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» Abstract

»s The reproduction number R and the growth rate r are critical epidemiological quantities.
s They are linked by generation intervals, the time between infection and onward transmission.
a7 Because generation intervals are difficult to observe, epidemiologists often substitute serial
s intervals, the time between symptom onset in successive links in a transmission chain. Recent
2 studies suggest that such substitution biases estimates of R based on r. Here we explore how
s these intervals vary over the course of an epidemic, and the implications for R estimation.
a1 Forward-looking serial intervals, measuring time forward from symptom onset of an infector,
22 correctly describe the renewal process of symptomatic cases and therefore reliably link R
;3 with r. In contrast, backward-looking intervals, which measure time backward, and intrinsic
s intervals, which neglect population-level dynamics, give incorrect R estimates. Forward-
5 looking intervals are affected both by epidemic dynamics and by censoring, changing in
3 complex ways over the course of an epidemic. We present a heuristic method for addressing
w biases that arise from neglecting changes in serial intervals. We apply the method to early (21
3¢ January — 8 February 2020) serial-interval-based estimates of R for the COVID-19 outbreak
s in China outside Hubei province; using improperly defined serial intervals in this context
w0 biases estimates of initial R by up to a factor of 2.6. This study demonstrates the importance
n of early contact-tracing efforts and provides a framework for reassessing generation intervals,
2 serial intervals, and R estimates for COVID-19.

» Significance Statement

s The generation- and serial-interval distributions are key, but different, quantities in outbreak
»s analyses. Recent theoretical studies suggest that the two distributions give different estimates
s of the reproduction number R as inferred from the observed exponential growth rate r.
s« Here, we show that estimating R based on r and the serial-interval distribution, when
ss defined from the correct reference time and cohort, gives the same estimate as using r and
s the generation-interval distribution. We apply our framework to serial-interval data from
so the COVID-19 outbreak in China, outside Hubei province (January 21-February 8, 2020),
s1 revealing systematic biases in prior inference methods. Our study provides the theoretical
s basis for practical changes to the principled use of serial interval distributions in estimating
53 R during epidemics.
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+« 1 Introduction

ss. The reproduction number R is one of the most important characteristics of an emerging
ss epidemic, such as the current pandemic of coronavirus disease 2019 (COVID-19) (Majumder
s7 [and Mandl, 2020)). The reproduction number is defined as the average number of secondary
ss cases caused by a primary case. The value in a fully susceptible population — the “basic”
so reproduction number Ry— allows us to predict the extent to which an infection will spread
s in the population, and the amount of intervention necessary to eliminate it in simple cases
s (Anderson and May, |1991). Since the reproduction number represents an average (Diekmann
2 (et al.l [1990; Anderson and May, 1991)), it fails to capture heterogeneity among individuals
&3 or across space. The reproduction number also fails to provide any information about the
s« time scale of disease transmission.

65 Estimating the reproduction number R is often challenging. Direct estimates based on
s Observed infections will typically be biased down when some infections cannot be observed.
o7 A common method of estimating R near the beginning of an epidemic is based on the
s population-level exponential growth rate r, which can often be estimated robustly from case
o reports (Mills et al. [2004; Ma et al.,2014). The growth rate r and the reproduction number
70 R are linked by the generation-interval distribution |Wallinga and Lipsitch! (2007)), where the
7 generation interval is defined as the time between when an individual (infector) is infected
22 and when that individual infects another person (infectee) (Svensson) 2007)).

73 Since generation intervals measure time between infection events, which can be difficult
72 to observe in practice, generation intervals are often replaced with serial intervals. The
7 serial interval is defined as the time between when an infector and an infectee develop
7 symptoms (Svensson, 2007)). While generation and serial intervals both measure the time
77 scale of disease transmission, they measure fundamentally different quantities. In particular,
7z previous studies have noted that, in many contexts, serial intervals are expected to have larger
79 variances than generation intervals but have the same mean in many contexts (Svensson,
so [2007; Klinkenberg and Nishiura, 2011; te Beest et al., [2013; (Champredon et al., 2018]). Serial
a1 intervals can in some cases even take negative values in the presence of presymptomatic
22 transmission (He et al., [2020]), whereas generation intervals must be positive.

83 Although these distributions were clearly and distinctly defined over a decade ago (Svens-
s+ [son, [2007), the need for a better conceptual and theoretical framework for understanding
s their differences is becoming clearer as the COVID-19 pandemic unfolds. Researchers con-
s tinue to base inferences about COVID-19 on both generation and serial intervals without
&7 clearly distinguishing between them (e.g., |Abbott et al. (2020); [Du et al. (2020); He et al.
s (2020)); Wu et al. (2020); Zhao et al| (2020)), and, in some cases, explicitly conflate the
so definitions of the two intervals (e.g., Anderson et al.| (2020)); Hellewell et al. (2020)). This
o confusion is apparent even in standard software for estimating R, such as EpiEstim, in which
o the serial-interval distribution is used to infer time-dependent R (Thompson et all [2019).
e These studies are examples of many—indeed, it is a common practice to use the serial and
o3 generation intervals interchangeably.

o4 One source of confusion arises from an apparent discrepancy between the generation-
os interval and serial-interval viewpoints. While the epidemic is growing exponentially, the


https://doi.org/10.1101/2020.06.04.20122713
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.06.04.20122713; this version posted October 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

o spread of infection can be characterized as a renewal process based on previous incidence
or of infection, the associated generation-interval distribution, and the average infectiousness
¢ of an infected individual. It is well established that this renewal formulation allows us to
o link the exponential growth rate of an epidemic r with its reproduction number R using the
w0 generation-interval distribution (Wallinga and Lipsitch| [2007)). However, the serial-interval
1w distribution also describes a renewal process — in this case, the creation of a new symp-
w2 tomatic case based on a symptomatic case in the previous generation. Since both renewal
103 processes, based on either generation- or serial-interval distributions, describe the same un-
s derlying exponentially growing system, both should provide the same correct link between
s the reproduction number R and the epidemic growth rate r.

106 In contexts where the serial- and generation-interval distributions differ, current theory
w7 has no explanation for how two different distributions could provide identical estimates of
ws R from r. In fact, recent theory suggest that using the serial-interval can underestimate
100 the reproduction number (Britton and Scalia Tombal 2019; |Ganyani et al., 2020). However,
o these studies rely on intrinsic distributions of incubation periods and generation intervals
m  that neglect the population-level dynamics of disease spread.

112 Here we show that, by correctly defining and calculating the “forward” serial-interval
us  distribution (i.e., a distribution of serial intervals from a cohort of infectors that developed
s symptoms at the same time) that connects symptom onset dates, we can resolve this discrep-
us ancy. These forward intervals are different from the “intrinsic” serial intervals that previous
s studies have relied on (Svensson, 2007; Klinkenberg and Nishiura) 2011} [te Beest et al., 2013}
u7 (Champredon et al., 2018; Britton and Scalia Tombaj, 2019). During an ongoing epidemic, all
s observed epidemiological delays (e.g., incubation period) between primary (e.g., infection)
1o and secondary (e.g., symptom onset) events are subject to backward biases: when the inci-
120 dence of primary events is increasing (or decreasing), we are more likely to observe shorter
1 (respectively longer) intervals. In particular, when we consider forward serial-interval distri-
122 butions, the incubation periods of the infectors are subject to backward biases because we
123 have to look backward in time from their symptom onset to infection. Therefore, the realized
124 incubation period distributions of the infector and the infectee can differ dynamically, even
125 if the intrinsic analogues of the same distributions are expected to be equivalent.

