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Abstract 1 

Purpose: Lowering the sampling rate of accelerometer devices can dramatically increase study 2 

monitoring periods through longer battery life, however the validity of its output is poorly 3 

documented. We therefore aimed to assess the effect of reduced sampling rate on measuring physical 4 

activity both overall and by specific behaviour types. 5 

Methods: Healthy adults wore two Axivity AX3 accelerometers on the dominant wrist and two on the 6 

hip for 24 hours. At each location one accelerometer recorded at 25 Hz and the other at 100 Hz. Overall 7 

acceleration magnitude, time in moderate-to-vigorous activity, and behavioural activities were 8 

calculated using standard methods. Correlation between acceleration magnitude and activity 9 

classifications at both sampling rates was calculated and linear regression was performed. 10 

Results: 54 participants wore both hip and wrist monitors, with 45 of the participants contributing >20 11 

hours of wear time at the hip and 51 contributing >20 hours of wear time at the wrist. Strong 12 

correlation was observed between 25 Hz and 100 Hz sampling rates in overall activity measurement 13 

(r = 0.962 to 0.991), yet consistently lower overall acceleration was observed in data collected at 25 14 

Hz (12.3% to 12.8%). Excellent agreement between sampling rates was observed in all machine 15 

learning classified activities (r = 0.850 to 0.952). Wrist-worn vector magnitude measured at 25 Hz 16 

(Acc25) can be compared to 100 Hz (Acc100) data using the transformation, Acc100 = 1.038*Acc25 + 3.310. 17 

Conclusions: 25 Hz and 100 Hz accelerometer data are highly correlated with predictable differences 18 

which can be accounted for in inter-study comparisons. Sampling rate should be consistently reported 19 

in physical activity studies, carefully considered in study design, and tailored to the outcome of 20 

interest.  21 
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Introduction 22 

Accelerometers are increasingly used to obtain exposure measures in large observational physical 23 

activity healthcare studies [1–3]  and to obtain outcome measures in randomised controlled trials [4]. 24 

Seven days of physical activity measurement is a common measurement window across a variety of 25 

accelerometer studies and provides a suitable representation of individual activity in most scenarios 26 

[5–8]. However, in the case of activity monitoring in clinical populations recovering from trauma or a 27 

surgical intervention, extended monitoring well beyond a standard seven day protocol may be desired 28 

[9]. Extended longitudinal protocols incorporating measurement windows beyond a few weeks 29 

requires frequent participant interaction for battery charging, which is burdensome and undesirable 30 

[10]. In these cases, a reduction of sampling rate would offer the potential for longer continuous 31 

physical activity measurement, while reducing patient and caregiver interactions with the monitoring 32 

device.  33 

Currently, Brønd and Ardivsson offer the only side-by-side comparison of accelerometers recording at 34 

different sampling rates, recording laboratory-based activities with hip-mounted Actigraph GTX3+ 35 

devices [11]. Other studies generate downsampled data from a single accelerometer to assess the 36 

effects of varying sampling rates, while relying on the untested assumption that this postprocessing 37 

accurately reproduces the recording behaviour of the underlying hardware [12,13]. In addition, 38 

studies of this nature have been limited to the ActiGraph GTX3+ and GENEA triaxial accelerometers 39 

[11–14], and not the Axivity AX3 which has been used in the UK Biobank study of 100,000 participants 40 

[1]. This dataset is a valuable resource and can serve as a reference for physical activity within a wide 41 

range of clinical populations. Therefore, the ability to compare physical activity data between studies 42 

integrating non-standard sampling rates remains unverified. 43 

The aim of this study was to validate data collected at a reduced sampling rate (25 Hz) in comparison 44 

to that collected at the commonly used  rate of 100 Hz within the AX3 accelerometer. The objectives 45 

were to: 1) identify any effect of sampling rate on vector magnitude both overall and for specific free-46 
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living activities; 2) characterise the effect of reduced sampling rate on machine learning activity 47 

classification; 3) develop a transformation so that data collected at standard and reduced sampling 48 

rates can be directly compared. 49 

Methods 50 

Study design 51 

Ethical approval for participant recruitment was obtained from the Central University Research Ethics 52 

