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Model description 5	
Supplementary Figure 1 shows the structure of the discrete-time stochastic individual-level 6	
susceptible-exposed-infectious-recovered (SEIR) model used to simulate transmission in the 7	
shelter. On any given day ! each individual is in one of the seven states shown in the flow 8	
diagram and defined in Supplementary Table 1. 9	
 10	
The probabilities that individual " is infected on day ! or avoids infection on day ! given that 11	
they are susceptible to infection are: 12	
 13	

#!(!) 	= 1 − *"#!(%),				" ∈ -(!) 14	
 15	

1 − #!(!) = *"#!(%),					" ∈ -(!) 16	
 17	
where .!(!) is the force of infection on each individual " on day !. The force of infection on each 18	
individual on each day is equal to the force of infection they are exposed to when inside the 19	
shelter, which is proportional to the prevalence of infectious individuals inside the shelter on that 20	
day and the infectiousness of these individuals, plus a background force of infection they are 21	
exposed to when outside the shelter in the community: 22	
 23	

.!(!) =
/0!(!) 1ℎ 345',)(!) + 5',*(!)7 + 45+,)(!) + 5+,*(!)8

∑ 0,(!),
+ :. (1)	24	

 25	
Here / is the transmission rate coefficient within the shelter (assumed constant); 0!(!) is an 26	
indicator function for whether the individual is present in the shelter on day !; the 5(!)’s 27	
represent the number of infectious individuals inside the shelter on day ! in different states of 28	
infection – subclinical and clinical, denoted by subscripts < and = respectively, and early and late 29	
stage, denoted by subscripts 1 and 2 respectively; ℎ is the infectiousness of subclinically infected 30	
individuals relative to those with clinical symptoms; 4 is the infectiousness of the early 31	
infectious stage relative to the late stage; and : is the transmission rate outside of the shelter. 32	
Mixing of infectious and susceptible individuals in the shelter is assumed to be homogeneous 33	
due to a lack of contact data from the shelter outbreaks with which to parameterize 34	
inhomogeneous mixing. Transmission from the external community is modeled assuming 35	
homogeneous mixing of the shelter residents and staff with the community outside of the shelter 36	
during each day and negligible impact of infected individuals entering the community from the 37	
shelter on the overall background transmission rate.	The background transmission rate is treated 38	
as constant given the relatively short durations of the outbreaks, and is estimated from the 39	
incidence of confirmed COVID-19 cases for the city of each shelter with adjustments for 40	
reporting delay, infection-to-onset time and relative risk of infection for homeless individuals as 41	
described below (see Estimation of background infection rate below).  42	
 43	



We note that the formulation of the force of infection in equation (1) corresponds to frequency-44	
dependent transmission, i.e. assumes that the number of “contacts” per infectious individual in 45	
the shelter per day is approximately constant regardless of the number of individuals present in 46	
the shelter. We make this assumption in common with other authors [1] because it is believed 47	
that the main mode of SARS-CoV-2 transmission is from person to person via respiratory 48	
droplets containing virus particles [2], i.e. occurs over short distances predominantly among 49	
close contacts of infectious individuals. 50	
 51	
The duration ?- of the latent infection stage ℰ, is assumed to be negative-binomial, with mean 52	
A- = 3 days and shape parameter C- = 4, i.e. probability mass function: 53	
 54	
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, F = 1,2, …,	 55	
 56	
where Γ(z) = ∫ L0")*"1FL	

2
3 is the gamma function. After passing throught the latent stage, 57	

individuals enter an early (presymptomatic) infectious stage (ℐ+,)) leading to clinical symptoms 58	
with age-dependent probability N(O!), where O! is the age group (<60 years/≥60 years) of 59	
individual ", or an early infectious stage (ℐ',)) leading to subclinical infection (no symptoms/very 60	
mild symptoms) with probability 1 − N(O!). After a negative-binomial number of days 61	
(PQ(C) = 4, A) = 2.3)) of early stage infectiousness individuals progress to late stage 62	
subclinical (ℐ',*) or clinical (ℐ+,*) infectiousness. 63	
 64	
Following a further negative-binomially-distributed duration (PQ(C* = 4, A* = 8) with mean 8 65	
days) subclinical cases recover and are no longer infectious and clinical cases either recover or 66	
are hospitalized, and therefore no longer contribute to transmission in the shelter (ℛ). See 67	
Supplementary Table 1 for the key attributes of each infection state and Supplementary Table 5 68	
for a full list of model parameters and their values. The probability of hospitalization for clinical 69	
cases is age- and co-morbidity dependent (Supplementary Table 2), and hospitalized cases are 70	
assumed to have a 26.1% risk of requiring intensive care based on data from Wuhan, China [3]. 71	
Cases admitted to the intensive care unit (ICU) have an age- and co-morbidity-dependent risk of 72	
death estimated from ICU data from Wuhan, China [4,5].  73	
 74	
Basic reproduction number, T3 75	
The basic reproduction number for the model, defined as the average number of secondary 76	
infections caused by the average infectious individual in an entirely susceptible shelter 77	
population (in the absence of interventions) can be calculated from first principles as: 78	
 79	
T3 = 	probability	of	infection	given	"contact" × "contact"	rate	 × 	duration	of	infectiousness 81	

