Supplement

1. Methods

1.1. Quality control of MRI data-sets

The PROTECT-AD add-on project "neural response and fear circuitry related to extinction learning and outcome", funded by the German Federal Ministry of Education and Research (BMBF) was carefully planned and monitored. MRI sequences and the paradigm were tested in a pilot study (Hollandt et al., 2020). An identical setup for electrical dermal stimulation in the lab (day 1) and the MRI environment (day 2) had been implemented at each site. The sequences and the scanner comparability were further evaluated before the start and across the entire data-acquisition phase by applying the same measurement sequences to MRI phantoms. A detailed study protocol was developed to obtain a homogeneous data sample. The data-acquisition was further monitored and supervised by monthly telephone conferences and site visits.

In total, n = 119 healthy subjects as controls for patients with anxiety disorders were enrolled in the PROTECT-AD add-on project. Besides the extinction paradigm a resting state paradigm as well as an emotional face recognition paradigm that are not part of the analyses of this manuscript, were applied. Initially, data was collected at seven sites in Germany: n = 17 at site 1, n = 10 at site 2, n = 17 at site 3, n = 15 at site 4, n = 15 at site 5, n = 30 at site 6, n = 15 at site 7.

The first inclusion criterion for the current investigation was data completeness of the extinction paradigm for both measurement points (t1 and t2). N = 9 participants were excluded because at least one (t1 or t2) extinction data-set was missing. These n = 110 data-sets were composed of n = 15 at site 1, n = 7 at site 2, n = 16 at site 3, n = 14 at site 4, n = 15 at site 5, n = 28 at site 6, n = 15 at site 7. From the remaining n = 110 complete (t1 + t2) data-sets, another n = 10 were excluded due to the following criteria: artifacts in the visual inspection, percent signal change (PSC; Stöcker et al., 2005), or head-movement > 1,5 voxel sizes (6 mm).

Visual inspection of the raw- and pre-processed data was performed with special regard to extinctions, susceptibility artefacts, other more global aspects of head shape or visible artifacts (lines in scans) as well as artefacts in and extinctions of regions around the amygdala. 6 data-sets had to be excluded (n = 5 from site 2, n = 1 from site 6)

The PSC was calculated for all data sets to exclude data with deviants in the signal fluctuation. By considering PSC with a cut-off threshold of 2.5 standard deviations of the mean, 2 data-sets had to be excluded (n = 2 from site 2).

Head movement was set at 1.5 voxel sizes to exclude data sets (x, y or x axis > 6 mm) for at least one measurement point (t1 or t2). Two data-sets had to be excluded (n = 1 from site 6, n = 1 from site 7).

Taken together, this eventually resulted in a quality-controlled sample of n = 100 composed of: n = 15 at site 1, n = 0 at site 2, n = 16 at site 3, n = 14 at site 4, n = 15 at site 5, n = 26 at site 6, n = 14 at site 7. Figure S1 is a visualization of the quality control process.

Figure S1. Visualization of the quality control process.

1.2. Details of experimental procedures (day 1+2)

As described in Hollandt et al. (2020), two background colored pictures of male faces with neutral expressions (from the Psychological Image Collection at Stirling; http://pics.stir.ac.uk, following Duits et al., 2017) served as CSs (counterbalanced between subjects). CSs were presented for 6000 ms, followed by an inter-trial interval (white fixation cross presented on a black screen) of 6 to 10 s. An unpleasant electrocutaneous stimulus was used as US with a stimulus duration of 500 ms, composed of 100 single pulses of 5 ms. It was presented after 5.5 s after stimulus onset, so that it co-terminated with the CS+. For the application, a constant current stimulator (DS7A, Digitimer, Medical Products, Wiesbaden) with MRI compatible reusable cup electrodes (10 mm silver, Medical Products, Wiesbaden) and specially produced electrode gel were used. The electric stimuli were triggered by the presentation software and delivered to the forearm of the non-dominant hand. For the adjustments of the first day.

Using the Presentation 17.2 software (Neurobehavioral Systems, Albany, CA, http://www.neurobs.com/), all stimuli inside the MR scanner were presented on an MRI-compatible LCD screen, visible through a mirror attached to the MR head coil.

Due to technical limitations inside the scanner an 11-point scale for the US expectancy rating had to be used allowing ratings in steps of 10%. Furthermore, the subjects had only 5 s for the rating to shorten the length of the fMRI paradigm.

To avoid sequence effects, two orders were used (randomized between subjects) differing in the sequence of stimulus presentations each beginning with one of the two CS. The CS presentation followed a pseudo-randomized order with no more than two consecutive presentations of the same CS.

1.3 Procedure details on psychophysiological assessment during fear conditioning (day 1)

At day 1, a 50 ms burst of white noise with an intensity of 95 dB[A] (rise/fall < 1ms) served as a startle-eliciting probe stimulus and was presented binaurally over Sennheiser AKG K66 headphones either 4.5 or 5 sec after CS onset and during the ITI (2, 3, 4, 5, or 6sec after CS offset). Startle probes were presented during all CS trials during pre-conditioning phase and during 8 of 10 CS trials each during fear acquisition trainings, and twice as often during the respective ITI. Before pre-conditioning, 6 startle probes were presented alone to ensure a stable baseline of blink magnitudes.

