliable indicator of the causal associations. MR is a method that 443 

utilizes genetic instruments that are robustly associated with exposures, and thus generate more 444 

reliable evidence in predicting novel interventions65. In our MR analysis, we found evidence 445 

for the causal relationship between longevity and decreased COVID-19. The following analysis 446 

of genetic risk factors and phenotypic measurements suggests that this causal effect is likely to 447 

be mediated by the decelerated rate of aging, which can be captured by biological age 448 

measurements. Therefore, our finding can directly support lifespan-extending drugs as a 449 

potential measure of COVID-19 when one of the following assumptions holds: (1) the selected 450 

anti-aging drugs extend lifespan through a mechanism that mimics the genetics of longevity; 451 

and (2) the selected anti-aging drugs could slow down or reverse the aging process measured 452 

by biological age models (e.g., phenotypic age).  453 

While the first assumption is hard to test, recent studies suggest that some anti-aging 454 

interventions can slow down and even reverse the biological age measured by biological age 455 

models66. For example, a cocktail treatment of recombinant human growth hormone, 456 

dehydroepiandrosterone, and metformin reversed the immunosenescent trend, and the 457 

biological age measured by several biological age models (including PhenoAge) was reversed 458 

by 2.5 years on average after 12 months of treatment66. Thus, it could be worthwhile 459 

prioritizing established anti-aging drugs in COVID clinical trials. This may accelerate COVID 460 

drug development and save costs. 461 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.08.06.20169854doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 15 

 462 

Acknowledgements  463 

XS was in receipt of a Swedish Research Council (Vetenskapsrådet) Starting Grant (No. 2017-464 

02543). This research was also supported by NIA grants (to VNG). PF and TP were supported 465 

by Gero PTE LLC (Singapore). We thank HGI and NIH-GRASP for the timely release of 466 

COVID-19 GWAS summary statistics. We also thank Miss. Hanna Liu for assistance in part 467 

of the analysis. 468 

 469 

Author contributions 470 

XS initiated the study; VNG, XS, and POF supervised the study; KY, RZ, and TVP performed 471 

data analyses; KY, VNG, POF, and XS wrote the manuscript; All authors contributed to 472 

manuscript writing. 473 

  474 

Competing interest statement 475 

The authors declare no competing financial interests. 476 

 477 

Data availability statement 478 

GWAS summary statistics used in this study are publicly available (for URLs, see Table S1). 479 

The individual-level phenotype data are available by application from the UK Biobank 480 

(http://www.ukbiobank.ac.uk/). The bivariate GWAS summary statistics of aging-related 481 

COVID-19 generated in this study are available at 482 

https://www.dropbox.com/s/bt6mtmttzgnhtfo/combined_ukbbCOVID_meta.txt?dl=0. 483 

 484 

Code availability statement 485 

The GSMR analysis was performed using GCTA 1.93.1beta available at 486 

https://cnsgenomics.com/software/gcta/. The genetic correlation analysis was performed using 487 

LDSC v1.0.1 available at https://github.com/bulik/ldsc, and HDL v1.3.8 available at 488 

https://github.com/zhenin/HDL. 489 

References 490 

  491 
1 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-492 

733, doi:10.1056/NEJMoa2001017 (2020). 493 
2 Koff, W. C. & Williams, M. A. Covid-19 and Immunity in Aging Populations - A New Research Agenda. N 494 

Engl J Med, doi:10.1056/NEJMp2006761 (2020). 495 
3 Santesmasses, D. et al. COVID-19 is an emergent disease of aging. medRxiv, 496 

doi:10.1101/2020.04.15.20060095 (2020). 497 
4 Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat 498 

Med, 1-7, doi:10.1038/s41591-020-0962-9 (2020). 499 
5 Sargiacomo, C., Sotgia, F. & Lisanti, M. P. COVID-19 and chronological aging: senolytics and other anti-500 

aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY) 12, 6511-6517, 501 
doi:10.18632/aging.103001 (2020). 502 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.08.06.20169854doi: medRxiv preprint 

https://www.dropbox.com/s/bt6mtmttzgnhtfo/combined_ukbbCOVID_meta.txt?dl=0
https://doi.org/10.1101/2020.08.06.20169854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 16 