126 We develop a cohort-based framework for characterizing and comparing realized serial
127 intervals, as well as any other epidemiological delays, and show that the initial forward serial-
s interval distribution correctly estimates R from r. Conversely, using inaccurately defined
19 serial intervals or failing to account for changes in the observed serial-interval distributions
130 over the course of an epidemic can considerably bias estimates of R. For example, in our
i analysis of the COVID-19 serial intervals from China, outside Hubei province, we find that
12 the original R, estimates based on aggregated serial-interval data underestimated R, by
13 a factor of 2.0-2.6. We further lay out several principles to consider in using information
14 about serial intervals and other epidemiological time delays to correctly infer the initial
s reproduction number during the early stages of an outbreak.
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% 2  Methods

w 2.1 Intrinsic, forward, and backward delay distributions

s A time delay between two epidemiological events can involve either one infected individual
130 (e.g., incubation period: infection and symptom onset of an individual) or two — an infector
o and an infectee (e.g., generation and serial intervals). We define the delay as the time
1w difference between the primary event and the secondary event. In some cases, the primary
12 event always occurs before the secondary event (e.g., the time from infection to onset of
113 symptoms in a single individual, or the generation interval between two individuals). In
e other cases, the delay can sometimes be negative (e.g., the time from onset of infectiousness
115 to onset of symptoms in a single individual, or the serial interval between two individuals).
146 At the individual level, we can define the time distribution between a primary and a
w7 secondary event that we expect to observe for a single infected individual by averaging across
us individual characteristics — we refer to this distribution as the intrinsic distribution. For
1 example, the intrinsic incubation period distribution describes the expected time distribution
10 from infection to symptom onset of an infected individual. Likewise, the intrinsic generation-
151 interval distribution describes the expected time distribution of infectious contacts made by
12 an infected individual. However, the intrinsic time distributions are not always equivalent
1535 to the corresponding realized time distributions at the population level (i.e., the distribution
1ss of time between actual primary and secondary events that occur during an epidemic; see
15 Fig.[I)). For example, an infectious contact results in infection only if the contacted individual
156 18 susceptible (and has not already been infected) — this is one mechanism that causes
157 realized generation intervals (time between actual infection events) to differ from from the
158 intrinsic generation intervals (time between infection and infectious contacts) (Park et al.
150 2020)). In this example, the difference between intrinsic and realized time distributions can
1o be attributed to the fact that the fraction of susceptible individuals is itself dynamic.

161 At the population level, we model realized time delays between a primary and a secondary
12 event from a cohort perspective. A cohort consists of all individuals whose (primary or
163 secondary) event occurred at a given time. For example, when we are measuring incubation
14 periods, a primary cohort consists of all individuals who became infected at time p, while
165 a secondary cohort consists of all individuals whose symptom onset occurred at time s.
166 Similarly, when we are measuring serial intervals, a primary cohort consists of all infectors
17 who became symptomatic at time p. Then, for a primary cohort at time p, we can define
s the distribution of realized delays between primary and secondary events. We refer to this
1o distribution as the forward delay distribution and denote it as f,(7).

170 Likewise, we define the backward delay distribution b,(7) for a secondary cohort at time
i ¢ The backward delay distribution describes the time delays between a primary and sec-
12 ondary events given that the secondary event occurred at time s. For example, the backward
13 incubation period distribution at time s describes incubation periods for a cohort of individ-
s uals who became symptomatic at time s. Likewise, the backward serial-interval distribution
s at time s describes serial intervals for a cohort of infectees who became symptomatic at time

176 S.
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177 Both forward and backward perspectives must yield identical measurement (e.g., the
s length of the incubation period of a given individual is the same whether measured forward
1o from the time of infection or backward from the time of symptom onset). Consequently, no
1o matter how delays are distributed, if P and S represent the sizes of primary and secondary
11 cohorts then we can express the total density of intervals 7 between calendar time p and s
1.2 (i.e., 7 =5 — p) as follows:

W(p)P(p)fp(r) = S(s)bs(7) (1)

183 where W(p), the “weight” of the primary cohort, represents the average number of forward
18« intervals that an individual in cohort P(p) produces over the course of their infection. When
15 we measure within-individual delays, we expect W (p) < 1 because only a subset of indi-
18 viduals who experience the primary event (e.g., infection) will eventually experience the
g7 secondary event (e.g., symptom onset). For between-individual delays, we expect W (p) to
188 change throughout an epidemic, because individuals infected earlier in an epidemic will infect
189 more individuals on average than those infected later.

190 Substituting p = s — 7, it follows that

W<3 — T>P(8 — T)f877'<7-)

bs(T) =

11 If we are considering incubation periods, the left hand side of this equation is the probability
12 density that an individual who became symptomatic at time s had an incubation period
13 of length 7. From the right hand side, we see that this probability density depends on
s the weight parameter W (s — 7) (in this case, the proportion of symptomatic infection), the
105 time-varying primary cohort size at the earlier time P(s — 7) (in this case, the number of
106 individuals infected at time s — 7), and the forward delay distribution f,_,(7) (in this case,
107 the probability density that an incubation period that starts at time s — 7 ends at time s).
198 Several different mechanisms drive the changes in forward and backward delay distri-
109 butions over time. Typically, within-individual forward delay distributions are not directly
20 affected by epidemic dynamics. Some realized forward distributions, like incubation pe-
21 riod distributions, are equivalent to their intrinsic distributions and remain invariant at the
202 time scale of an outbreak. Other realized distributions, like the distribution of time from
203 symptom onset to testing, may change over the course of an epidemic due to changes in
200 public-health policies or individual behavior. Between-individual forward delay distribu-
205 tions, such as generation- or serial-interval distributions, depend on epidemic dynamics. For
26 example, forward generation intervals often become shorter as an epidemic progresses due to
207 the dynamical process of susceptible depletion, as well as due to other factors like behavioral
28 change or interventions (Kenah et al.,|2008; Nishiural 2010; Champredon and Dushoff, |2015):
200 if it is harder to infect later in the course of infection, then proportionally more intervals will
210 be short.

Eq. suggests that backward delay distributions change over time even if their corre-
sponding forward delay distribution does not change. Backward delay distributions depend
on changes in the primary cohort size over time due to conditionality of observations: Con-
ditioning on individuals whose secondary events have occurred at the same time means that
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we tend to observe shorter (or longer) inter-event delays when cohort size has been increasing
(decreasing) through time. When incidence is growing exponentially, we can calculate the
amount of bias exactly. Assuming that the forward delay distribution (f,(7) ~ fo(7)) and
the weight parameter (W (p) ~ W(0)) remain constant during the exponential growth phase,
we can substitute P(t) = P(0) exp(rt) in Eq. (2) to obtain:

bo(7) = [W(0)P(0)/S(0)] exp(=r7) fo(7) (3)

where r is the exponential growth rate. Since by is a probability distribution, [IW(0)P(0)/S(0)] " =

J=2 exp(—=r7’) fo(r') A7’ corresponds to the normalization constant. Therefore, the backward
delay distribution during the exponential growth phase depends only on the exponential
growth rate r and the initial forward delay distribution fj.

The mean backward interval will be always shorter than the mean forward interval as
long as r > 0. Even for different epidemics of the same disease, we expect to observe shorter
backward intervals within a fast-growing epidemic (high ), all else being equal. In general,
the backward delay distribution will differ from the forward delay distribution (unless the
disease is at equilibrium), even if we are measuring time delays that are intrinsic to the
life history of a disease (e.g., the incubation period). These ideas apply to all epidemiolog-
ical delay distributions and generalize the work by |Champredon and Dushoff] (2015) who
compared forward and backward generation-interval distributions to describe realized gener-
ation intervals from the perspective of an infector and an infectee, respectively, as well as the
work by Britton and Scalia Tomba, (2019)) who showed that Eq. holds for the backward
generation-interval distribution.

2.2 Realized serial-interval distributions

The serial interval is defined as the time between when an infector becomes symptomatic
and when their infectee becomes symptomatic (Svensson, 2007). Previous studies have often
expressed serial intervals 7, in the form (Fig. [T]A):

To = (Tg + Ti2) — Tt (4)

where 731 and T3 represent incubation periods of an infector and an infectee, respectively, and
T, Tepresents the generation interval between the infector and the infectee. These studies
concluded that the serial and generation intervals have the same mean when 7;; and 7
are drawn from the same distributions (Svensson|, 2007; |[Klinkenberg and Nishiura, 2011}
Champredon et al.| 2018; |Britton and Scalia Tomba, [2019). However, distributions of realized
incubation periods, 731 and 72 will be identical only if we assume that they are intrinsic to
individuals (and not dependent on epidemic dynamics at the population-level) — something
that is generally true of forward but not backward incubation-period distributions. We refer
to the definition Eq. () as the intrinsic serial interval (Fig. [TJA).