The eyeblink component of the startle reflex was measured by recording electromyographic (EMG) activity over the orbicularis oculi muscle beneath the left eye, using two Ag/AgCl surface electrodes (4mm diameter, F-E9-60, Warwick, RI), filled with electrolyte paste (GE Medical Systems Milwaukee, WI). The EMG raw signal was amplified and filtered through a 30 Hz to 1000 Hz bandpass filter using a Coulbourn S75-01 bioamplifier (Allentown, PA) and a 400 Hz Kemo-VFB-8-03 low pass filter (Kemo, Dartford, UK). The digital sampling with a rate of 1000 Hz started 100ms before and lasted until 100ms after the onset of the acoustic startle probe. The EMG signal was filtered offline using a 60 Hz highpass filter and was rectified and integrated (time constant: 10ms) by a digital filter.

To record skin conductance from the hypothenar muscle of the palmar surface of the participants' non-dominant hand (Boucsein et al., 2012), a Coulbourn S71-22 skin conductance coupler was used, providing a constant 0.5 V across two Ag/AgCl surface electrodes (8 mm diameter, E224A, Warwick, RI; filled with isotonic 0.5 M sodium chloride electrode gel). The sampling rate was 10 Hz.

Data reduction and response definition

<u>Skin conductance response</u>: The skin conductance responses were scored as the first response in conductance within a 0.90 - 4.00 s time window, following stimulus onset for CS and US, respectively, using an in-house program (Globisch et al., 1993). Trials in which no SCR could be detected were scored as zero responses. Missing values were replaced individually for each subject by the overall SCR of this subject over all trials of the respective stimulus during the experiment. Logarithms for each value were then computed to

normalize the distribution (Venables & Christie, 1980). To reduce interindividual variability of the SCR that was not related to the conditioning and extinction tasks of the experiment, the log values were range-corrected (division of individual score by the participants' maximum response within all CS and US trials (Lykken & Venables, 1971)).

<u>Startle blink magnitudes</u>: Data were semi-automatically scored offline by using an in-house algorithm (Globisch et al., 1993), that identified latency of blink onsets and peak amplitudes. The time window for startle response was defined between 20-120ms after startle probe onset and the magnitude had to peak within 150 ms after onset. No detectable eyeblinks were scored as zero responses. Trials with excessive baseline activity, recording artifacts (e.g., electrode malfunctions), and spontaneous eyeblinks outside the latency window were treated as missings and therefore rejected. All participants met the 80% criterion for valid responses and could be included in statistical analysis. The missing values were replaced individually for each subject by the overall mean blink response magnitude of this subject over all trials of the experiment. Each response of each participant was then standardized and converted to T-Scores [50+($z \times 10$)] to control for possible confounding effects of high inter-individual differences in baseline amplitude.

Physiological and rating data were reduced by averaging two trials (or in case of blink magnitudes two probes) to one block.

Due to missing data caused by technical failures, quality-controlled data for ratings, startle blink magnitude and skin conductance responses were available only in n = 90, n = 75, and n = 66 subjects, respectively.

All conditioning data were analyzed using repeated-measures ANOVAs with Stimulus (CS+ vs. CS–) and Block as within-subjects factors. All tests were conducted two-sided and uncorrected for multiple comparisons. A Greenhouse–Geisser procedure was used in case of a violation of the sphericity assumption in ANOVAs. η^2 values are provided as a measure of effect size. Results are described in the Supplementary Results 2.1.

2. Results

2.1 Conditioning on day 1, see Supplementary Figure S2

<u>US-expectancy</u>: At t1, prior to any conditioning, there was no difference between CS+ and CS- in CS/US-expectancy (t1: F(1,89) = 1.24, p = .27, $\eta^2 = .014$; t2: F(1,89) = 7.91, p = .006, $\eta^2 = .08$).

At both measurement points, over the course of the experiment, the CS+/US-expectancy increased (t1: F(1,4) = 9.72, p < .001, $\eta^2 = .10$; t2: F(1,4) = 18.13, p < .001, $\eta^2 = .17$), whereas the CS-/US-expectancy decreased (t1: F(1,4) = 4.24, p = .014, $\eta^2 = .05$; t2: F(1,4) = 9.91, p < .001, $\eta^2 = .10$).

After acquisition, there was a distinct difference between CS+ and CS- in US-expectancy rating, indicating that conditioning was successful (t1: F(1,89) = 1221.34, p < .001, $\eta^2 = .93$; t2: F(1,89) = 1413.63, p < .001, $\eta^2 = .94$).

<u>Arousal</u>: At both measurement points, prior to any conditioning, there was no difference between CS+ and CS- in arousal (t1: F(1,89) = .15, p = .70, $\eta^2 = .002$; t2: F(1,89) = 3.88, p = .05, $\eta^2 = .04$).

After acquisition, there was a distinct difference between CS+ and CS- arousal rating, indicating that conditioning was successful (t1: F(1,89) = 108.64, p < .001, $\eta^2 = .55$; t2: F(1,89) = 126.04, p < .001, $\eta^2 = .59$).