=
/∑ 0!(0) 3j1 − N(O!)kℎ + N(O!)7 (4A) + A*)!

∑ 0!(0)!
		82	

 80	
where “contact” is defined as susceptible individuals coming into contact with infectious 83	
material from infected individuals, and the sums are over all individuals in the shelter (residents 84	
and staff).  85	
 86	



Relative infectiousness of early infectious stage and subclinical infection 87	
Evidence suggests that infectiousness of symptomatic COVID-19 cases is not constant over time, 88	
but peaks at or shortly before symptom onset, such that pre-symptomatic individuals are more 89	
infectious than symptomatic individuals [6,7]. We approximated this variation in infectiousness 90	
over time by treating individuals’ infectiousness as constant during each of the early and late 91	
infectious stages, but higher during the early infectious stage. The relative infectiousness of the 92	
early infectious stage to the late infectious stage, 4 = 2, was chosen to approximately match the 93	
estimates of the proportion of pre-symptomatic transmission of He et al [6] and the lower range 94	
of those of Casey et al [7] of 44% and 34% respectively, assuming a mean duration of the early 95	
infectious stage of A) = 2.3 days[6]: 96	
 97	
proportion	of	transmission	from	early	infectious	stage =

4A)
4A) +	A*

=
2 × 2.3

2 × 2.3 + 8
= 37%, 98	

 99	
We used the lower range of the estimates of Casey et al for the base case analysis, as we believe 100	
that estimates of pre-symptomatic infectiousness are likely to be biased upward due to behavior 101	
changes (e.g. self-isolation) upon symptom onset that reduce transmission from symptomatic 102	
individuals in general settings but are less likely to apply in congregate shelter settings. 103	
However, we also considered higher relative infectiousness (up to 3) in the sensitivity analysis. 104	
We assumed the same relative infectiousness of early stage infection for clinical infection and 105	
subclinical infection. 106	
 107	
Subclinically infected individuals were assumed to be as infectious as clinical cases in the base 108	
case analysis, due to limited data on the relative infectiousness of subclinical infection and the 109	
detection of similar viral load in asymptomatic individuals as symptomatic individuals in several 110	
studies [6,8]. Lower relative infectiousness of subclinical infection (down to 50%) was 111	
considered in the sensitivity analysis. 112	
 113	
Duration of detectable viral load 114	
Studies that have measured the viral load of individuals infected with SARS-CoV-2 over time 115	
since symptom onset suggest that the virus remains detectable from throat and nasal swabs and 116	
sputum and stool samples for longer (~20 days after symptom onset) than individuals remain 117	
infectious (~7 or 8 days after symptom onset) [6,9]. We therefore modelled the duration of 118	
detectable viral load for each infected individual by assigning a random draw from a truncated 119	
discretized normal distribution that characterizes the variation in this duration (Supplementary 120	
Figure 3) to each individual when they enter the late infectious stages ℐ',* and ℐ+,*. We chose the 121	
parameters of the distribution based on data on the variation in times after symptom onset at 122	
which individuals’ viral loads reach the PCR detection limit from several studies [6,9–13], with 123	
minimum and maximum durations of 5 days and 37 days. 124	
 125	
We assumed that individuals in the early infectious stages ℐ',) and ℐ+,) always have detectable 126	
viral loads and that in the latent infection stage the viral load is undetectable. We treated the 127	
duration of detectable viral load as being the same for subclinical and clinical infection and 128	
independent of the individual’s duration of infectiousness. This means that individuals can still 129	
have a detectable viral load when they are no longer infectious and are in the recovered 130	
compartment (ℛ). It is likely that there is some correlation between viral load and symptom 131	