6 Zhavoronkov, A. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, 503 
severity, and lethality in gerophilic and gerolavic infections. Aging (Albany NY) 12, 6492-6510, 504 
doi:10.18632/aging.102988 (2020). 505 

7 Omarjee, L. et al. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe 506 
progression in COVID-19. Clin Immunol 216, 108464, doi:10.1016/j.clim.2020.108464 (2020). 507 

8 Bramante, C. et al. Observational Study of Metformin and Risk of Mortality in Patients Hospitalized with 508 
Covid-19. medRxiv, doi:10.1101/2020.06.19.20135095 (2020). 509 

9 Luo, P. et al. Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with 510 
Diabetes in a Retrospective Analysis. Am J Trop Med Hyg 103, 69-72, doi:10.4269/ajtmh.20-0375 (2020). 511 

10 Roberts, R. Mendelian Randomization Studies Promise to Shorten the Journey to FDA Approval. JACC 512 
Basic Transl Sci 3, 690-703, doi:10.1016/j.jacbts.2018.08.001 (2018). 513 

11 Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common 514 
diseases and distinguishes survival chances. Elife 8, doi:10.7554/eLife.39856 (2019). 515 

12 Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat 516 
Commun 10, 3669, doi:10.1038/s41467-019-11558-2 (2019). 517 

13 Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun Biol 2, 41, 518 
doi:10.1038/s42003-019-0290-0 (2019). 519 

14 Shen, X. et al. Multivariate discovery and replication of five novel loci associated with Immunoglobulin G 520 
N-glycosylation. Nat Commun 8, 447, doi:10.1038/s41467-017-00453-3 (2017). 521 

15 Timmers, P., Wilson, J. F., Joshi, P. K. & Deelen, J. Multivariate genomic scan implicates novel loci and 522 
haem metabolism in human ageing. Nat Commun 11, 3570, doi:10.1038/s41467-020-17312-3 (2020). 523 

16 Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and 524 
implicates Abeta, tau, immunity and lipid processing. Nat Genet 51, 414-430, doi:10.1038/s41588-019-525 
0358-2 (2019). 526 

17 Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery 527 
disease. Nat Genet 49, 1385-1391, doi:10.1038/ng.3913 (2017). 528 

18 Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory 529 
mechanisms for type 2 diabetes. Nat Commun 9, 2941, doi:10.1038/s41467-018-04951-w (2018). 530 

19 Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology 531 
of tobacco and alcohol use. Nat Genet 51, 237-244, doi:10.1038/s41588-018-0307-5 (2019). 532 

20 McCartney, D. L. et al. Genome-wide association studies identify 137 loci for DNA methylation biomarkers 533 
of ageing. doi:10.1101/2020.06.29.133702 (2020). 534 

21 Banda, Y. et al. Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic 535 
Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics 200, 1285-1295, 536 
doi:10.1534/genetics.115.178616 (2015). 537 

22 Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary 538 
data. Nat Commun 9, 224, doi:10.1038/s41467-017-02317-2 (2018). 539 

23 Ellinghaus, D. et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J 540 
Med, doi:10.1056/NEJMoa2020283 (2020). 541 

24 COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate 542 
the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum 543 
Genet 28, 715-718, doi:10.1038/s41431-020-0636-6 (2020). 544 

25 Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. 545 
bioRxiv, doi:10.1101/447367 (2018). 546 

26 Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat Commun 6, 8570, 547 
doi:10.1038/ncomms9570 (2015). 548 

27 Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian Randomization. JAMA 318, 1925-1926, 549 
doi:10.1001/jama.2017.17219 (2017). 550 

28 Ning, Z. et al. Beyond power: Multivariate discovery, replication, and interpretation of pleiotropic loci using 551 
summary association statistics. bioRxiv, doi:10.1101/022269 (2019). 552 

29 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of 553 
genetic associations with FUMA. Nat Commun 8, 1826, doi:10.1038/s41467-017-01261-5 (2017). 554 

30 Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human 555 
complex traits. Nat Genet, 1-6, doi:10.1038/s41588-020-0653-y (2020). 556 

31 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 557 
1236-1241, doi:10.1038/ng.3406 (2015). 558 

32 Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10, 559 
573-591, doi:10.18632/aging.101414 (2018). 560 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.08.06.20169854doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 17 