<u>Valence</u>: At both measurement points, prior to any conditioning, there was no difference between CS+ and CS- in valence (t1: F(1,89) = 1.25, p = .27, $\eta^2 = .014$; t2: F(1,89) = .18, p = .68, $\eta^2 = .002$).

After acquisition, there was a distinct difference between CS+ and CS- valence rating, indicating that conditioning was successful (t1: F(1,89) = 56.49, p < .001, $\eta^2 = .39$; t2: F(1,89) = 62.13, p < .001, $\eta^2 = .41$).

<u>SCR</u>: At both measurement points, prior to any conditioning, there was no difference between CS+ and CS- in SCR (t1: F(1,65) = .38, p = .54, $\eta^2 = .006$; t2: F(1,65) = .28, p = .60, $\eta^2 = .004$).

At the start of conditioning, there was a significant difference between CS+ and CS- in SCR (t1: F(1,65) = 53.88, p < .001, $\eta^2 = .45$; t2: F(1,65) = 43.41, p < .001, $\eta^2 = .40$), which (despite some habituation) was still present at the end of conditioning (t1: F(1,65) = 20.91, p < .001, $\eta^2 = .24$; t2: F(1,65) = 6.41, p = .014, $\eta^2 = .09$).

<u>Startle</u>: At both measurement points, prior to any conditioning, there was no difference between CS+ and CS- in startle blink magnitude (t1: F(1,74) = .36, p = .55, $\eta^2 = .005$; t2: F(1,74) = .09, p = .76, $\eta^2 = .001$).

At the start of conditioning, there was a distinct difference between CS+ and CS- in startle blink magnitude (t1: F(1,74) = 23.72, p < .001, $\eta^2 = .24$; t2: F(1,74) = 38.63, p < .001, $\eta^2 = .34$), which (despite habituation processes) was still present at the end of conditioning (t1: F(1,74) = 30.37, p < .001, $\eta^2 = .29$; t2: F(1,74) = 27.75, p < .001, $\eta^2 = .27$).

Figure S2. Mean Scores and standard errors for US expectancy ratings, ratings of valence and arousal, SCRs and startle blink magnitudes, respectively, during phases of pre-conditioning and fear acquisition (day 1) at t1 and t2 as a function of stimulus type (CS+ and CS-, as well as US and ITI in case of SCR and startle, respectively) with two trials per block for continuously assessed measures.

2.2 Recall of CS/US-associations in behavioral data:

<u>US-expectancy</u>: At both measurement points, the recall of CS/US-associations learned the day before during acquisition training prior to any extinction training and prior to the reacquisition of CS+ and US showed a higher US-expectancy during CS+ than during CS- (t1: F(1,98) = 80.31, p < .001, $\eta^2 = .45$; t2: F(1,98) = 86.96, p < .001, $\eta^2 = .47$).

<u>Arousal</u>: At both measurement points, prior to any extinction training, there was higher arousal regarding the CS+ than the CS- (t1: F(1,98) = 67.93, p < .001, $\eta^2 = .41$; t2: F(1,98) = 88.96, p < .001, $\eta^2 = .48$).

<u>Valence</u>: At both measurement points, prior to any extinction learning, there was lower valence regarding the CS+ than the CS- (t1: F(1,98) = 16.70, p < .001, $\eta^2 = .15$; t2: F(1,98) = 51.85, p < .001, $\eta^2 = .35$).

2.3 Effect of re-acquisition in behavioral data:

<u>US-expectancy</u>: After re-acquisition, the CS+/US-expectancy was increased (t1: F(1,98) = 30.45, p < .001, $\eta^2 = .24$; t2: F(1,98) = 26.61, p < .001, $\eta^2 = .21$) whereas the CS-/US-expectancy was decreased (t1: F(1,98) = 3.46, p = .06, $\eta^2 = .03$; t2: F(1,98) = 17.63, p < .001, $\eta^2 = .15$).

References

- Boucsein, W., Fowles, D.C., Grimnes, S., Ben-Shakhar, G., Roth, W.T., Dawson, M.E., Filion,
 D.L., Society for Psychophysiological Research Ad Hoc Committee on Electrodermal
 Measures, 2012. Publication recommendations for electrodermal measurements.
 Psychophysiology 49, 1017-1034. https://doi.org/10.1111/j.1469-8986.2012.01384.x
- Duits, P., Richter, J., Baas, J.M.P., Engelhard, I.M., Limberg-Thiesen, A., Heitland, I., Hamm, A.O., Cath, D.C., 2017. Enhancing Effects of Contingency Instructions on Fear Acquisition and Extinction in Anxiety Disorders. Journal of Abnormal Psychology 126, 378-391. https://doi.org/10.1037/abn0000266
- Globisch, J., Hamm, A.O., Schneider, R., Vaitl, D., 1993. A computer programm for scoring reflex eyeblink and electrodermal responses written in Pascal. Psychophysiology 39, S30.
- Hollandt, M., Wroblewski, A., Yang, Y., Ridderbusch, I. C., Kircher, T., Hamm, A. O., Straube,
 B., Richter, J., 2020. Facilitating translational science in anxiety disorders by adjusting extinction training in the laboratory to exposure-based therapy procedures.
 Translational psychiatry 10, 110. https://doi.org/10.1038/s41398-020-0786-x
- Lykken, D.T., Venables, P.H., 1971. Direct measurement of skin conductance: A proposal for standardization. Psychophysiology 8, 656-672. https://doi.org/10.1111/j.1469-8986.1971.tb00501.x
- Stöcker, T., Schneider, F., Klein, M., Habel, U., Kellermann, T., Zilles, K., Shah, N.J., 2005. Automated quality assurance routines for fMRI data applied to a multicenter study. Hum. Brain Mapp. 25, 237-246. https://doi.org/10.1002/hbm.20096
- Venables, P.H., Christie, M.J., 1980. Electrodermal activity, in: Martin, I., Venables, P.H. (Eds.), Techniques in Psychophysiology. UK. Wiley, Chichester, pp. 3-67.