severity and infectious duration (and other factors such as age), but as of yet there is insufficient 132	
data with which to parameterize these relationships and studies measuring viral loads over time 133	
by age and severity have shown mixed results [6,14–16]. 134	
 135	
Sensitivity and specificity of PCR tests 136	
Although there is some evidence to suggest that the sensitivity of PCR tests varies with time 137	
since infection (i.e. that it is lower during early and late infection) [17], the data currently 138	
available to accurately characterize this variation is very limited. We therefore made the 139	
simplifying assumption that the sensitivity of PCR tests is constant with time since the start of 140	
infectiousness (time of entering the early infectious stages ℐ',) and ℐ+,)) and use a fixed 141	
sensitivity of 75% based on available data [17–20] for the base case analysis. We assumed 142	
perfect specificity of PCR tests for the base case analysis, i.e. no false positive test results, as 143	
current evidence suggests that they have high specificity (~99%) [17,20], but also considered 144	
lower specificity in the sensitivity analysis. 145	
 146	
Estimation of background infection rate during shelter outbreaks 147	
We used publicly available data on daily numbers of new confirmed COVID-19 cases in the city 148	
of each shelter from county public health departments to estimate the background infection rate 149	
[21–23]. We assumed a fixed delay from infection to reporting of 7 days, corresponding to 2 150	
days of pre-symptomatic infection and 5 days of symptoms before reporting [24,25], and so used 151	
case counts 7 days ahead as an estimate of the number of new reported infections on each day. 152	
We estimated the infection incidence in the community outside the shelter during the period of 153	
each shelter outbreak, "4 , from the delay-adjusted case counts for the city of the shelter over the 3 154	
weeks prior to the end date of data collection, o56/, as: 155	
 156	
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p∑ q%
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r
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 158	
where q% is the number of new confirmed cases reported on day !, r  is the city population [26], 159	
and p is an under-reporting factor to account for only a proportion of infections being reported. 160	
For the period of the shelter outbreaks we used p = 10, based on estimated infection-to-161	
reported-case ratios from seroprevalence data for the period of late March–early May from 10 162	
different localities across the US [27]. For the intervention simulations, we used p = 4, based on 163	
lower estimates from seroprevalence data for late May-June from a continuation of the same 164	
study [28]. We then estimated the background infection rate in homeless individuals outside of 165	
the shelter as: 166	
 167	

: = C"4 , 168	
 169	
where C is a relative risk of infection for homeless individuals. Based on data from Seattle & 170	
King County, WA, where 1.5% of the population is homeless (11199/753675)[26,29] and 171	
homeless individuals account for 2.5% (445/18130) of confirmed COVID-19 cases [21,30], we 172	
use an approximate relative risk for homeless individuals of C = 2. 173	
 174	
Model calibration 175	