Committee of the University of Oxford (Ref: R63137/RE001). Written informed consent was obtained 53 

from adult volunteers (aged 18 and above) with no lower limb injury within the previous 6 months 54 

and who were able to walk without an assistive device. Participants were recruited through advertising 55 

within Oxford University, the local community and in senior citizen groups. 56 

Participants were instructed to wear four triaxial accelerometers (AX3, Axivity, Newcastle, UK) for 57 

24 hours, except during bathing or swimming activities. Participants could remove sensors at night if 58 

they disrupted sleep. Two accelerometers were placed side-by-side on the dominant wrist using a 59 

wristband, and two on the dominant-side hip, waist level at the anterior-posterior midline via a belt 60 

clip (Figure 1). 61 

Accelerometers were synchronised and programmed via the Open Movement software (v1.0.0.42) 62 

(https://openmovement.dev). At each body location, one sensor was programmed to collect data at 63 

a sampling rate of 25 Hz while the other collected data at 100 Hz, both with a dynamic range of ±8 g. 64 

The same four unique sensors were used in all participants. Accelerometer orientation and axis 65 

alignment within the hip and wrist straps were consistent with manufacturer guidance and verified 66 

prior to the start of each recording session. The assignment of hip or wrist body location and sampling 67 

rate of each specific accelerometer was randomized by serial number so that the four accelerometers 68 

contributed to measurements at both body locations and sampling rates. Participants additionally 69 

filled out an activity diary (Supplement Note 1) to log the times during which they slept, cycled, walked 70 
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more than 100 meters, ate a meal, participated in self-defined exercise, or removed the 71 

accelerometer. 72 

Acceleration Magnitude 73 

A schematic of our study design is presented in Figure 2. Following the monitoring period, triaxial 74 

acceleration data was processed using the open source Biobank Accelerometer Analysis Tool 75 

(https://github.com/activityMonitoring/biobankAccelerometerAnalysis) [1]. Acceleration data was 76 

automatically calibrated by identifying stationary points within the data to reduce sensor-based 77 

measurement bias and offset error [1,15]. Overall wear time was calculated and stationary non-wear 78 

episodes of 60 minutes or greater wherein all three axes had a standard deviation of less than 13 mg 79 

were automatically removed from analysis [1]. Data nominally collected at 25 Hz and 100 Hz were 80 

resampled using linear interpolation to generate datasets with precisely 25 and 100 samples per 81 

second. A duplicate dataset from the 100 Hz recording was downsampled to 25 Hz for an additional 82 

comparison, as implemented in previous studies [13,14].  Vector magnitude of acceleration was 83 

calculated as the Euclidean norm of the three accelerometer axes with 1g subtracted to account for 84 

gravity and negative values truncated to zero. Vector magnitude was collected into 30-second epochs 85 

for analysis and overall 24-hour activity was calculated with data reported in milli gravitational units 86 

(mg) [1].  87 

Vector magnitude was also calculated for all diary-logged bouts of extended walking, cycling, sleeping, 88 

exercising, and eating. Time and duration of these activities were extracted from participant activity 89 

diaries. Beginning and ending times for diary labels were manually verified by inspecting and cross-90 

referencing raw accelerometer data. If no end time was given for eating activities, a conservative 91 

estimate of 15 minutes was designated per meal. Overall moderate-to-vigorous physical activity 92 

(MVPA) was additionally quantified, defined as time spent at an acceleration vector magnitude ≥ 100 93 

mg at the wrist and  ≥ 70 mg at the hip [16]. 94 

95 
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Activity Classification 96 

Machine learning methods for activity classification of wrist-worn accelerometer data were 97 

performed using a two-stage machine learning model of balanced random forests and hidden Markov 98 

models [17]. Activities were classified as time spent cycling, mixed activity, sit/stand, sleep, vehicle, 99 

and walking. The classification model used in the current study is an open-source model implemented 100 

within the Biobank Accelerometer Analysis Tool, having been previously developed and validated for 101 

activity classification of the UK Biobank physical activity cohort [17]. The model was trained by Willetts 102 

et al., [17] using data from Axivity AX3 accelerometer recording at 100 Hz (±8 g) on the dominant wrist, 103 

with concurrent ground truth images recorded every 20 seconds for a total of 160,000 minutes in 134 104 

participants. 105 

Statistical Analysis 106 

A minimum sample size of 30 participants was calculated to detect a conservative correlation 107 

coefficient estimate of 0.6 between sampling rate and body location measurements with 80% power 108 

and alpha set at 0.05. This minimum sample size allowed for 30% data loss for dropout, protocol non-109 

compliance, or poor data quality. Participants with less than 20 hours of wear were excluded from 110 

analysis. Summary and descriptive statistics were calculated for participant demographics, overall 111 

activity levels, and activity levels performed during self-reported activity designations. Two-sided 112 