To correctly link the realized serial-interval distribution to the renewal process between
cases based on symptom onset dates, we must use the forward serial interval (i.e., use the
perspective of a cohort of infectors that share the same symptom onset time). Given that
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A. Intrinsic serial interval
Intrinsic serial interval, 7, = (7, + 7i2) — 71

Intrinsic incubation period, 72

Intrinsic generation interval, 7,

Intrinsic incubation period, 731
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Figure 1: Illustration of intrinsic, forward and backward serial intervals. (A)
The intrinsic serial interval for a cohort of individuals infected at time p. In this case, 73
is drawn from the intrinsic incubation period distribution; 7, is drawn from the intrinsic
generation-interval distribution; and 735 is drawn from the intrinsic incubation period distri-
bution. (B) The forward serial interval for a cohort of infectors who became symptomatic
at time p. In this case, 75; is drawn from the backward incubation period distribution; 7, is
drawn from the forward generation-interval distribution; and 7;5 is drawn from the forward
incubation period distribution. (C) The backward serial interval for a cohort of infectees
who became symptomatic at time s. In this case, 71 is drawn from the forward incubation
period distribution; 7, is drawn from the backward generation-interval distribution; and 7,
is drawn from the backward incubation period distribution. Intrinsic intervals (black) reflect
average of individual characteristics and are not dependent on population-level dynamics.
Forward intervals (green) can change due to epidemiological dynamics (e.g., contraction of
generation intervals through susceptible depletion). Backward intervals (blue) can change
due to changes in cohort sizes even when forward intervals remain time-invariant.
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22 an infector became symptomatic at time p, to calculate the forward serial interval we first
23 g0 backward in time to when the infector was infected, and then forward in time to when
24 the infectee was infected, and then forward again to when the infectee became symptomatic.
s In Fig. 1B, we see that 7y is drawn from the backward incubation period distribution of
26 the cohort of infectors who became symptomatic at time p; 7, is drawn from the forward
a7 generation-interval distribution of the cohort of infectors who became infected at time p —7iq;
us  and 79 is drawn from the forward incubation period distribution of the cohort of infectees who
20 became infected at time p — 74y 4+ 7,. Likewise, we can define the backward serial-interval
0 distribution for a cohort of infectees who became symptomatic at time s(Fig. [[C). This
251 conceptual framework demonstrates that the distributions of 71, 74, and 72 (and therefore
22 the distributions of realized serial intervals) depend on the reference cohort, which is defined
253 by temporal direction (forward or backward) and a particular reference time.

254 To calculate realized serial-interval distributions, we begin by modeling 7 (p, s): the total
25 density of serial intervals that start (when infectors develop symptoms) at time p and end
»6  (when infectees develop symptoms) at time s. For simplicity, we assume that all infected
7 individuals eventually develop symptoms. Then, the density of serial intervals between time
s p and s, given that the infectors became infected at time o < p and the infectees became
0 infected at time ay < s, depends on the amount of infection that occurs between time «; and
20 p as well as the density of forward incubation periods between «; and p (realized incubation
21 periods of infectors) and between ay and s(realized incubation periods of infectees):

T(p, s|lat,as) = Re(ar) X i(ay) X ho(p—ag,as —ay) X Lo,(s — ag) (5)
S—— S~~~ ~~ d N ~~
Cgse ” incidence joint density of marginal density of
reproduction . of forward incubation forward incubation
number infection periods p—aj and forward periods s—aa
generation intervals ag —a1 (of infectees)

(of infectors)

22 where the case reproduction number R.(c;) is defined as the average number of secondary
%3 cases that a primary case infected at time oy will generate over the course of their infection
2 (Fraser, 2007). We describe the forward incubation periods and the forward generation
%5 intervals using a joint probability distribution because onset of symptoms and transmission
x6 potential jointly depend on the life history of a disease; for example, if an infected individual
7 can only transmit the disease after symptom onset, the forward generation interval will
xs necessarily be longer than the forward incubation period.

269 The total density of serial intervals between time p and s can now be obtained by inte-
a0 grating over all possible infection times for the infector and the infectee:

D s
T(p,s) = / T(p, sln, az) daz da. ©)

on Then, the forward serial-interval distribution f,(7) is given by the density of intervals of
o2 length 7 starting at time p, relative to the total number of serial intervals starting at time
273 Pt

T(p:p+71)

= Tpp+7)dr”

fp(7—> = (7>
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2e  Likewise, the backward serial-interval distribution bs(7) is given by the density of intervals
s of length 7 ending at s, relative to the total number of serial intervals ending at s:

B T(s—1,8)
n [ T(s—7,s)dr"”

276 The denominator of the forward serial-interval distribution (Eq. (7)) then corresponds
o7 to the total number of infections generated by primary cases who themselves developed
s symptoms at time p. Dividing this quantity by the number of individuals who developed
29 symptoms at time p, j(p) = ffooo T (p—7',p)dr’, we obtain the serial reproduction number:

S Tp+r)dr
B 3(p) ®)

20 which we define as the average number of infections generated by an individual who developed
21 symptoms at time p. Combining the forward serial-interval distribution with the serial
22 reproduction number completes the renewal process between symptomatic cases:

i) = / T Rult = )j(t— ) iy () (10)

23 This framework allows us to understand changes in the realized serial intervals for any epi-
s demic model and properly link serial-interval distributions with the renewal process. In
s addition, assuming that the reproduction number as well as the forward serial-interval dis-
25 tribution remain constant during the exponential growth phase, we can substitute j(t) ~
27 j(0)exp(rt), Rs(t) = Rs(0), and fi;—-(7) = fo(T) to obtain:

1 / o
—_— = exp(—r7) fo(7)dr. (11)
RS(O) —00

23 Therefore, the initial forward serial-interval distribution, fo(7), provides the correct link
20 between the exponential growth rate r and the initial serial reproduction number R(0).
20 We re-visit this idea later in Section 2.4 and show that the initial forward serial-interval
201 distribution provides the same r—R link as the intrinsic generation-interval distribution.

bs(7) (8)

Rs(p)

» 2.3 Epidemic model

We illustrate changes in forward and backward serial intervals over the course of an epi-
demic by applying our framework to a specific example of an epidemic model. We model
disease spread with a renewal-equation model (Heesterbeek and Dietz, [1996; Diekmann and
Heesterbeek, |2000; Roberts, 2004} |Aldis and Roberts, [2005; Roberts and Heesterbeek, 2007;
Champredon et al., [2018]). Ignoring births and deaths, changes in the proportion of suscep-
tible individuals S(t) and incidence of infection i(t) can be described as:

ds ,
E = —Z<t)

i(t) = R(t) /000 i(t —1)g(7)dr, (12)

10
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203 where R (%) is the instantaneous reproduction number (i.e., the average number of secondary
2 cases that a primary case infected at time ¢ will generate if conditions at time ¢ remain
25 unchanged (Fraser} [2007))), and ¢(7) is the intrinsic generation-interval distribution (i.e., the
26 forward generation-interval distribution of a primary case in a population where changes in
201 R(t) is negligible (Champredon and Dushoff, 2015)). This model assumes that g(7) remains
208 constant through time — in other words, that epidemic dynamics are driven by changes in
200 transmission rate. This assumption may not be well suited to individual-based intervention
30 such as case isolation (Fraser, 2007); nonetheless, this form has been widely used in the
s literature and has been successfully applied in modeling the current COVID-19 pandemic
52 (Gostic et al., [2020).