We calibrated the model by fitting to data on numbers of PCR-positive and negative individuals 176	
in testing conducted in outbreaks in 5 homeless shelters in 3 different cities: San Francisco (n=1), 177	
Boston (n=1) and Seattle (n=3). Prevalence of PCR positivity among residents and staff during 178	
mass testing events in these shelters was markedly different, ranging from 2.6%–51.6%. This is 179	
likely partly due to testing being conducted at different times after the outbreaks started, but 180	
likely also reflects differences in transmissibility due to other factors, such as variation in 181	
infectiousness between individuals, shelter living density, bed spacing, air ventilation quality, 182	
and differences in shared washing and eating facilities. We therefore fitted the model separately 183	
to the data from each of these outbreaks to estimate the basic reproduction number, T3, for each 184	
setting. Given uncertainty in when the first infected individuals entered each shelter and how 185	
many of them there were, due to asymptomatic infection and incomplete detection of early cases, 186	
we also estimated the time since introduction of infection into the shelter at the end of the data 187	
collection period, o, and the initial number of latently infected individuals who entered the 188	
shelter, s3. We assumed that the individual(s) who initially introduced infection into the shelter 189	
were all latently infected when they entered, since a large range of scenarios in which they were 190	
in a later infection stage or mixture of infection stages are covered by the flexibility in the 191	
introduction time and the initial number infected. We also assumed that following the initial 192	
introduction into the shelter any further introductions were solely as a result of residents and staff 193	
being infected when mixing with the community outside the shelter and then returning to the 194	
shelter. 195	
 196	
Since more detailed individual-level data on PCR test results and symptom onset times for 197	
clinical cases was available for the outbreak in the San Francisco shelter, we also used the 198	
numbers of early symptomatic cases who tested PCR-positive and daily numbers of new 199	
symptom onsets when calibrating the model to this outbreak (see Supplementary Figure 4 and 200	
S5A Fig). As exact dates of testing during the cross-sectional surveys in the Seattle and Boston 201	
shelters were not available, we assumed that all testing occurred on the last day of each survey. 202	
For all the outbreaks, we assumed that PCR tests took a day to be processed, such that results 203	
were returned and positive individuals removed the day following testing (except on April 10th at 204	
the San Francisco shelter, when negative individuals were removed instead). 205	
 206	
Aggregate data (by age and co-morbidity risk group) on movement of individuals in and out of 207	
the shelter over time was only available for the San Francisco shelter, so we ensured that the 208	
population of this shelter matched that in the shelter registry (see Demographics and movement 209	
of individuals in and out of the shelter below) and assumed that the populations of the other 210	
shelters remained approximately constant over the period of data collection. Residents’ age 211	
categories in the Seattle and Boston shelters were set according to data on the age distributions 212	
from [31] and [32]. For all shelters, staff were assumed to be all <60-years-old and at low risk of 213	
hospitalization and death. 214	
 215	
Approximate Bayesian Computation algorithm 216	
We fitted the model to the data using an approximate Bayesian computation sequential Monte 217	
Carlo (ABC-SMC) algorithm [33–35] to estimate T3, s3, and o. Since s3 and o are discrete 218	
parameters, we adapted the model selection algorithm of Toni et al [34,35] by replacing the 219	
model index as the discrete parameter with the discrete parameter pair t = (s3, o) (i.e. the 220	
model indices by the different possible combinations of s3 and o). The algorithm starts by 221	



sampling pairs t∗ = (s3
∗, o∗) from the prior distribution u(t), and corresponding T3 values, 222	

T3
∗∗, from the prior distribution u(T3); simulating outbreaks with these parameter values 223	

(particles); and accepting those for which the simulated number of PCR-positives ?∗ falls within 224	
a certain pre-specified tolerance :) of the observed number of PCR-positives ? according to a 225	
distance measure F(⋅), i.e. F(?, ?∗) ≤ :). A sequence of distributions (generations) is then 226	
constructed by repeating this process with a set of decreasing tolerances x = y:=z=:),*,…, 227	
proposing T3 values for each value of t in each generation by perturbing the particles (T3 228	
values) specific to t from the previous generation using a perturbation kernel {(T3|T3∗). In this 229	
way, the particles in successive generations converge towards the joint posterior distribution of 230	
the parameters given the data. Pseudocode for the algorithm is as follows: 231	

1. Set the number of generations } and number of particles P. 232	
2. Set the tolerance schedule :) > :* > ⋯ > :? . Set the generation index Ä = 1. 233	
3. Set the particle index " to 1. 234	
4. Sample t∗ from the prior distribution u(t). If Ä = 1, sample T3∗∗ from the prior 235	

distribution u(T3). If Ä > 1, sample T3∗ from the previous generation {T3(t∗)=")} with 236	
weights É(t∗)="), and perturb the particle T3∗ to obtain T3∗∗~{(T3|T3∗). 237	

5. If u(T3∗∗) = 0, return to step 4. 238	
6. Run a simulation of the outbreak and PCR testing for the sampled values (T3∗∗, t∗) to 239	

generate a candidate dataset ?∗∗. 240	
7. If ℙÖ(?|?∗) = 0jF(?, ?∗) < :=k = 0, return to step 4. 241	
8. Set t=

(!) = t∗, and add T3∗∗ to the population of particles {T3(t∗)=} and calculate its 242	
weight as: 243	

É=
(!) =

⎩
⎪
⎨

⎪
⎧ 1, if	Ä = 1

u(T3∗∗)

∑
É=")
(!) {(T3

∗∗|T3,=")
(!) )

ℙ(t=") = t∗)!;A&'(:A∗

	 , if	Ä > 1 244	

9. If " < P, set " = " + 1 and go to step 4. 245	
10. Normalize the weights É= such that ∑ É=

(!) = 1B
!:) . 246	

11. Calculate the marginal probabilities for the combinations t = (s3, o), by summing the 247	
weights for each combination:  248	

ℙjt= = tk = ã É=
(!)3T3,=

(!) , t=
(!)7.