Spearman’s rank correlation was calculated to compare activity levels, time in MVPA, and time in 113 

classified activities between accelerometer sampling rates and body locations. Mean difference and 114 

relative percentage difference in activity level between sampling rates was calculated with reference 115 

to 100Hz measurements. Bland-Altman plots were used to assess fixed or proportional bias and limits 116 

of agreement between sampling rates across the full range of participant activity levels. Mean 117 

participant activity was plotted in 1-hour increments over a 24-hour day to visualise differences in 118 

activity patterns recorded at either sampling rate. Linear regression was used to determine the 119 

association between sampling rates and to estimate a conversion factor between acceleration vector 120 
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magnitude and activity classification recorded at the two sampling rates, with 25 Hz measurements 121 

modelled as the predictor, 100 Hz measurements as the regression outcome. Leave-one-subject-out 122 

cross validation (n-1) was repeated n times across each dataset to assess linear model generalisability, 123 

with the corresponding root mean square error (RMSE) and R2 reported. Statistical analysis was 124 

performed in R (v.4.0.0) and RStudio (v1.2.5042). 125 

Results 126 

Participant Demographics 127 

Fifty-four healthy adults (33 female, 21 male) with a mean age of 43.4 years (SD 17.6; range 19.5 - 81.2 128 

years) participated in free-living physical activity analysis (Table 1). Acceleration measurement error 129 

following self-calibration was less than 2.6 mg across all recordings, with no instances of calibration 130 

failure or device malfunction. Median hip and wrist accelerometer wear time was 23.7 hours (IQR 0.6) 131 

and 24.0 hours (IQR 0.5), respectively. Three sets of wrist-worn and nine sets of hip-worn sensors were 132 

removed from analysis as they were worn for less than 20 hours. Participants self-reported an overall 133 

mean of 7.4 hours of sleep (SD 1.0), 46.8 minutes of eating (SD 37.8), 28.4 minutes of general exercise 134 

(SD 56.7), 58.2 minutes of extended walking (SD 64.0), and 34.1 minutes of cycling (SD 27.8) over the 135 

24-hour assessment period as calculated in participants who logged non-zero time in those activities.  136 

24-Hour Physical Activity Assessment 137 

Mean physical activity across all valid measurements according to time of day is presented in Figure 3 138 

and acceleration data for wrist and hip accelerometers are presented in Table 2. Strong correlation 139 

was observed between 25 Hz and 100 Hz recorded data in overall vector magnitude and time spent in 140 

MVPA at both the hip (r = 0.988) and the wrist (r = 0.960 to 0.971). At the hip, vector magnitude 141 

collected at 25 Hz resulted in consistently lower overall activity compared to the 100 Hz data, with an 142 

absolute mean difference in vector magnitude (95% CI) of 2.0 (1.6, 2.4) mg and 9.7 (7.9, 11.5) minutes 143 

of MVPA per 24 hours. This represents a -12.4% relative difference in vector acceleration magnitude 144 
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and -11.2% difference in MVPA time when 25 Hz measurements when compared to 100 Hz 145 

measurements at the hip. At the wrist, 25 Hz data collection also resulted in consistently lower overall 146 

activity compared to the 100 Hz data, with an absolute mean difference (95% CI) of  4.4 (3.8, 5.0) mg 147 

in vector magnitude and 25.9 (21.5, 30.3) minutes of MVPA, a -13.3% and -23.1% relative difference 148 

in 25 Hz measurements at the wrist, respectively. Bland-Altman plots exhibiting the difference 149 

between 25 Hz and 100 Hz 24-hour activity measurements are presented for hip and wrist 150 

measurements in Figure 4. 151 

At both measurement locations, effectively perfect correlation (r = 1.000) was observed for overall 152 

activity between the recorded 100 Hz and the downsampled measurements from the same sensor 153 

(Table S1). Comparison of sampling rate via the downsampling of 100 Hz data to 25 Hz in the same 154 

sensor resulted in less than 0.1% difference in overall activity and MVPA across both the hip and wrist 155 