Region	hemi-	no.	MNIc	coordin	ates		P-value	P-value FWE-		
	sphere	voxels		peak			corre	ected		
			х	V	z	t	peak	cluster		
t1: CS+ > CS-							•			
Anterior insula + frontal operculum	R	8348	34	24	4	10.84	<.001	<.001		
Parietal operculum + supramarginal gyrus +	L	1665	-56	-26	24	9.31	<.001	<.001		
superior temporal gyrus										
Supramarginal gyrus + angular gyrus +	R	2866	60	-42	30	7.47	<.001	<.001		
parietal operculum										
Middle cingulate cortex + supplementary		6873	0	18	36	7.41	<.001	<.001		
motor cortex + superior frontal gyrus										
medial segment										
Precentral gyrus + middle frontal gyrus	R	1833	42	0	48	6.34	<.001	<.001		
Cerebellum	R	738	-32	-52	-28	5.52	.001	.004		
Precuneus	L	384	12	-64	40	5.38	.002	.087		
Precentral gyrus	L	189	-40	-4	48	5.04	.009	.530		
Middle + superior frontal gyrus	R	264	52	-30	-6	4.74	.033	.270		
Middle frontal gyrus	L	619	-36	40	36	4.36	.143	.011		
Cerebellum	R	226	32	-52	-28	4.32	.162	.384		
Cerebellum		274	0	-50	-20	4.10	.331	.246		
<u>t1: CS- > CS+</u>										
Precuneus + posterior cingulate cortex +	R	3293	2	-54	26	7.31	<.001	<.001		
fusiform gyrus + hippocampus										
Angular gyrus + superior parietal lobule	L	3684	-48	-68	30	6.96	<.001	<.001		
Middle + superior temporal gyrus	L	503	-60	-12	-16	6.40	<.001	.030		
Medial frontal cortex + superior frontal	R	2082	2	40	-18	6.37	<.001	<.001		
gyrus medial segment + superior frontal										
gyrus	_									
Angular gyrus + occipital gyrus	R	4733	52	-66	28	5.82	<.001	<.001		
Precentral gyrus	L	3308	-10	-28	/4	5.15	.005	<.001		
Postcentral gyrus	R	1134	62	-4	20	4.83	.020	<.001		
Superior + middle frontal gyrus	ĸ	231	20	36	46	4.03	.389	.367		
$\frac{12:CS+>CS-}{12:CS+>CS-}$	D	4220	20	24	2	44 47	1 0 0 1	4 001		
Anterior Insula + frontal + central	К	4336	36	24	2	11.47	<.001	<.001		
operculum Antonion incula L frontol L control		2526	22	20	c	0 74	< 001	< 001		
	L	2550	-32	20	0	9.74	<.001	<.001		
Middle singulate gurus L superior frontal	р	6144	4	26	40	0.01	< 001	< 001		
avrus medial sogment + superior frontar	n	0144	4	50	40	0.91	<.001	<.001		
motor cortex										
Supramarginal gyrus + angular gyrus +	R	2913	60	-42	34	7 70	< 001	< 001		
narietal operculum	IX.	2515	00	-42	54	7.70	<.001	1.001		
Supramarginal gyrus + postcentral gyrus +	1	1204	-62	-74	26	7 01	< 001	< 001		
narietal operculum	-	1204	02	27	20	7.01		4.001		
Precentral gyrus + middle fontral gyrus	R	872	44	2	44	5.82	<.001	<.001		
Precentral gyrus + middle fontral gyrus	I	234	-38	-4	46	5.16	.001	.001		
Cerebellum	-	445	-16	-76	-28	4.68	.003	<.001		
Middle frontal gyrus	R	686	38	48	16	4.53	.077	.006		
Middle frontal gyrus	L	292	-34	52	24	4.18	.259	.207		
t2: CS- > CS+										
Angular gyrus + precuneurs + posterior	L	29998	-40	-68	32	8.82	<.001	<.001		
cingulate gyrus + precentral gyrus medial			-							
segment										
 Middle frontal gyrus + precentral gyrus +	L	793	-46	26	22	5.28	.003	.003		
opercular part of the inferior frontal gyrus										