303 Here, changes in reproduction number can be modeled as a product of the basic repro-
3¢ duction number Ry, proportion susceptible S(¢), and a time-dependent factor M(t) (for
25 example, accounting for nonpharmaceutical interventions and behavioral changes): R(t) =
w5 RoS(t)M(t); Flaxman et al| (2020) used a similar framework to evaluate the impact of
57 nonpharmaceutical interventions on the spread of COVID-19 in 11 countries. Then, the

ws  forward generation-interval for a cohort of individuals that were infected at time p follows
30 (Champredon and Dushoft, [2015):

9(7)5(p+ T)M(p+7)
Slp+1)M(p+7)dr’

gp(7) = (13)
Jo g

s which allows us to separate the joint probability distribution A, of the forward incubation

su period and the forward generation-interval distribution as a product of the proportion of

sz susceptible individuals S and the joint probability distribution h of the forward incubation

a1z period and the intrinsic generation intervals:

h( T)S(p+7)M(p+7)
fo fo ™)S(p+ 7 )M(p+7')dr da’

hp(z,7) = (14)

We further assume that the forward incubation period distribution does not vary across
cohorts over the course of an epidemic, as it represents the life history of a disease; we
denote it as ¢. Then, we have:

g(r) = /O b, o) da (15)

s Finally, the case reproduction for this model is defined as follows:
Re(t) = Ro / 9(r)S(t +7)M(p + 1) dr. (16)
0

a5 The forward and backward serial-interval distributions are then calculated by substituting
a6 these quantities into Eq. and Eq. . We use this framework to illustrate how the realized

11
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siz - epidemiological time distributions vary over the course of an epidemic and depend on the
ug  perspective (i.e., forward vs. backward).

310 For simplicity, we let M = 1 and assume that epidemic dynamics depend only on sus-
20 ceptible depletion in our simulations. Since we are interested in the initial epidemic growth
a1 phase (i.e., linking r to R), we expect R(t) to remain roughly constant during this period. In
2 addition, qualitative effects of M that reduces R(t) monotonically over time will be similar
23 to the impact of susceptible depletion under this modeling framework. Therefore, general
324 conclusions we draw from our analysis is expected to be robust—however, detailed shape of
»s  the epidemic curve and changes in generation- and serial-intervals can still depend on the
226 shape of M.

2w 2.4 Linking r and R

s During the initial phase of an epidemic, the proportion susceptible remains approximately
20 constant (S(t) ~ S(0)) and incidence of infection grows exponentially: i(t) ~ iyexp(rt).
;0 During this period, the intrinsic generation-interval distribution provides the correct link
s between the exponential growth rate r and the initial reproduction number R = RS(0)
3 based on the Euler-Lotka equation (Wallinga and Lipsitch, 2007). Here, we focus on the
s estimates of the basic reproduction number Rg (the value of R in a fully susceptible popu-
s lation, S(t) =~ 1):
1 oo

1 / exp(—rr)g(r) dr. (17)

Ro 0
135 Analogous to the intrinsic generation-interval distribution, forward serial-interval distribu-
136 tions describe the renewal process between symptomatic cases. Therefore, we expect the
;37 forward serial-interval distribution during the exponential growth phase — which we refer to
18 as the initial forward serial-interval distribution fy — to estimate the same value of R, for
19 a given r as the intrinsic generation-interval distribution (note, however, that the forward
a0 serial interval is not necessarily positive):

! /_ " exp(—rr) fo(r)dr (18)

Ro oo
s Here, the initial forward serial-interval distribution is given by:
1 0 T
fo(r) = a/ / exp(raj)h(—ay, as — a)l(T — ag) das day, (19)
—o0 Jaq

a2 where the normalization constant ¢ is determined by the requirement that ffooo fo(r) dr = 1.
s3 We provide a mathematical proof of this relationship in Supplementary Materials. Since we
s do not make any assumptions about the shape of the joint distribution h between incubation
us periods and the generation intervals, Eq. holds in general whether or not there is a
us presymptomatic transmission period.

347 We further compare this with the estimate of Ry based on the intrinsic serial-interval
ug  distribution ¢(7):

L _ /_ " exp(—rr)g(r)dr. (20)

7?’intrinsic o0

12
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19 The intrinsic serial-interval distribution ¢(7) does not depend on epidemic dynamics, and is
0 given by:

0 T
()= o [ [ b o -0 — ) dasdo, (21)

351 where the normalization constant ¢, is determined by the requirement that ffooo q(t) dr = 1.
2 Rather than numerically integrating over closed forms of ¢, fy, and ¢ to estimate Rg, we use
353 simulation-based approaches for simplicity (Supplementary Materials).

354 The initial forward serial-interval distribution depends on the exponential growth rate
15 1. For a fast-growing epidemic (high r), we expect the backward incubation periods to be
356 short (Eq. ), meaning that presymptomatic transmission is less likely to occur. Therefore,
57 the initial forward serial-interval distribution will generally have a larger mean than the in-
s trinsic generation- and serial-interval distributions. However, the exact shape of the initial
9 forward serial-interval distribution depends on the shape of the joint distribution. For ex-
w0 ample, the Susceptible-Exposed-Infected-Recovered model, under the additional assumption
s that the incubation and exposed periods are equivalent (i.e. that onset of symptoms and
32 infectiousness occur simultaneously), provides a special case. In this case, the forward serial-
3 and generation-intervals follow the same distributions during the exponential growth phase
;¢ because (i) infected individuals can only transmit after symptom onset and (ii) the time be-
s tween symptom onset and infection is independent of the incubation period of an infector (see
36 Supplementary Materials). Everywhere else in this paper, however, we do not assume that
s7 the incubation and exposed periods are equivalent. Instead, we allow for presymptomatic
s transmission in the model in order to reflect the transmission dynamics of COVID-19.

w 2.5 Model parameterization

s We have shown that the dynamics of the serial-interval distribution depend on the joint
sn distribution between incubation periods and generation intervals. Here, we use a bivariate
sz lognormal distribution to model the joint probability distribution A of intrinsic incubation
w3 periods and intrinsic generation intervals (in the renewal equation model, Eq. ) while
sa  allowing for the possibility that they might be correlated. Given that the viral load of SARS-
w5 CoV-2 peaks around the time of symptom onset (He et al., 2020)), we generally expect the
ss  generation intervals to be positively correlated with the incubation period: that is, individu-
sz als who develop symptoms later are more likely to transmit later. Marginal distributions of
srs  incubation periods and generation intervals are parameterized based on parameter estimates
wo for COVID-19 (Table 1). For simplicity, we consider four values for the correlation coeffi-
10 clents (on the log scale) of the bivariate lognormal distribution: p = 0,0.25,0.5,0.75. This
;1 parameterization allows for generation intervals to be shorter than the incubation period,
2 allowing for presymptomatic transmission.

13
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Parameter Values Source
Mean intrinsic incubation period | 5.5 days | [Lauer et al| (2020) |
SD intrinsic incubation period 2.4 days | |Lauer et al. (2020)
Mean intrinsic generation interval | 5.0 days | [Ferretti et al. (2020)
SD intrinsic generation interval 1.9 days | |[Ferretti et al.| (2020)

Table 1: Parameter values used for simulations. The intrinsic incubation period dis-
tribution is parameterized using a log-normal distribution with log mean p; = 1.62 and log
standard deviation o; = 0.42. The intrinsic generation-interval distribution is parameter-
ized using a log-normal distribution with log mean e = 1.54 and log standard deviation
og = 0.37. Log mean and log standard deviations represent the mean and standard de-
viations of the underlying normal distributions, which are later exponentiated. The joint
probability distribution is modeled using a bivariate log-normal distribution with correlations
(on the log scale) p = {0,0.25,0.5,0.75}. The intrinsic incubation period and generation-
interval distributions are chosen to match characteristic of COVID-19 to illustrate realistic
magnitudes of time-varying/perspective effects in the current pandemic.

3 Results

We use parameter estimates for COVID-19 to characterize the degree to which the realized
serial-interval distribution can change over the course of an epidemic and to evaluate how
different definitions of the serial-interval distribution can affect the Euler-Lotka estimates of
Ro. We further address how the observed serial intervals, measured through contact tracing,
are affected by right censoring during an ongoing epidemic and provide a heuristic method
for addressing biases that can arise from using serial-interval data to estimate Ry. Finally, we
analyze serial-interval data from the COVID-19 epidemic in China, outside Hubei province,
based on 468 transmission events reported between January 21-February 8, 2020, under our
framework.