(Table S1, Figure S1). 156 

Intensity of Self-Reported Activities 157 

Correlation between acceleration vector magnitude measured at 25 Hz and 100 Hz sampling rates was 158 

high during all self-reported non-sleeping activities at the wrist (r = 0.956 to 0.997) and hip (r = 0.977 159 

to 1.000). When recording at the hip, the 25 Hz sampling rate resulted in a mean relative difference in 160 

vector magnitude of -12.9% to -16.7% when compared to the 100 Hz sampling rate across all non-161 

sleeping activities. The greatest difference in 25 Hz and 100 Hz data at the wrist was observed during 162 

cycling activity, where the 25 Hz accelerometer recorded relative difference of -38.6% when compared 163 

to the 100 Hz recording. Other non-sleeping activities resulted in a -7.4% to -15.1% relative difference 164 

when recorded at 25 Hz at the wrist. Acceleration during sleep was predictably low, with lower 165 

correlation between sampling rates when compared to other activities (r = 0.476 to 0.899). The actual 166 

differences are small due to the very activity measured during sleep intervals.167 
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Machine Learning Activity Classification 168 

Results of the machine learning activity classification are presented in Table 3. Periods of walking, 169 

sleep, sit/stand activities, and mixed activities were identified in all participants, whereas periods of 170 

cycling and vehicle activities were identified in 13 and 41 participants, respectively. In all participants 171 

who had cycling or vehicle activities classified within the 100 Hz 24-hour recording, that activity was 172 

also identified within the 25 Hz data. Reduced sampling rate did not produce consistent trends in 173 

underreporting of activity across machine learning activity classification as was observed in the 174 

quantification of vector magnitude. Activity classification between 25 Hz and 100 Hz measured data 175 

was highly correlated (r = 0.855 to 0.967) in all activity categories. The reduced sampling rate resulted 176 

in classification of 12.4% (95% CI: 7.5%, 17.4%) more of walking time, 12.8% (95% CI: 6.7%, 18.9%) less 177 

time in mixed activities, and 19.2% (95% CI: 8.2%, 30.3%) less vehicle time per participant when 178 

compared to 100 Hz collected data in this machine learning model. Cycling, sleep, and sit/stand 179 

showed close agreement between sampling rates, with percent differences in time spent in these 180 

activities ranging between 0.2% to 4.6%. 181 

Converting data collected at lower sample rates to enable comparison with other studies  182 

Results from the linear regression and cross-validation relating sampling rates based on overall 24-183 

hour vector magnitude and activity classification models are presented in Table 4. At the hip and wrist, 184 

the linear model of sampling rate accounted for between 97% and 99% of the adjusted variability in 185 

the vector magnitude as described by R2. Cross-validation across 51 folds at the wrist and 45 folds at 186 

the hip resulted in RSME values of 6.5% and 4.7% of the mean wrist and hip vector magnitude, 187 

respectively. For each unit of increase in activity of 1 mg at the 25 Hz sampling rate, epoch-based 188 

vector magnitude at the 100 Hz sample rate increased by 1.158 mg (95% CI: 1.120, 1.195) in 189 

hip-mounted accelerometers and 1.038 mg (95% CI: 0.986, 1.090) in wrist-mounted accelerometers. 190 

Acceleration magnitude collected at 25 Hz with a wrist-mounted AX3 accelerometer, Acc25, can be 191 

adjusted for comparison to a more standard 100 Hz dataset. Acc100, (Box 1) using the relationship: 192 
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𝐴𝑐𝑐100 =  1.038(𝐴𝑐𝑐25) + 3.310. Transformations from 25 Hz to 100 Hz data were generated for 193 

mixed, sit/stand, vehicle, and walking activities. In wrist-based activity classification, 69.5% to 92.1% 194 

of the variability between sampling rates was accounted for in the models, with cross-validation RMSE 195 

representing 7.5% of the mean time in the sit/stand classification and up to 50.5% the mean time 196 

spent walking. Due to the small difference in classification of sleep and cycling, no transformation for 197 

these activities is recommended.  198 

 199 

Discussion 200 

Outcome measures based on acceleration magnitude, cutpoint thresholds, and activity classification 201 

are commonly used in clinical and population studies of physical activity [1,10,18]. To validate the use 202 

of reduced sampling rate during physical activity measurement, acceleration magnitude and activity 203 

classification was assessed across body location and self-reported activity types. Reduction in 204 