Table S1. Activation difference CS+ vs. CS- during first extinction phase at both measurement points (t1, t2). All contrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Table S2. Rating comparisons between first (t1) and se	Table S2. Rating comparisons between first (t1) and second (t2) point measurement regarding CS+ > CS- differences.									
US-expectancy t1 vs. t2	dfs	F	Р	η²						
Pre Re-Acquisition CS+ > CS-	1, 98,00	.12	.73	.001						
Post Re-Acquisition CS+ > CS-	1, 98,00	1.46	.23	.015						
Post Ex1 CS+ > CS-	1, 98,00	.41	.52	.004						
Post Ex2 CS+ > CS-	1, 98,00	2.11	.15	.021						
Post Reinstatement CS+ > CS-	1, 98,00	.45	.50	.005						
Post Ex3 CS+ > CS-	1, 98,00	.70	.41	.007						
Arousal t1 vs. t2										
Pre Ex1 CS+ > CS-	1, 98,00	1.23	.27	.013						
Post Ex1 CS+ > CS-	1, 98,00	1.84	.18	.018						
Post Ex2 CS+ > CS-	1, 98,00	3.89	.051	.038						
Post Reinstatement CS+ > CS-	1, 98,00	.27	.61	.003						
Post Ex3 CS+ > CS-	1, 98,00	2.59	.11	.026						
Valence t1 vs. t2										
Pre Ex1 CS+ > CS-	1, 98,00	3.77	.06	.037						
Post Ex1 CS+ > CS-	1, 98,00	3.53	.06	.035						
Post Ex2 CS+ > CS-	1, 98,00	2.01	.16	.020						
Post Reinstatement CS+ > CS-	1, 98,00	3.57	.06	.035						
Post Ex3 CS+ > CS-	1, 98,00	.64	.43	.006						
Data were analyzed using repeated-measures ANOVAs	with Measure	ment (t1, t2) as	within-subjec	ts factor.						

Table S3. Basic contrasts in ratings at each site separat	tely.			
US-expectancy				
t1+t2 CS+ > CS- post re-acquisition	df	F	Р	η²
Site 1	1, 14	46.98	<.001	.770
Site 2	1, 15	37.20	<.001	.713
Site 3	1, 13	168.66	<.001	.928
Site 4	1, 14	133.41	<.001	.905
Site 5	1, 25	68.38	<.001	.732
Site 6	1, 12	28,74	<.001	.705
t1+ t2 CS+ extinction post re-acquisition vs. post Ex1 vs	<u>s. post Ex2</u>			
Site 1	2, 14	13.79	<.001	.496
Site 2	2, 15	.84	.44	.053
Site 3	2, 13	24.02	<.001	.649
Site 4	2, 14	9.65	.001	.408
Site 5	2, 25	36.20	<.001	.695
Site 6	2, 12	5.12	.014	.299
Arousal				
<u>t1+t2 CS+ > CS- pre Ex1</u>				
Site 1	1, 14	14.08	.002	.501
Site 2	1, 15	14.55	.002	.492
Site 3	1, 13	37.43	<.001	.742
Site 4	1, 14	21.08	<.001	.601
Site 5	1, 25	16.22	<.001	.393
Site 6	1, 12	20.17	.001	.627
<u>t1+ t2 CS+ extinction pre Ex1 vs. post Ex1 vs. post Ex2</u>				
Site 1	2, 14	2.26	.12	.139
Site 2	2, 15	2.62	.089	.149
Site 3	2, 13	8.77	.001	.403
Site 4	2, 14	.45	.65	-031
Site 5	2, 25	14.81	<.001	.372
Site 6	2, 12	7.05	.004	.370
Valence				
<u>t1+t2 CS+ > CS- pre Ex1</u>				
Site 1	1, 14	8.41	.012	.375
Site 2	1, 15	12.02	.003	.445
Site 3	1, 13	16.81	.001	.564
Site 4	1, 14	16.44	.001	.540
Site 5	1, 25	9.35	.005	.272
Site 6	1, 12	7.67	.017	.390
<u>t1+ t2 CS+ extinction pre Ex1 vs. post Ex1 vs. post Ex2</u>				
Site 1	2, 14	.83	.45	.056
Site 2	2, 15	1.23	.31	.076
Site 3	2, 13	3.16	.06	.196
Site 4	2, 14	.21	.82	.014
Site 5	2, 25	2.14	.13	.079
Site 6	2, 12	2.67	.18	.182
Determine evel-				the feature

Data were analyzed using repeated-measures ANOVAs with Stimulus (CS+; CS+, CS-) as within-subjects factor.

Fig. S3. Activation differences before and after reinstatement in the interaction CS-type X pre/post reinstatement. The contrast was calculated across both measurement points and assessed at p<.005 uncorrected with no cluster threshold.

Table S4. Conjuction (t1: Ex1 CS+ > CS-) \cap (t2: Ex1 CS+ > CS-). All contrasts were assessed at *p*<.005 uncorrected with a cluster threshold of *k*=175.