3.1 Realized serial-interval distributions during the exponential
growth phase

Fig. |2 shows Euler-Lotka estimates of Ry based on different definitions of the serial interval.
When the initial forward serial-interval distribution fy(7) is used, estimates (from Eq. (18])
exactly match the (correct) generation-interval-based estimates (Eq. (L7))) for all values of
the correlation p between the intrinsic incubation period and the intrinsic generation inter-
val (Fig. [2A). When the intrinsic distributions are used, however, estimates based on the
serial interval (Eq. ) underestimate Ry: as r increases, Ri..imsc Saturates and eventually
decreases due to the increasing inferred importance of negative serial intervals (Fig. )
While the initial forward serial intervals during the exponential growth phase can also be
negative, their effects are appropriately balanced because faster epidemic growth leads to
longer serial intervals (and a corresponding lower proportion of negative intervals).

14
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Figure 2: Estimates of the reproduction number from the exponential growth
rate based on serial- and generation-interval distributions. (A). The initial forward
serial-interval distributions give the correct link between the exponential growth rate r and
the reproduction number Ry, for any correlation p between intrinsic incubation period and
intrinsic generation interval of the underlying bivariate log-normal distribution. (B) The
intrinsic serial-interval distributions give an incorrect link between r and Ry. (C) The mean
initial forward serial interval during the exponential growth phase increases with r. (D) The
squared coefficient of variation of the initial forward serial intervals during the exponential
growth phase decreases with r.

Comparing the shapes of the initial forward serial-interval distribution (Eq. ) and the
intrinsic generation-interval distribution allows us to better understand how different forward
distributions lead to identical estimates of Ry. In general, distributions with higher means
and less variability lead to higher R, for a given r (Wallinga and Lipsitch, [2007; Weitz and)
Dushoff, 2015; Park et al., 2019). When incidence is growing exponentially, forward serial
intervals have higher means (Fig. [2[C) and squared coefficients of variation (Fig.[2D) than the
intrinsic generation-interval distribution. The effects of higher means (which increase Ry)
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a2 exactly cancel those of higher variability (which decrease Ry). On the other hand, intrinsic
a3 serial intervals (Eq. (21))) have the same mean (equal to the mean initial forward serial at
aa 7 = 01n Fig. ) as the intrinsic generation intervals but are more variable (also see squared
s coefficient of variation of the initial forward serial-interval distribution at r = 0 in Fig. [2D);
s therefore, we underestimate Ry when we use the intrinsic serial-interval distribution.

a7 3.2 Realized serial-interval distributions during an ongoing epi-
418 demic

a9 The initial forward serial-interval distribution captures the exponential growth phase of an
w20 epidemic. We now explore how forward and backward serial intervals can vary over the course
a1 of an epidemic using deterministic and stochastic simulations based on the renewal equations
22 (see Supplementary Materials) using parameters in Table 1; we further assume Ry = 2.5
w23 to reflect the transmission dynamics of COVID-19 in China (Park et al., |2020). While
a0 the forward serial-interval distribution is our primary focus, understanding the differences
s between the forward and the backward distributions is important because the observed
w6 intervals during an ongoing epidemic are often the backward ones: we typically identify
w27 infected individuals and ask when and by whom they were infected. Similarly, when we are
»s  estimating the incubation period of an individual, we typically observe their symptom onset
no date and try to estimate when they were infected (e.g., Backer et al.| (2020)).

430 Fig.|3[shows the epidemiological dynamics (A) together with the mean forward (B-D) and
s the mean backward (E-G) delay distributions of a deterministic model based on the renewal
2 equation (Eq. ) and of the corresponding stochastic realizations based on individual-
a3 based simulations. The mean forward incubation period remains constant throughout an
24 epidemic by assumption (Fig. ) The mean forward generation interval decreases slightly
a5 when incidence is high, which is when the susceptible population declines rapidly (Fig. ;
16 [Kenah et al. (2008); Champredon and Dushoff (2015)). In contrast, the mean forward serial
wr interval decreases over time (Fig. BD).

438 The forward serial-interval distributions depend on distributions of three intervals (Fig. [I[B):
a0 (i) the backward incubation period, (ii) the forward generation interval, and (iii) the for-
s ward incubation period. In these simulations, both forward incubation period (Fig. [3B) and
a  generation-interval (Fig. [BC) distributions remain roughly constant; therefore, changes in
w2 the forward serial-interval distributions (Fig. BD) are predominantly driven by changes in
w3 the backward incubation period distribution, whose mean increases over time as the growth
aa rate of disease incidence slows and then reverses. In general, relative contributions of the
ws  three distributions depend on their shapes, correlations between intrinsic incubation periods
us and generation intervals, and overall epidemiological dynamics.

aa7 We see similar qualitative patterns in all three backward delays (Fig. fG; Eq. ),
ws  because they are predominantly driven by the rate of change in incidence, which in turn
uo  affects relative cohort sizes. When incidence is increasing, individuals are more likely to have
so been infected recently, and therefore we are more likely to observe shorter intervals (Eq. (3)).
»s1 Similarly, when incidence decreases, we are more likely to observe longer intervals. Neglecting
2 these changes will bias the inference of intrinsic distributions from observed distributions.
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Figure 3: Epidemiological dynamics and changes in mean forward and backward
delay distributions. (A) Daily incidence over time. (B-D) Changes in the mean forward
incubation period, generation interval, and serial interval. (E-G) Changes in the mean
backward incubation period, generation interval, and serial interval. Black (A) and colored
(B-G) lines represent the results of a deterministic simulation. Gray lines (A) represent
the results of 10 stochastic simulations. Colored points (B-G) represent the average of 10
stochastic simulations. Dashed lines represent the mean initial forward delay. Forward
and backward delays are colored according to Fig. [Il In order to remove possible transient
dynamics (e.g., left-censoring of time delays and initial stochasticity due to low number of
infections), we set ¢ = 0 to the first time point when daily incidence is greater than 100.
Intrinsic incubation periods and intrinsic generation intervals are assumed to be independent
of each other for simplicity. See Supplementary Materials for simulations with correlated
incubation periods and generation intervals. See Table 1 for parameter values.
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3.3 Observed serial-interval distributions

A. Observed serial intervals from line list B. Observed mean serial interval and
basic reproduction number
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Figure 4: Estimating the reproduction number from the observed serial intervals.
(A) Schematic representation of line list data collected during an epidemic. (B) Estimates
of Ry based on all observed serial intervals completed by a given time. (C) Schematic
representation of line list data rearranged by symptom onset date of infectors. (D) Estimates
of Rg based on all observed serial intervals started by a given time. Black dashed lines
represent the mean initial forward serial interval and Ry. Black solid lines represent the
mean intrinsic serial interval and R,,..i... Colored solid lines represent the mean estimates
of Ry across 10 stochastic simulations. Colored ribbons represent the range of estimates of
Ro across 10 stochastic simulations.

Now, we turn to practical issues of estimating the reproduction number from the observed
serial-interval data during on ongoing epidemic. In order to have an unbiased estimate of the
basic reproduction number, we need to estimate the initial forward serial-interval distribution
— i.e., serial intervals based on cohorts of infectors who share the same symptom onset time,
at the early stage of the epidemic. However, researchers typically use all available information
to estimate epidemiological parameters (e.g., aggregating all serial intervals observed until
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w0 certain time of an epidemic). For example, [Thompson et al. (2019) recently suggested that
w1 up-to-date serial-interval data are necessary to accurately estimate the reproduction number.
w2 We explore the consequences of neglecting changes in the realized serial-interval distribution
w3 on estimates of the basic reproduction number.

264 When an epidemic is ongoing, the observed serial intervals are subject to right-censoring
w5 because we cannot observe a serial interval if either an infector or an infectee has not yet
s developed symptoms. For example, if we were to measure serial intervals on Day 8 as in
w7 Fig. , we will only be able to observe the first 6 events (ID 1-6). Fig. 4B demonstrates how
ws  the effect of right-censoring in the observed serial intervals translates to the underestimation
w0 of the basic reproduction number Ry in our stochastic simulations (assuming Ry = 2.5
w0 as in Fig. . Notably, even if we could observe and aggregate all serial intervals across all
an  transmission pairs after the epidemic has ended, we would still underestimate the initial mean
a2 forward serial interval (and therefore Ry), likely by a large amount. The observed serial-
a3 interval distribution converges to the intrinsic serial-interval distribution as the incubation
s periods and generation intervals will no longer be subject to backward biases. In fact,
a5 we would even underestimate the intrinsic value slightly due to contraction of the forward
we  generation-interval distribution during the susceptible depletion phase (Fig. ) Therefore,
ar aggregated distributions of serial intervals that have been collected throughout different
as periods of an epidemic must be interpreted with care.