recorded sampling rate from 100 Hz to 25 Hz resulted in consistently lower measured overall activity 205 

at both hip and wrist body locations using a 30 second epoch mean vector magnitude. Conversely, no 206 

consistent pattern in under or overreporting of machine learned activity classification was identified 207 

between differing sampling rates. While both acceleration magnitude and activity classification are 208 

highly correlated between sampling rates, subtle, yet real differences in outcome measures were 209 

observed. Transformation of 25 Hz data can enable extended activity monitoring protocols while 210 

retaining comparability to data collected at 100 Hz. 211 

In the current study of healthy adults in the free-living environment, we found a repeatable difference 212 

in measured acceleration magnitude and MVPA in a side-by-side comparison of data collection at 25 213 

Hz and 100 Hz. When using a reduced sampling rate a 12% to 13% lower 24-hour activity and 11% to 214 

23% lower time in MVPA was observed, compared to 100 Hz data collection at the hip and wrist. 215 

Consistently lower acceleration magnitude was also observed in the 25 Hz recording across diary-216 

logged free-living activities. Similar to the current study, Brønd and Ardivsson [11] found ActiGraph 217 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.22.20217927doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.22.20217927
http://creativecommons.org/licenses/by/4.0/


 

12 
 

GT3x counts demonstrated small differences between sampling rates (30 Hz, 40 Hz, and 100 Hz) during 218 

walking, yet large differences between sampling rates during running, with up to 3000 counts per 219 

minute greater intensity recorded in the faster sampling rates. Two other prior investigations of 220 

accelerometer sampling rate relied on downsampling accelerometer data from a single sensor, with 221 

mixed results and frequently little difference between sampling rates when using raw acceleration-222 

based metrics[13,14]. In this study we conducted a secondary analysis by downsampling data initially 223 

collected at 100 Hz, which also resulted in no difference in acceleration magnitude and MVPA at a 224 

lower sampling rate, even while raw data collection at 25 Hz demonstrated a reduction in the activity 225 

intensity captured during acceleration analysis. Subsequently, basic downsampling of data from a 226 

single accelerometer is probably insufficient to determine the full effect of different sampling rates.  227 

When using machine learning models of activity classification, we found high correlation between 228 

different sampling rates across all classified activities. No repeatable pattern in under or over reporting 229 

was observed in the reduced sampling rate, however, higher walking time and lower vehicle travel 230 

time classified in the 25 Hz data. This finding is contrary to a study published by Zhang et al. [12] which 231 

reported no significant reduction in activity classification accuracy when comparing downsampled 232 

data to the original 80 Hz sequence. It is likely the use of downsampling versus a side-by-side 233 

comparison has contributed to the opposing findings. Compared to overall vector magnitude and the 234 

sit/stand classification, higher RMSE relative to mean values were observed in transformation model 235 

for classified time in mixed activity, vehicle, and walking. This may be the result of fewer participants 236 

and less time spent in these activities within the current dataset relative to low vector-magnitude 237 

sit/stand activities.  238 

Most recent physical activity studies include protocols where acceleration data is collected at a 239 

sampling frequency between 20 and 100 Hz [10,18,19]. It is important to note that reporting of 240 

sampling rate used in testing protocols remains a problem in the field of physical activity, with recent 241 

reviews finding that 16% to 73% studies failed to report the sampling rate used in their data collection 242 
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protocol [10,18].  In an assessment of benchmark datasets, Khan et al [20] have argued that typical 243 

accelerometer sampling rates in many human motion studies are up to 57% higher than necessary for 244 

adequate data analysis, with optimal sampling rates between 12 and 63Hz depending on body location 245 

and model of accelerometer. Migueles et al[18], however, argue that future data processing needs 246 

are unknown, and thus the highest possible sampling frequency should be used. The world’s largest 247 

objectively-measured physical activity database contains accelerometer data from 100 Hz data 248 

collection using the AX3 device [1]. Based on the results of the current study, if a reduced sampling 249 

rate of 25 Hz is selected in a measurement protocol, acceleration magnitude can be adjusted for 250 

comparison to a more standard 100 Hz dataset. 251 

 252 

Strengths and limitations 253 

A major strength of our study is that it includes a side-by-side comparison of standard and reduced 254 

accelerometer sampling rates at multiple body locations, without dependency on downsampling. This 255 