Region	hemi-	no.	MNI coordinates			P-value FWE-		
	sphere	voxels		peak			corre	ected
			x	у	Z	t	peak	cluster
$(t1: Ex1 CS+ > CS-) \cap (t2: Ex1 CS+ > CS-)$	_							
Anterior insula + frontal + central operculum	R	3830	34	24	4	10.84	<.001	<.001
+ caudate + pallidum								
Anterior insula + frontal operculum	L	2341	-30	20	8	9.41	<.001	<.001
Superior frontal gyrus medial segment +	R	4982	4	38	38	7.37	<.001	<.001
middle cingulate gyrus + supplementary								
motor cortex								
Supramarginal gyrus + angular gyrus +	R	2438	60	-44	30	7.34	<.001	<.001
parietal operculum								
Supramarginal gyrus + postcentral gyrus +	L	1151	-62	-24	26	7.01	<.001	<.001
parietal operculum								
Precentral gyrus + middle frontal gyrus	R	736	46	2	46	5.71	<.001	.004
Cerebellum	L	413	-16	-76	-28	4.68	.042	.066
Middle + superior temporal gyrus	L	229	52	-28	-6	4.67	.043	.374
Middle + superior frontal gyrus	R	542	38	50	16	4.42	.114	.021
Middle cingulate gyrus + precentral gyrus	L	310	-2	-22	30	4.14	.297	.175
medial segment								
Middle frontal gyrus	L	272	-34	52	24	3.99	.452	.250
(t1: Ex1 CS- > CS+) ∩ (t2: Ex1 CS- > C+-)								
Precuneus + posterior cingulate gyrus +		2980	0	-54	26	7.29	<.001	<.001
fusiform gyrus + hippocampus								
Angular gyrus + superior parietal lobule	L	3234	-48	-68	30	6.96	<.001	<.001
Middle + superior temporal gyrus	L	457	-60	-12	-16	6.40	<.001	.045
Medial frontal cortex + gyrus rectus + middle	R	1898	2	40	-18	6.37	<.001	<.001
+ superior frontal gyrus								
Angular gyrus + middle occipital gyrus +	R	3198	44	-62	32	5.68	<.001	<.001
superior parietal lobule								
Hippocampus + fusiform gyrus + lingual gyrus	R	756	32	-40	-8	5.36	.002	.004
Pre- + postcentral gyrus medial segment	R	2866	10	-26	74	5.06	.008	<.001
Pre- + postcentral gyrus	R	1014	62	-6	22	4.79	.026	.001

Figure S4. Conjuction (t1: Ex1 CS+ > CS-) \cap (t2: Ex1 CS+ > CS-). All contrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Figure S5. Conjuction (t1: Ex1 CS- > CS+) \cap (t2: Ex1 CS- > CS+). All contrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Table S5. Activation difference CS+ vs. CS- at site 1 during first extinction phase across both measurement points. Allcontrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Region	hemi-	no.	MNI	coordin	ates		P-valu	e FWE-
	sphere	voxels		peak			corr	ected
			х	у	z	t	peak	cluster
<u>CS+ > CS-</u>								
Anterior insula + frontal + central operculum	R	1003	32	24	4	6.94	<.001	<.001
Anterior insula + frontal operculum + putamen	L	1468	-30	18	8	6.43	<.001	<.001
Supramarginal gyrus + angular gyrus+ parietal operculum	R	803	58	-42	32	5.12	.018	.001
Superior frontal gyrus medial segment + middle cingulate gyrus	R	890	6	34	38	4.80	.064	.001
Supramarginal gyrus + parietal operculum + postcentral gyrus	L	336	-56	-26	26	4.60	.127	.100
Thalamus + pallidum + caudate	R	249	10	0	4	3.92	.734	.257
<u>CS- > CS+</u>								
Medial frontal cortex + gyrus rectus + superior frontal gyrus	R	4515	4	46	-18	7.15	<.001	<.001
Middle + superior temporal gyrus hippocampus	L	2639	-60	-12	-14	6.77	<.001	<.001
Angular gyrus + middle temporal gyrus + fusiform gyrus + hippocampus	R	4000	46	-64	32	6.51	<.001	<.001
Angular gyrus + middle occipital gyrus	L	2391	-46	-68	30	6.23	<.001	<.001
Precuneus + posterior cingulate gyrus	L	1675	-2	-60	30	5.78	.001	<.001
Precentral + postcentral gyrus	L	6420	-26	-20	72	5.75	.001	<.001
Thalamus	R	257	16	-32	6	3.93	.725	.235