479 Here, we provide a heuristic way of assessing potential biases in the estimate of the
a0 mean initial forward serial interval and therefore R retrospectively. We can rearrange the
w1 line list and group observed serial intervals based on the symptom onset date of infectors
w2 (Fig. [IC)—as we showed earlier, serial intervals that share the same symptom onset date of
w3 a primary case give us the forward serial-interval distribution. Then, we can compare how
¢ the shape of the serial-interval distribution (particularly its mean) as well as the estimate
w5 of Ry change as we incorporate more recent cohorts into the analysis: that is, we analyze
a5 observed serial intervals from infectors who became symptomatic before time ¢ and evaluate
w7 how the estimates change as we increase t. This approach is analogous to averaging over a
s set of forward intervals, just as using all information up to a certain time is analogous to
0 averaging over a set of backward intervals (Fig. ); the major difference is that we we focus
w0 on serial intervals that begin in a certain period, rather than those that end in a certain
w1 period. During the exponential growth phase, the estimates of the mean serial interval and
w2 Ry are consistent with the true value (see ‘initial forward’ in Fig. 4B,D); adding more data
203 allows us to make more precise inference during this period. However, the cohort-averaged
ws  estimates decrease rapidly soon after the exponential growth period, reflecting changes in the
w5 forward serial-interval distributions. This approach allows us to detect dynamical changes
w6 1n the forward serial-interval distributions and their effect on the estimates of Ry.

o 3.4 Applications to the COVID-19 pandemic

ws  Finally, we re-analyze serial intervals of COVID-19 collected by Du et al.| (2020]) from main-
w0 land China, outside Hubei province, based on 468 transmission events reported between
s0 January 21-February 8, 2020. Du et al.| (2020]) estimated the mean serial interval of 3.96
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Figure 5: Observed serial intervals of COVID-19 and cohort-averaged estimates
of R. (A) Symptom onset dates of all individuals within 468 transmission pairs included
in the contact tracing data. (B-C) forward and backward serial intervals over time. Serial
interval data have been grouped based on the symptom onset dates of primary (B) and
secondary (C) cases. Points represent the means. Vertical error bars represent the 95% equi-
tailed quantiles. Solid lines represent the estimated locally estimated scatterplot smoothing
(LOESS) fits. The dashed line represents the maximum and minimum observable delays
across the range of reported symptom onset dates. (D) Cohort-averaged estimates of Rg
assuming doubling period of 6 and 8 days (Li et al., 2020; |Wu et al.,|2020). Ribbons represent
the associated 95% bootstrap confidence intervals. The data were taken from Supplementary
Materials of Du et al| (2020).

s days (95% CI 3.53-4.39 days) and Rg of 1.32 (95% CI 1.16-1.48). Fig. A shows the distri-
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s2 bution of symptom onset dates of all individuals within 468 transmission pairs (consisting a
s3 total of 752 unique individuals), resembling a COVID-19 epidemic curve in China (cf. Fig. 1
s« in |[Pan et al.| (2020)). In order to quantify changes in serial intervals, we group them by the
ss symptom onset dates of the primary (Fig.[5B) and secondary (Fig.[F|C) cases—corresponding
so6 to forward and backward serial-interval distributions, respectively—and compute their mean
sor and 95% quantiles. Fig. [5B shows that the mean forward serial interval decreases over time.
ss While the decrease is likely to be affected by the right-censoring (indicated by the close-
so0 ness between the quantiles of the observed serial intervals and maximum observable serial
s.0 intervals), the increase in the proportion of negative serial intervals indicates changes in the
su forward serial-interval distribution; this proportion is unlikely to be affected by left-censoring
sz (based on the gap between the quantiles of the observed serial intervals and minimum ob-
si3 servable serial intervals). The decrease in the mean forward serial interval was probably
s driven by interventions against spread. Interventions during this time period both decreased
sis (and then reversed) the growth rate of COVID-19 cases — thus increasing the backward
s16 incubation period — and also reduced generation intervals, by preventing infections once
si7 - cases were identified. Both of these would have acted to reduce the forward serial interval.
sis Fig. shows that the mean backward serial interval increased over time, also likely driven
si0  directly by the decrease in COVID-19 infections.

520 While the qualitative changes in the mean forward and backward serial interval are con-
sz sistent with our earlier simulations (Fig. [3)), the initial mean forward serial interval (Fig. pB)
s22  appears to be larger than what we calculated based on previously estimated incubation
23 period and generation-interval distributions (Fig. ) This difference may imply that the
2« incubation period and generation interval (Table 1) were underestimated, as neither study
ss5 - explicitly accounted for the fact that the observed intervals were drawn from the backward
s26  distributions and were likely to have been censored.

527 Fig. shows the cohort-averaged estimates of Ry, which remain roughly constant until
s2s day January 17th and suddenly decreases; this sudden decrease is due to changes in the
s20 forward serial intervals consistent with the dynamics seen in our simulations (Fig. |4). The
s cohort-averaged estimates of Ry based on the early forward serial intervals are also consistent
sn  with previous estimates of Rg of the COVID-19 epidemic in China (Majumder and Mandl,
s2 2020; Park et al,[2020): Ry = 2.6 (95% CI: 2.2-3.1) and Ry = 3.4 (95% CI: 2.7 — 4.3) based
53 on a doubling period of 8 or 6 days, respectively, using serial-interval data from infectors
s who developed symptoms by January 17th. These early cohort-averaged estimates of R
s35 are unlikely to be affected by the right-censoring as we expect the degree of right-censoring
s to be low (Fig. [pJA). Therefore, the original Ry estimate of 1.32 (95% CI 1.16--1.48), which
s neglects the changes in the forward serial-interval distribution, underestimates R, by a factor
s of 2.0-2.6. This example demonstrates the danger of using the observed serial intervals to
s3 calculate the reproduction number without organizing serial intervals into cohorts.
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«w 4 Discussion

s Generation and serial intervals determine the time scale of disease transmission, and are
se2 therefore critical to dynamical modeling of infectious outbreaks. We have shown that the
se3 initial forward serial-interval distribution — measured from the cohort of infectors who
saa - developed symptoms during the exponential growth phase of an epidemic — provides the
ss5  correct link between the exponential growth rate » and the initial reproduction number R.
ss6  In general, the forward serial-interval distributions will not match the intrinsic serial-interval
s distribution (which has the same mean as the intrinsic generation-interval distribution) be-
ses cause the incubation period of the infectors (conditional on their symptom onset date of
s the infector) will be subject to backward biases. In particular, the mean forward serial in-
ss0  terval can decrease over time for COVID-19 as individuals who develop symptoms later in
ss1 an epidemic are more likely to have longer incubation periods, and therefore have greater
552 opportunity to transmit presymptomatically. Failing to account for these effects can result
53 in underestimation of initial R.

554 Recently, Al et al.|(2020)) also showed that forward serial intervals of COVID-19 decreased
55 through time in China. They grouped serial intervals by the symptom onset date of infectors
ss6  across 14-day periods and found that the mean forward serial interval decreased from 7.8
ss7 days to 2.6 days. While they attributed the decrease in serial intervals to reduction of the
s isolation delay, their regression analysis showed that isolation delays explain only 51.5% of
ss0 the variation in serial intervals (they could explain up to 72% of the variance by including
seo other intervention measures). Our framework provides an explanation for the remaining
ss1  variation: changes in the backward incubation period during the decreasing phase of an
sz epidemic act to further shorten serial intervals due to increased amount of presymptomatic
s transmission (even in the absence of nonpharmaceutical interventions). Isolation delays and
se«  Other intervention measures affect the amount of onward transmission, and therefore the
ss distribution of realized (forward) generation intervals. They therefore are not expected to
se6  explain all the variation in forward serial intervals, since these additionally depend on both
ss7 the backward incubation period of the infector and the forward incubation period of the
s infectee (Fig. [IB).