33 Pyrkov, T. V. et al. Longitudinal analysis of blood markers reveals progressive loss of resilience and 561 
predicts ultimate limit of human lifespan. bioRxiv, doi:10.1101/618876 (2020). 562 

34 Pyrkov, T. V. et al. Quantitative characterization of biological age and frailty based on locomotor activity 563 
records. Aging (Albany NY) 10, 2973-2990, doi:10.18632/aging.101603 (2018). 564 

35 Griffith, G. et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. 565 
medRxiv, 2020.2005.2004.20090506, doi:10.1101/2020.05.04.20090506 (2020). 566 

36 Balistreri, C. R., Madonna, R., Melino, G. & Caruso, C. The emerging role of Notch pathway in ageing: 567 
Focus on the related mechanisms in age-related diseases. Ageing Res Rev 29, 50-65, 568 
doi:10.1016/j.arr.2016.06.004 (2016). 569 

37 Rizzo, P. et al. COVID-19 in the heart and the lungs: could we "Notch" the inflammatory storm? Basic Res 570 
Cardiol 115, 31, doi:10.1007/s00395-020-0791-5 (2020). 571 

38 Bray, S. J. Notch signalling in context. Nat Rev Mol Cell Biol 17, 722-735, doi:10.1038/nrm.2016.94 (2016). 572 
39 Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. 573 

doi:10.1101/447367 (2018). 574 
40 Schmiedel, B. J. et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell 575 

175, 1701-1715 e1716, doi:10.1016/j.cell.2018.10.022 (2018). 576 
41 Pence, B. D. Severe COVID-19 and aging: are monocytes the key? Geroscience 42, 1051-1061, 577 

doi:10.1007/s11357-020-00213-0 (2020). 578 
42 Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat 579 

Immunol 14, 428-436, doi:10.1038/ni.2588 (2013). 580 
43 Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal 581 

monitoring. Nat Med 25, 487-495, doi:10.1038/s41591-019-0381-y (2019). 582 
44 Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in 583 

supercentenarians. Proc Natl Acad Sci U S A 116, 24242-24251, doi:10.1073/pnas.1907883116 (2019). 584 
45 Arai, Y. et al. in EBioMedicine Vol. 2    1549-1558 (2015). 585 
46 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a 586 

Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278, doi:10.1016/j.cell.2020.02.052 (2020). 587 
47 Lambert, D. W. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain 588 

shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-589 
converting enzyme-2 (ACE2). J Biol Chem 280, 30113-30119, doi:10.1074/jbc.M505111200 (2005). 590 

48 Danahay, H. et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. 591 
Cell Rep 10, 239-252, doi:10.1016/j.celrep.2014.12.017 (2015). 592 

49 Jylhava, J., Pedersen, N. L. & Hagg, S. Biological Age Predictors. EBioMedicine 21, 29-36, 593 
doi:10.1016/j.ebiom.2017.03.046 (2017). 594 

50 Lara, J. et al. A proposed panel of biomarkers of healthy ageing. BMC Med 13, 222, doi:10.1186/s12916-595 
015-0470-9 (2015). 596 

51 Cardoso, A. L. et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging 597 
and age-related diseases. Ageing Res Rev 47, 214-277, doi:10.1016/j.arr.2018.07.004 (2018). 598 

52 Kojima, G., Iliffe, S. & Walters, K. Frailty index as a predictor of mortality: a systematic review and meta-599 
analysis. Age Ageing 47, 193-200, doi:10.1093/ageing/afx162 (2018). 600 

53 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, R115, doi:10.1186/gb-601 
2013-14-10-r115 (2013). 602 

54 Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol 603 
Cell 49, 359-367, doi:10.1016/j.molcel.2012.10.016 (2013). 604 

55 Pyrkov, T. V. et al. Extracting biological age from biomedical data via deep learning: too much of a good 605 
thing? Sci Rep 8, 5210, doi:10.1038/s41598-018-23534-9 (2018). 606 