Region	hemi-	no.	MNI d	coordin	ates		P-valu	P-value FWE-	
	sphere	voxels		peak			corr	ected	
			х	У	z	t	peak	cluster	
<u>CS+ > CS-</u>									
Anterior insula + frontal + central operculum	R	1268	36	26	2	5.83	.001	<.001	
Anterior insula + frontal + central operculum	L	1101	-40	14	2	5.19	.011	<.001	
Parietal operculum + supramarginal gyrus + postcentral gyrus	L	395	-56	-28	24	5.11	.016	.080	
Supramarginal gyrus + parietal operculum + angular gyrus	R	792	50	-34	26	4.51	.142	.003	
Superior frontal gyrus medial segment + supplementary motor cortex + middle cingulate gyrus	R	1035	2	36	40	4.39	.214	<.001	
Precentral gyrus + middle fronatl gyrus	R	179	46	2	54	4.37	.224	.596	
<u>CS- > CS+</u>									
Precuneus + posterior cingulate gyrus	R	2122	8	-52	14	6.02	<.001	<.001	
Middle + superior temporal gyrus	R	349	62	-6	-18	4.77	.058	.124	
Angular gyrus + middle occipital gyrus	L	1020	-44	-70	30	4.56	.122	<.001	
Middle + superior temporal gyrus	L	410	-58	-12	-16	4.52	.136	.069	
Angular gyrus + middle occipital gyrus	R	959	50	-64	32	4.49	.155	.001	
Postcentral + supramarginal gyrus	R	410	36	-24	42	4.03	.544	.069	
Inferior temporal gyrus	L	194	-46	-50	-8	4.02	.560	.528	
Hippocampus + parahippocampal gyrus + fusiform gyrus	R	376	32	-40	-8	3.99	.589	.096	
Hippocampus + parahippocampal gyrus + fusiform gyrus	L	358	-32	-24	-14	3.94	.654	.113	
Anterior cingulate gyrus + medial frontal gyrus + superior frontal gyrus medial segment	L	463	-10	34	-8	3.75	.849	.042	

Table S6. Activation difference CS+ vs. CS- at site 2 during first extinction phase across both measurement points. Allcontrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

hemi- no. sphere voxels		MNI coordinates peak				ie FWE- ected
VOACIO	x	y	z	t	peak	cluster
		-			-	
1339	30	26	-6	7.71	<.001	<.001
7007	2	34	40	6.66	<.001	<.001
1002	60	-46	30	5.41	.005	.001
212	-2	-52	-32	4.37	.238	.481
498	50	16	46	4.35	.256	.036
287	-62	-44	36	4.23	.356	.246
6560	-8	-36	70	5.43	.005	<.001
3688	28	-66	36	5.16	.014	<.001
1625	-34	-66	42	4.46	.183	<.001
298	-28	-32	-12	4.17	.413	.222
204	60	_2	_0	2 64	976	210
304 177	00	-2	-o -16	3.04	.070	.210
	voxels 1339 7007 1002 212 498 287 6560 3688 1625 298 304 177	$\begin{array}{c ccccc} x & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of the content	Init correlates yoxels peak x y z t 1339 30 26 -6 7.71 7007 2 34 40 6.66 1002 60 -46 30 5.41 212 -2 -52 -32 4.37 498 50 16 46 4.35 287 -62 -44 36 4.23 6560 -8 -36 70 5.43 3688 28 -66 36 5.16 1625 -34 -66 42 4.46 298 -28 -32 -12 4.17 304 60 -2 -8 3.64 177 4 44 -16 3.62	init coordinates init coordinates init coordinates init coordinates corr <

Table S7. Activation difference CS+ vs. CS- at site 3 during first extinction phase across both measurement points. Allcontrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Region	hemi-	no.	MNI	coordin	ates		P-valu	e FWE-
	sphere	voxels	peak				corrected	
			х	у	z	t	peak	cluster
<u>CS+ > CS-</u>								
Frontal + central operculum + anterior insula	R	2966	38	26	2	7.21	<.001	<.001
+ putamen								
Supplementary motor + middle cingulate	R	4245	4	22	54	5.65	.002	<.001
gyrus								
Frontal operculum + anterior insula	L	1976	-44	20	8	5.26	.010	<.001
Parietal operculum + supramarginal gyrus	R	798	46	-26	26	4.95	.036	.001
Supramarginal gyrus + parietal operculum	L	261	-58	-26	24	4.85	.052	.213
Precentral gyrus + middle frontal gyrus	R	311	46	4	48	4.48	.187	.122
Middle frontal gyrus	R	360	30	44	18	4.42	.226	.071
Middle + superior temporal gyrus	R	235	58	-22	-8	4.22	.397	.284
Brain stem + thalamus	R	216	8	28	-8	4.04	.602	.349
Middle cingulate gyrus	R	223	4	-20	40	3.89	.774	.323
<u>CS- > CS+</u>								
Superior parietal lobule + occipital gyrus	R	3074	26	-68	42	5.21	.013	<.001
Precentral gyrus medial segment		2200	0	-26	68	4.62	.118	<.001
Angular gyrus + middle occipital gyrus	L	1711	-40	-68	28	4.55	.149	<.001
Inferior temporal gyrus	R	504	48	-60	-6	4.27	.352	.016
Precuneus + posterior cingulate gyrus	L	907	-4	-54	32	4.19	.437	<.001
Hippocampus + parahippocampal gyrus +	R	376	34	-30	-14	4.18	.448	.060
fusiform gyrus								
Superior + middle frontal gyrus	L	565	-18	28	44	4.10	.531	.009
Medial frontal cortex + gyrus rectus + anterior	L	462	-6	50	-10	4.09	.544	.024
cingulate gyrus								
Postcentral gyrus	R	200	62	-8	38	4.05	.590	.413