569 Our results support the use of serial-interval distributions for calculating the R during
s the exponential growth phase, but they also reveal gaps in current practices in incorpo-
s rating serial-interval distributions into outbreak analyses. For example, [Thompson et al.
sz (2019) recently emphasized the importance of using up-to-date serial-interval data for ac-
s;3  curate estimation of time-varying reproduction numbers. However, our results show that if
st observational biases in the forward serial interval through time are not accounted for, using
sis up-to-date serial-interval data can actually exacerbate the underestimation of R in the ini-
st tial growth phase of an outbreak. Future studies should explore how neglecting changes in
stz the forward serial-interval distribution can affect the estimates of R beyond the exponen-
sis  tial growth phase, and potentially re-assess existing estimates of R. We also suggest that
s modelers should aim to characterize spatiotemporal variation in forward serial-interval dis-
ss0 tributions. These modeling approaches should be coupled with epidemiological investigation
ss1 through contact tracing. Going forward, an additional advantage of early, intensive contact
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se2  tracing of emerging diseases is that it provides the best information to characterize the initial
ss3  forward serial-interval distribution.

584 Our study underlines the fact that the serial-interval distribution depends not only on
sss the generation-interval and incubation-period distributions, but also on the correlation be-
sss  tween their duration in a given individual. Here, we use a bivariate lognormal distribution
ss7  to capture these correlations phenomenologically and to show that realized serial intervals
sss  can decrease over time in the context of COVID-19. Although their true correlation will
ss0 depend on viral load dynamics, we expect our conclusions about decreasing serial intervals
so0 of COVID-19 to be robust, as individuals with longer incubation periods will generally have
so1 & longer time window to transmit before symptom onset. In general, the impact of increasing
s2  backward incubation periods on the forward serial intervals are likely to be disease-specific—
s03 for example, we show in Supplementary Materials that the initial forward serial-interval dis-
s« tribution can be equivalent to the intrinsic generation-interval distribution, regardless of the
sos growth rate r, due to independence between the incubation period and time from symptom
so6 onset to transmission and the lack of presymptomatic transmission. Future studies trying
so7  to interpret realized serial intervals should consider carefully the joint distribution between
se¢ the generation intervals and incubation periods.

500 In closing, we lay out a few practical principles for analyzing and interpreting serial-
00 interval data. First, serial intervals should be cohorted based on the symptom onset date of
so1 the infector (and not of the infectee) whenever possible. Previous studies have often regarded
2 serial intervals as an intrinsic quantity, having the same mean as the intrinsic generation
s03 interval (Svensson, 2007} Klinkenberg and Nishiura, 2011} Champredon et al., [2018; Britton
s0a land Scalia Tombaj, 2019)), but the distribution (and the mean) of observed serial intervals
s0s differs from this expectation, and changes through time due to epidemic dynamics. Second,
s aggregating serial intervals across different cohorts and epidemic periods should be avoided
sor because the realized serial-interval distribution can be subject to different censoring and
ss epidemiological biases: Even when all realized serial intervals can be observed throughout
s0 an unmitigated epidemic, we do not obtain the intrinsic serial interval distribution due to
s10 susceptible depletion (Fig. . Third, applying serial-interval information across epidemics of
su  a given disease should be done with care, because serial intervals are epidemic-specific, rather
s12 than disease-specific. Finally, serial-interval data should be accompanied by a trajectory of
s13 the epidemic curve, whenever possible, to provide epidemiological context. In practice,
s1a  these recommendations will sometimes be hard to follow, due to limited data about serial
15 intervals, but these issues should be kept in mind when interpreting serial-interval data to
s16 inform transmission dynamics.

617 More broadly, our study underlines the importance of carefully defining measured epi-
s demiological time distributions. Previous studies have shown the importance of forward vs.
s19  backward measurement of generation intervals (Nishiura, 2010; |Champredon and Dushoft,
s20 2015} Britton and Scalia Tomba, 2019); we generalize these ideas and show that they apply to
s1  other epidemiological distributions. Some studies during the early phases of the COVID-19
622 epidemics have tried to correct for the backward biases (Verity et all 2020), but changes in
23 the backward delay distributions due to changing cohort sizes are expected to be a pervasive
24 feature of outbreak dynamics. Cohorting epidemiological delays by the primary event time
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625 can help avoid backward biases (although censoring biases can still exist) as well as detect
26 potential changes in the distribution.

627 Here, we assume that all individuals develop symptoms and that the entire transmission
s process, including all relevant epidemiological delays, is known exactly. In practice, iden-
s20 tifying who infected whom is difficult in general, and asymptomatic and presymptomatic
s transmission of COVID-19 exacerbates this difficulty (Bai et al., 2020; [He et al., 2020; Wei,
en 2020). Biases in the observed serial intervals will necessarily bias the estimates of R. Fur-
632 thermore, when one of the individuals in a transmission pair is asymptomatic, there is no
33 symptom-based serial interval. Neglecting the time scale of asymptomatic transmission may
s also bias the estimates of R (Park et al. 2020)).

635 Despite these limitations, our analysis of serial intervals of COVID-19 from China pro-
36 vides further support for our theoretical framework, demonstrating temporal variation in
37 serial intervals and its effect on the estimates of R. Most existing estimates of the serial-
s3s intervals of COVID-19 implicitly or explicitly assume that the serial-interval distributions
s remain constant throughout the course of an epidemic (Du et al. 2020; He et al., 2020;
sa0 Nishiura et al., 2020; [Tindale et al., 2020; Zhao et al., 2020; |Zhang et al 2020)). Our study
sa1  provides a rationale for reassessing estimates of serial-interval distributions—and their use
2 in estimating R—during the COVID-19 pandemic.

« Data availability

e All data and code are stored in a publicly available GitHub repository (https://github.
e4s com/parksw3/serial).

« Competing interests

s We declare no competing interests.
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: & Supplementary Materials

6!

B

s 9.1 Deterministic simulation
We simulate the renewal equation model using a discrete-time approximation:

i(t) = RoS(t — At) mz i(t — mAL)G(mAL)

S(t) = S(t — At) — i(t) (22)

50 where § is a discrete-time intrinsic generation-interval distribution that satisfies the following:

651

gman = —3MAD g (23)

25:1 g(mAt) 7
ss2 ' The continuous-time intrinsic generation-interval distribution is parameterized using a log-
3 normal distribution (Table 1). We define the intrinsic incubation period distribution in a
s« similar manner:

i(mar) = L2
> izt LmAt)

5 where its continuous-time analog is also based on a log-normal distribution. For simplic-
6 ity, we assume that the forward incubation periods and intrinsic generation intervals are
57 independent:

= 17"'7mmax7 (24)

h(mAt, nAt) = ((mAL)§(nAt), m,n=1,... M. (25)

s We use At = 0.025 days and m,,,, = 2001 for discretization steps.
We initialize the simulation with population size N=40,000 as follows:

i(mAt) = Cexp(rmAt), m=1,... My

S(mAt) :N—Zi(nAt), m=1,..., My (26)
n=1

ess where C' is chosen such that ) " i(mAt) = 10. These initial conditions allow the model

sc0 to follow exponential growth from time At(m,,,, + 1) without any transient behaviors.

e 9.2 Stochastic simulation

sz We run stochastic simulations of the renewal equation model using an individual-based
s model on a fully connected network (i.e., homogeneous population) based on the Gillespie
sc¢ algorithm that we developed earlier (Park et al., 2020). First, we initialize an epidemic with
s6s 1(0) infected individuals (nodes) in a fully connected network of size N. For each initially
6 infected individual, we draw number of infectious contacts from a Poisson distribution with
s7 the mean of Ry and the corresponding generation intervals for each contact from a log-
s normal distribution (Table 1). Contactees are uniformly sampled from the total population.
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o All contactees are sorted into event queues based on their infection time. We update the
er0 current time to the infection time of the first person in the queue. Then, the first person in
er1 the queue makes contacts based on the Poisson offspring distribution described earlier and
sz their contactees are added to the sorted queue. Whenever contactees are added to the sorted
es  queue, we remove all duplicated contacts (but keep the first one) as well as contacts made
e+ to individuals that have already been infected. Simulations continue until there are no more
o5 individuals in the queue. We simulate 10 epidemics with 7(0) = 10 and N=40,000.