56 Pyrkov, T. V., Fedichev, P. O. & Moskalev, A. Biological Age is a Universal Marker of Aging, Stress, and 607 
Frailty. Healthy Ageing and Longevity 10, 23-36, doi:10.1007/978-3-030-24970-0_3 608 

info:doi/10.1007/978-3-030-24970-0_3 (2019). 609 
57 F. Hillary, R. et al. Epigenetic clocks predict prevalence and incidence of leading causes of death and 610 

disease burden (Cold Spring Harbor Laboratory, 2020). 611 
58 Li, X. et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 612 

20-years follow-up. Elife 9, doi:10.7554/eLife.51507 (2020). 613 
59 Tison, G. H. et al. Worldwide Effect of COVID-19 on Physical Activity: A Descriptive Study. Ann Intern 614 

Med, doi:10.7326/M20-2665 (2020). 615 
60 Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in 616 

Shenzhen, China: a retrospective cohort study. Lancet Infect Dis 20, 911-919, doi:10.1016/S1473-617 
3099(20)30287-5 (2020). 618 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.08.06.20169854doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 18 

61 Yang, J. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a 619 
systematic review and meta-analysis. Int J Infect Dis 94, 91-95, doi:10.1016/j.ijid.2020.03.017 (2020). 620 

62 Wu, L., Zhu, J. & Wu, C. Mendelian randomization analysis to characterize causal association between 621 
coronary artery disease and COVID-19. medRxiv, doi:10.1101/2020.05.29.20117309 (2020). 622 

63 Mark, P. J. et al. Cardiometabolic traits, sepsis and severe covid-19 with respiratory failure: a Mendelian 623 
randomization investigation. medRxiv, doi:10.1101/2020.06.18.20134676 (2020). 624 

64 Liu, D. et al. Association between Alzheimer's disease and COVID-19: A bidirectional Mendelian 625 
randomization. medRxiv, doi:10.1101/2020.07.27.20163212 (2020). 626 

65 Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in 627 
epidemiological studies. Hum Mol Genet 23, R89-98, doi:10.1093/hmg/ddu328 (2014). 628 

66 Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, 629 
e13028, doi:10.1111/acel.13028 (2019). 630 

  631 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.08.06.20169854doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 19 

Tables and Figures 632 

Table 1. Mendelian randomization estimates for the association between lifespan-related traits and risk of 633 
COVID-19  634 

Exposure Outcome OR 95% CI P 

Healthy aging 

HGI_covid_susceptibility 0.33 0.13 - 0.85 2.2e-02 

UKBB_covid_vs_neg 0.25 0.09 - 0.69 7.0e-03 

UKBB_covid_vs_pop 0.12 0.05 - 0.32 1.6e-05 

Lifespan 

HGI_covid_susceptibility 0.45 0.27 - 0.77 3.2e-03 

HGI_covid_vs_neg 0.61 0.39 - 0.97 3.5e-02 

UKBB_covid_vs_neg 0.44 0.26 - 0.77 3.6e-03 

UKBB_covid_vs_pop 0.31 0.18 - 0.52 9.7e-06 

Longevity 

HGI_covid_susceptibility 0.68 0.56 - 0.82 8.5e-05 

UKBB_covid_vs_neg 0.58 0.47 - 0.72 5.0e-07 

UKBB_covid_vs_pop 0.53 0.43 - 0.65 2.3e-09 

Only the associations that reached nominal significance (P < 0.05) are shown  635 
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Table 2. Association between biological age acceleration and the risk of COVID-19 636 
 637 

Biological age measurement Outcome OR 95% CI P 

Phenotypic Age 

COVID19 incidence (All) 1.28 1.25 - 1.31 8.4e-82 

Case fatality (All) 1.19 1.04 - 1.35 1.1e-02 

COVID19 incidence (Not frail) 1.12 1.04 - 1.2 1.9e-03 

Case fatality (Not frail) 1.72 1.17 - 2.51 5.4e-03 

COVID19 incidence (Frail) 1.26 1.23 - 1.3 3.7e-62 

DOSI 

COVID19 incidence (All) 1.31 1.26 - 1.38 9.5e-32 

COVID19 incidence (Not frail) 1.09 1.01 - 1.19 3.6e-02 

Case fatality (Not frail) 2.44 1.45 - 4.06 7.7e-04 

COVID19 incidence (Frail) 1.35 1.28 - 1.42 3.6e-28 

Physical Activity COVID19 incidence (All) 0.95 0.93 - 0.96 9.1e-19 

Only the associations that reached nominal significance (P < 0.05) are shown. 638 