methodology includes the comprehensive use of vector magnitude, cut-point, and machine learning 256 

variables to facilitate direct comparison of data collected at 25 Hz with existing large physical activity 257 

cohorts that have collected data at 100 Hz. However, data was collected in a healthy convenience 258 

sample, and there may be unquantified effects of measurement in disease populations. While 259 

individual devices were randomised to body location (hip/wrist), a potential limitation is that the exact 260 

position of devices at each location was not randomised by design. For example, when sensors were 261 

placed side-by-side on participants’ wrists, it could be possible that the 100 Hz sensor was more 262 

frequently placed nearer to the wrist and thus experience slightly higher accelerations. However, we 263 

feel this alternative explanation is unlikely to account for the differences we and others have found 264 

[11]. Epoch-based comparisons can have sensitivity to exact epoch boundaries, as all individual sensor 265 

clocks drift slightly over time. Comparing two epochs between devices that report the same 266 

boundaries may be comparing two slightly different periods.  267 
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Conclusion 268 

Reducing accelerometer sampling rate from 100 Hz to 25 Hz can dramatically extend study monitoring 269 

periods while still providing valid data, after appropriate transformations. In order to facilitate 270 

comparisons between studies, researchers should consider and discuss the effect of sampling rate on 271 

data analysis, and fully report all accelerometer parameters in the study methodology. 272 

 273 
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Box 1: Example of converting data collected at 25 Hz so that it can be compared to data collected 347 

at 100 Hz 348 

A 68 year-old female participant has 7-day mean overall acceleration magnitude of 24.8 mg as 349 

recorded at 25 Hz on the dominant wrist with an AX3 accelerometer. Researchers wish to compare 350 

this individual to the baseline 65-74 year-old female in the UK Biobank database 26.6 (SD 7.1) mg, 351 

recorded at 100 Hz with an AX3 accelerometer[1]. Without sampling rate conversion, a 24.8 mg 352 

activity level is below average for her age group, and places this patient in the 40th percentile of 353 

activity in the 65-74 year-old female cohort. With 25 Hz to 100 Hz conversion following the wrist-based 354 

regression model, Acc100 = 1.038*Acc25 + 3.310, the participant’s comparable acceleration magnitude 355 

is 29.1 mg, placing her in the 64th percentile of the appropriate demographic cohort.  356 

 357 

Table 1: Participant demographics 358 

 359 

 Mean SD 

Age (years) 43.4 17.6 

   

Height (cm) 170.5 10.8 

Weight (kg) 70.5 13.3 

BMI (kg/m^2) 24.2 3.6 

   

Sex   

         Female 33 61% 

         Male 21 39% 

   

Handedness   

Left 8 15% 

Right 46 85% 
 360 

 361 

 362 
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Table 2: Accelerometer measured physical activity for both overall and diary-reported activities in a convenience sample of 51 adults over a single 24hr period. 363 

 