Table S8. Activation difference CS+ vs. CS- at site 4 during first extinction phase across both measurement points. Allcontrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Region	hemis-	no.	MNI	coordin	ates		P-valu	e FWE-
	phere	voxels		peak			corr	ected
			х	У	z	t	peak	cluster
<u>CS+ > CS-</u>								
Frontal operculum + anterior insula +	R	2579	38	24	6	7.55	<.001	<.001
opercular part of the inferior frontal gyrus								
Anterior insula + frontal operculum +	L	1544	-30	20	8	6.20	<.001	<.001
opercular part of the inferior frontal gyrus								
Superior frontal gyrus medial segment +	R	2969	6	34	40	5.74	.001	<.001
supplementary motor cortex + middle								
cingulate gyrus								
Supramarginal gyrus + angular gyrus + parietal	R	2206	58	-42	28	5.72	.001	<.001
operculum + middle + superior temporal								
gyrus								
Supramarginal gyrus + postcentral gyrus	L	1039	-62	-26	24	5.42	.003	<.001
Precentral gyrus + middle frontal gyrus	R	423	42	4	46	5.40	.004	.034
Cerebellum + fusiform gyrus	L	344	-28	-52	-26	5.07	.015	.080
Thalamus + brain stem	R	436	6	-22	0	4.52	.131	.030
Middle + superior temporal gyrus	R	215	56	-28	-6	3.98	.619	.341
Middle + superior frontal gyrus	R	304	32	54	24	3.92	.690	.125
CS- > CS+								
Angular gyrus + posterior cingulate gyrus +	L	4457	-38	-68	34	5.53	.002	<.001
precuneus								
Middle + inferior frontal gyrus + precentral	L	447	-46	24	24	5.15	.011	.026
gyrus								
Middle + inferior temporal gyrus	L	251	-52	-60	-8	4.83	.040	.228
Superior + middle occipital gyrus	R	1472	28	-82	36	4.67	.075	<.001
Superior frontal gyrus medial segment +	L	1363	-14	46	0	4.57	.110	<.001
medial frontal cortex								
Superior + middle frontal gyrus	L	369	-22	22	50	4.52	.134	.061
Precentral gyrus medial segment +	R	631	8	-24	62	4.36	.222	.004
postcentral gyrus medial segment								
Central operculum + post- + precentral gyurs	L	510	-60	-8	12	4.35	.232	.014
Pre- + postcentral gyrus	R	444	52	-2	26	4.01	.579	.027
Postcentral + precentral gyrus	R	333	48	-20	58	3.89	.716	.091
Hippocmapus + parahippocampal gyrus +	L	386	-30	-30	-16	3.80	.820	.051
fusiform gyrus + lingual gyrus								
Fusiform gyrus + lingual gyrus	R	204	34	-42	-6	3.77	.846	.384
Precentral + postcentral gyrus	L	522	-38	-16	64	3.71	.891	.012

Table S9. Activation difference CS+ vs. CS- at site 5 during first extinction phase across both measurement points. All contrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Region	hemi-	no.	MNI	coordin	ates		P-valu	e FWE-
	sphere	voxels		peak c		corr	ected	
			х	у	z	t	peak	cluster
<u>CS+ > CS-</u>								
Frontal operculum + anterior insula	R	2138	40	20	2	5.45	.004	<.001
Postcentral gyrus + supramarginal gyrus	L	1656	-58	-22	28	5.35	.006	<.001
Middle cingulate gyrus + supplementary	R	3720	4	6	40	5.15	.014	<.001
motor cortex								
Central + parietal operculum + supramarginal	R	2177	48	-18	22	5.02	.023	<.001
gyrus								
Central + frontal operculum + anterior insula	L	1763	-46	6	0	4.97	.028	<.001
Superior parietal lobule + postcentral gyrus +	R	314	20	-46	66	4.00	.576	.213
precuneus								
Cerebellum	L	524	-20	-56	-48	3.99	.587	.035
Precentral gyrus + middle frontal gyrus	R	303	44	-2	58	3.98	.596	.235
Precuneus	L	227	-12	-72	36	3.85	.743	.451
Middle frontal gyrus	L	412	-32	54	28	3.65	.913	.090
Precentral gyrus medial segment + middle	L	199	-14	-30	44	3.58	.946	.561
cingulate gyrus								
Superior frontal gyrus + middle frontal gyrus	R	321	24	62	20	3.36	.995	.040
<u>CS- > CS+</u>								
Posterior cingulate cortex + precuneus	L	535	-8	-52	22	4.81	.051	.032
Angular gyrus	L	192	-36	-62	28	3.86	.728	.591
Medial frontal cortex + gyrus rectus	R	212	2	40	-16	3.75	.836	.508

Table S10. Activation difference CS+ vs. CS- at site 6 during first extinction phase across both measurement points. All contrasts were assessed at p<.005 uncorrected with a cluster threshold of k=175.

Figure S6. Activation difference CS+ > CS- during first extinction phase across both measurement points. From left to right site 1 to 6. For each site a separate 2^{nd} -level-analysis was performed. All contrasts were assessed at *p*<.005 uncorrected with a cluster threshold of *k*=175.

Figure S7. Activation difference CS- > CS+ during first extinction phase across both measurement points. From left to right site 1 to 6. For each site a separate 2^{nd} -level-analysis was performed. All contrasts were assessed at *p*<.005 uncorrected with a cluster threshold of *k*=175.