  639 
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Table 3. Mendelian randomization estimates for the association between Notch2 expression and risk of 640 
COVID-19  641 
 642 

Exposure Outcome OR 95% CI P 

NOTCH2 

HGI_covid_vs_neg 1.30 1.03 - 1.65 0.03020 

HGI_covid_vs_pop 1.31 1.1 - 1.55 0.00197 

UKBB_covid_vs_neg 1.46 1.08 - 1.99 0.01540 

UKBB_covid_vs_pop 1.43 1.07 - 1.91 0.01460 

Only the associations that reached nominal significance (P < 0.05) are shown. 643 

644 
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 645 

Figure 1. Mendelian Randomization analysis investigating the association of lifespan-related traits with 646 
the risk of COVID-19. A. The forest plot showing Mendelian randomization estimates for the causal effect of 647 
lifespan-related traits on the risk of COVID-19. Error bars show the 95% confidential interval. Significant 648 
effects after correcting for 144 tests (12 exposures and 12 outcomes, P < 0.05/144) are in orange. Nominally 649 
significant effects (P < 0.05) are in black. B-E. Plots of effect sizes of all genetic instruments from GWAS for 650 
healthy aging (B), lifespan (C), and longevity (D) (x-axis) versus those for UKBB COVID-19 (y-axis); and 651 
longevity (x-axis) versus HGI COVID-19 (y-axis) (E). Error bars represent standard errors. 652 
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 653 

Figure 2.  Analysis of association of biological age acceleration with the risk of COVID-19. A. Schematic 654 
representation of analysis of the biological age acceleration in UKBB cohort. B-D. the box plots showing the 655 
distribution of biological age acceleration measured by phenotypic age (B), DOSI (C), and negative log physical 656 
activity (D) in UKBB subjects that were not tested, tested, or died with COVID-19 infection. E. The forest plot 657 
showing the predicted effect of biological age acceleration on the risk of COVID-19 in different catagory. Error 658 
bars show the 95% confidential interval. Significant effects (P < 0.001) are in orange. Nominally significant 659 
effects (P < 0.05) are in black. Odds ratio for Phenotypic Age and Dynamic Organism State Index (DOSI) is 660 
given per 10-yr biological age acceleration. Odds ratio for physical activity is given per increase of 1000 661 
steps/day.  662 
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 663 

Figure 3. Bivariate genomic scan identifying Notch signaling as age-related COVID-19 risk. A, B. Gene set 664 
enrichment analysis of aging-related COVID-19. Top significantly enriched (Padjusted < 0.05) canonical pathways 665 
(A) and GO biological processes (B) are shown. C. Forest plot showing Mendelian randomization estimates for 666 
the causal effect of blood Notch2 expression on the risk of COVID-19 infection. Error bars show the 95% 667 
confidential interval. Significant effects after correcting for 20 tests (P < 0.0025) are in orange. Nominally 668 
significant effects (P < 0.05) are in black. Error bars show the 95% confidential interval. D, E. Plots of effect 669 
sizes of all genetic instruments from blood eQTLs for Notch2 (x-axis) versus those for UKBB (D) and HGI (E) 670 
COVID-19 infection (y-axis). Error bars represent standard errors. F. Bar plot showing the age-related 671 
differential expression of Notch1-4 in blood. The y-axis represents the -log10(P.adj) × sign of changing 672 
direction, i.e. positve value represents an age-related increase. G. Expression levels of Notch2 in transcripts per 673 
million (TPM, x-axis) from the DICE database. Cell types (y-axis) are sorted based on the median expression 674 
level within the cohort from highest to lowest. Boxes indicate 25%-75% interquartile ranges, and whiskers 675 
indicate minimum to maximum. 676 
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 677 

Figure 4.  Genetic correlation estimates from HDL and LDSC among phenotypes. Lower triangle: HDL 678 
estimates; upper triangle: LDSC estimate. the areas of the squares represent the absolute value of corresponding 679 
genetic correlations. The genetic correlation that couldn't be estimated are in blank. P values are corrected using 680 
Bonferroni correction for 253 tests, * Pnominal < 0.05, ** Padjusted < 0.05, *** Padjusted < 0.01.  681 
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