o 9.3 Linking r and Ry using serial-interval distributions

s The intrinsic generation-interval distribution g(7) provides a link between r and R, via the
es  Euler-Lotka equation (Wallinga and Lipsitch, [2007)):

1

Eo = /000 exp(—r7)g(r)dr. (27)

e In this section, we prove that the initial forward serial-interval distribution fy(7) also esti-
0 mates the same Ry from r, except that integral extends to 7 = —oo rather than beginning
e1 at 7 = 0, because serial intervals can be negative:

Rig = /OO exp(—r7) fo(T)dr. (28)

22 Here, the initial forward serial-interval distribution fo(7) is defined as:

fo(r) = %/L /O; exp(raq)h(—aq, s — a)l(1T — ag) dag day (29)

sss where h is the joint probability distribution describing the intrinsic generation-interval dis-
s« tribution g and the intrinsic incubation period distribution ¢ (see Eq. in the main text),
es and the normalization constant ¢ is determined by the requirement that [*°_ fo(7) d7 = 1.
In order to verify Eq. , we first rewrite the integral in Eq. by substituting —ay

for a1, and then changing the order of integration:

1 oo T
folr) = p / / exp(—raq)h(ay, as + o) l(T — ag) das day
0 —a
1 T oo
= — / / exp(—raq)h(aq, ae + o )l(T — ag) da;g das . (30)
¢ —oo J max (0,—a2)
sss Lo further simplify the expression, we define z(as) as follows:

z(ag) = / ( )exp(—ral)h(ozl, as + ap)dag . (31)
max (0,—asg

7 Substituting z(az) into Eq. we obtain:

1 T
folr) = /_ ar = az)da (32)
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s Writing Z for a normalized version of z,

Z(an) = m, (33)

—0o0

s0  Wwe can now express the initial forward serial-interval distribution f; as a convolution of 2
s0 and £:

fo(r) = lA/T Z(a)l(T — ag) dag (34)

e where ¢ = ¢/ [ 2(z) da.
692 Since the right hand side of Eq. is also a Laplace transform of fy = 2 % £, we can
03 express it as the product of Laplace transforms of Z and /:

/OO exp(—r7) fo(r)dr = /OO exp(—r7)z(r)dr /OOO exp(—r7)l(7)dr. (35)

o0 — 00

In order to derive an expression for a Laplace transform of Z, we have to first derive an
analytical expression for ffooo z(x) dz. By changing the order of integration, we have:

o0

/ 2(ag)dag = / / exp(—raq)h(aq, as + aq) dag dasy

— —o0 Jmax (0,—a2)

= / / exp(—rag)h(or, ag + a1) dag da; . (36)
0 —a

s+ Since ¢ is a marginal probability distribution of h, it follows that:

/_OO z(az)day = /000 exp(—raq)l(a) doy . (37)

o0

ss Then, we have:
[ ) exp(—raq)h(ay, az + ap) day

max (0,—a

I, exp(—ran)l(oq) day

s Substituting the expression into Eq. , we have:

(o) = (38)

/_oo exp(—r7) fo(r)dr = /OO exp(—ras) /OO exp(—raq)h(ay, ag +ay) dag day . (39)

00 —00 max (0,—a2)

697 Recall that ¢ is also a marginal probability distribution of h:
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We can then substitute 7 = a; + a4 into Eq. and apply change of variables to obtain:
| exp(-rrinir)ar (41)

—00

:/ exp(—rozg)/ exp(—raq)h(a, as + ag) dag das (42)

max(0,—a2)

— /0 . /0 h exp(—r7)h(ay, 7) day dr (43)

1
= / exp(—r7)g(7)dr = — (44)
0 Ro
Therefore, the initial forward serial-interval distribution and the intrinsic generation-interval
distribution give the same estimates of Ry from r. O]

5.4 Comparing the estimates of R, using the initial forward and
the intrinsic serial-interval distributions

We use a simulation-based approach to compare the estimates of Ry based on the serial-
and generation-interval distributions. To do so, we model the intrinsic generation-interval
distribution and the incubation period using a multivariate log-normal distribution with log
means /i, i1, log standard variances 02, o7, and log-scale correlation p; the multivariate log-
normal distribution is parameterized based on parameter estimates for COVID-19 (Table 1).
We construct forward serial intervals during the exponential growth period as follows:

F,=—X1,+ (G| X1,) + Xa, (45)

where the backward incubation period X ; of an infector is simulated by drawing random log-
normal samples Y; with log mean p; and log variance o7 and resampling Y;, each weighted by
the inverse of the exponential growth function exp(—rY;); the intrinsic generation interval
conditional on the incubation period of the infector (G;|X;;) is drawn from a log-normal
distribution with log mean ug + ogp(log(Xy;) — ur)/or and log variance o2 (1 — p?); the
forward incubation period X, ; of an infectee is drawn from a log-normal distribution with
log mean p; and log variance o?. We then calculate the basic reproduction number R using

the empirical estimator:
1

% Zil exp(—7F;) .
We compare this with an estimate of Ry based on the intrinsic serial-interval distribution
which has the same mean as the intrinsic generation-interval distribution (Svensson, 2007}
Klinkenberg and Nishiura), 2011; |Champredon et al., 2018} Britton and Scalia Tombay, 2019):

Ro

(46)

1
Rintrinsic — ) (47>
¥ 2L exp(—rQ:)
where
Qi = =Y + (GilYi) + Xa,. (48)
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= 5.5 Applications: SEIR model

Consider a Susceptible-Exposed-Infectious-Recovered model:

ds

- = I

dt p3

dFE

E = BSI —vgE

df

T YeE — 1l

dR

DbV § 49
dt VI ( )

72 where [ is the transmission rate, 1/yg is the mean latent period, and 1/4; is the mean
723 infectious period. We further assume that the latent period is equivalent to incubation
724 period; in other words, infected individuals can only transmit after symptom onset. Then,
725 the generation interval will be always longer than the incubation period.

726 The joint probability distribution of the intrinsic incubation periods and intrinsic gener-
727 ation intervals for this model can be written as:

h(z,T) = 0 v (50)
Yiveexp(—y(T —x) —ypr) <7

Then, the intrinsic generation-interval distribution is given by:

o) = [ by da
0
_ _E (
YE — I
On the other hand, the initial forward serial-interval distribution is given by:

0 T
fo(T) / /0 exp(rai)h(—aq, as — a))l(T — ag) das day

exp(—7:7) — exp(—7eT)) (51)

0 T
x / / exp(ray) exp(—yrae + ypa1) exp(—ve(T — az)) das day
—o0 JO

x exp(—e7) / / " exp((7 — r)an) exp((r + 7)an) das day

x (exp(—vs7) — exp(—7ET)) / exp((r + vg)aq) dag

x exp(—v;7) — exp(—yET) i (52)

728 Therefore, both the intrinsic generation intervals and the initial forward serial intervals are
7o identically distributed and have the same mean.

= 5.6 Simulations with correlated intrinsic incubation periods and
731 intrinsic generation intervals.
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Figure S1: Epidemiological dynamics and changes in mean forward and backward
delay distributions. (A) Daily incidence over time. (B-D) Changes in the mean forward
incubation period, generation interval, and serial interval. (E-G) Changes in the mean
backward incubation period, generation interval, and serial interval. Intrinsic incubation
periods and intrinsic generation intervals are modeled using a correlated bivariate lognormal
distribution; therefore, generation intervals are drawn from the corresponding conditional
distributions (given a incubation period), instead of the marginal distribution. Higher cor-
relation reduces the amount of changes in the mean forward serial interval because shorter
(longer) backward incubation periods of infectors during the increasing (decreasing) phase
of an epidemic are associated with shorter (longer) forward generation intervals. See Figure
3 in the main text for a detailed description.
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