Overall Activity 
mg 

Time in MVPA* 
mins 

Cycling 
mg 

Eating 
mg 

Exercising 
mg 

Sleeping 
mg 

Walking 
mg 

Wrist n = 51 n = 51 n = 13 n = 44 n = 16 n = 51 n = 44 

25 Hz mean [SD] 28.7 [11.4] 86.2 [47.9] 73.4 [21.1] 26.9 [12.4] 301.7 [307.7] 3.2 [0.7] 126.2 [56.0] 

100 Hz mean [SD] 33.1 [12.0] 112.1 [53.7] 119.5 [46.5] 31.7 [13.8] 329.5 [326.3] 3.4 [0.8] 136.3 [58.8] 

25 Hz -100 Hz mean difference [SD] -4.4 [2.1] -25.9 [16.0] -46.1 [27.5] -4.8 [2.5] -27.8 [25.7] -0.2 [0.3] -10.1 [11.6] 

Spearman's correlation 0.97 0.96 0.96 0.96 1.00 0.90 0.96 

ICC 0.98 0.95 0.71 0.98 1.00 0.92 0.98 

Hip  n = 45 n = 45 n = 11 n = 40 n = 14 n = 45 n = 39 

25 Hz mean [SD] 14.1 [6.1] 72.0 [46.0] 51.7 [16.9] 9.2 [6.4] 97.5 [102.0] 2.5 [0.3] 102.2 [44.6] 

100 Hz mean  [SD] 16.1 [7.1] 81.7 [47.6]  60.2 [18.7] 10.8 [7.5] 117.2 [125.5] 2.6 [0.3] 117.3 [52.0] 

25 Hz -100 Hz mean difference [SD] -2.0 [1.2] -9.7 [6.1] -8.5 [3.0] -1.6 [1.3] -19.6 [24.5] -0.1 [0.3] -15.1  [8.2] 

Spearman's correlation 0.99 0.99 1.00 0.98 1.00 0.48 0.99 

ICC 0.98 0.99 0.99 0.98 0.98 0.57 0.99 

 364 

*MVPA reported in minutes calculated by 30s epochs with acceleration magnitude ≥ 100 mg at the wrist and ≥ 70 mg at the hip 365 

 366 

 367 

  368 
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Table 3: Machine learned activity classification for wrist accelerometers in a convenience sample of 51 adults over a single 24hr period. 369 

 370 

 

Cycling 
min 

Mixed Activity 
min 

Sit/Stand 
min 

Sleep 
min 

Vehicle 
min 

Walking 
min 

Participants with the identified activity n = 13 n = 51 n = 51 n = 51 n = 41 n = 51 
25 Hz classified mean time [SD] 27.0 [17.2] 143.0 [115.0] 568.4 [139.2] 475.0 [68.1] 64.4 [58.6] 192.4 [91.9] 
100 Hz classified mean time [SD] 28.3 [18.9] 164.0 [129.6] 553.3 [148.7] 475.9 [73.9] 79.7 [57.2] 171.1 [89.1] 
25-100 Hz mean difference in classified time [SD] -1.3 [4.0] -21.0 [36.4] 15.1 [40.4] -1.0 [30.8] -15.3 [28.6] 21.3 [31.0] 
Spearman's correlation 0.97 0.92 0.95 0.86 0.89 0.92 
ICC 0.98 0.96 0.96 0.91 0.88 0.94 

 371 

 372 

Table 4: Linear regression to convert accelerometer data collected at 25 Hz so that it can be compared to data collected at 100 Hz. R2 and RMSE values are reported from 373 

Leave-one-subject-out cross-validation. 374 

 Coefficient [SE] 95% CI p Intercept [SE] 95% CI R^2 RMSE 
Acceleration Magnitude (mg) 
25 Hz to 100 Hz       

 

    Wrist 1.038 [0.026] (0.986, 1.090) <0.001 3.310 [0.798] (1.706, 4.914) 0.967 2.155 

    Hip 1.158 [0.019] (1.120, 1.195) <0.001 -0.180 [0.283] (-0.751, 0.391) 0.988 0.757 

        
Activity Classification at Wrist (min) 
25 Hz to 100 Hz        

    Cycling Not necessary  

    Mixed Activity 1.085 [0.044] (0.997, 1.172) <0.001 8.905 [7.952] (-7.074, 24.88) 0.921 36.1 

    Sit/Stand 1.0282 [0.041] (0.945, 1.111) <0.001 -31.14 [24.15] (-79.67, 17.40) 0.921 41.5 

    Sleep Not necessary  

    Vehicle 0.858 [0.075] (0.707, 1.009) <0.001 24.47 [6.466] (11.40, 37.55) 0.695 32.7 

    Walking 0.913 [0.047] (0.820, 1.007) <0.001 -4.630 [9.911] (-24.55, 15.29) 0.877 31.0 

 375 

 376 

 377 
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 378 

Figure 1: Diagram of accelerometer placement with flow chart of participants with valid wear time at each body location. 379 

 380 

 381 

 382 
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 383 

Figure 2: Schematic of study design to inform conversion of accelerometer data collected at 25 Hz to enable comparison with studies collected at 100 Hz. 384 

 385 
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 386 

Figure 3: Plot of mean (95%CI) 24-hour activity in 1-hour epochs as measured by acceleration vector magnitude across a convenience sample of 51 participants at each of 387 

the four sensor location/rate combinations. 388 

 389 

 390 

 391 
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 393 

 394 

Figure 4: Bland-Altman plots comparing the mean acceleration vector magnitude and differences between the 25 Hz and 100 Hz sensors at the wrist and hip in a 395 

convenience sample of 51 adults. Dashed lines indicated mean bias and 95% limits of agreement. Negative bias on the y-axis indicates lower values in the 25 Hz sensor. 396 

 397 

 398 

 399 
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