!;A&
(!):A

 249	

12. If Ä < }, set Ä = Ä + 1 and go to step 3. 250	
 251	
We used } = 10 generations, with P = 1000 particles in each generation, and a normal 252	
perturbation kernel for T3, {(T3|T3∗)~P(T3∗ , å*), with standard deviation å = 1. We used broad 253	
uniform prior distributions due to a lack of information to support more informative prior 254	
distributions: T3	~	ç(1,8), t = (s3, o)	~	ç(1,5) × ç(14,30) (for all shelters except Seattle 255	
shelter B, for which t	~	ç(1,10) × ç(13,20)), where the prior for t is discrete with integer 256	
support. The wide bounds for the prior for T3 were chosen based on the large range of basic 257	
reproduction numbers reported in the literature[24] and demonstrated potential of COVID-19 for 258	
superspreading events [36–40]. The 14-day lower bound of the prior for o was chosen based on 259	
the symptom onsets of the first cases identified in each of the shelters being at least 9 days before 260	



the end of data collection and the mean incubation period being approximately 5 days, such that 261	
the first cases were unlikely to have been infected later than 14 days before the end of data 262	
collection. Thirty days was taken as the upper bound for o based on it giving the earliest 263	
plausible time for introduction of infection into the shelters without earlier occurrence and 264	
detection of symptomatic cases. Lower bounds were used for the prior for o for Seattle shelter B 265	
to reflect the fact that it did not report any symptomatic cases before the first mass testing event 266	
on March 30–April 1 and had a very low prevalence of infection at that survey. 267	
 268	
We used the sum of squared differences between the numbers of PCR-positives on the testing 269	
days, è7, in the simulations, ?∗, and those in the observed data, ?, for the distance metric 270	
F(?, ?∗): 271	
 272	

F(?, ?∗) = êã(?% − ?%
∗)*

%∈D,
 273	

 274	
For the tolerance schedule x7 = (:), … , :?) we used regular steps decreasing from a discrepancy 275	
of twice the daily number of PCR-positives, :) = ë∑ (2?%)*% , to half the width of the exact 276	
binomial confidence interval on the number of PCR-positives on each day. For the San Francisco 277	
shelter, we used additional distance metrics, FE(?E, ?E∗) and FF(?F , ?F∗), and tolerance 278	
schedules, xE and xF , for the differences in the simulated and observed numbers of PCR-279	
positives among early symptomatic cases tested, ?E∗ and ?E, on days èE (3/30/20–4/7/20) and 280	
the differences in the simulated and observed daily numbers of symptom onsets, ?F∗ and ?F: 281	
 282	

FE(?E, ?E∗) = êã(?%
E − ?%

E∗)*

%∈D-
	 283	

FF(?F , ?F∗) = íã(?%
F − ?%

F∗)*
7

%:)
	 284	

 285	
Since the symptom onset data is less reliable than the PCR test data and potentially incomplete, 286	
we used less strict tolerances for xE and xF , decreasing from discrepancies of twice the daily 287	
observed number of PCR-positives among early symptomatic cases and twice the daily number 288	
of new symptom onsets to 2/3 and 1.3 times the observed daily numbers respectively: 289	

xE = (11,10,9,9,8,7,6,5,5,4) 290	
:F = (49,47,45,43,41,39,37,36,34,32). 291	

Proposed values of (T3, s3, o) were accepted at each generation Ä only if all tolerances were 292	
satisfied, i.e. only if F(?, ?∗) ≤ := and FE(?E, ?E∗) ≤ :=E and FF(?F , ?F∗) ≤ :=F .  293	
 294	
We assessed the performance of the algorithm by calculating the effective sample size (ESS) of 295	
the final generation of particles, sïï = 	1/∑ (É?

(!))*B
!:) , and the acceptance rate of proposed 296	

particles in each generation. 297	
 298	



Details of San Francisco shelter outbreak 299	
Full details of the outbreak in the San Franciso shelter are provided elsewhere [41]. Briefly, the 300	
data consisted of individual-level information on age, PCR test date and result, and partial data 301	
on symptom status, co-morbidity, and health outcome.	The first two clinical cases identified in 302	
the shelter were confirmed on April 5, 2020 from PCR tests on April 4 and 5, 2020. The first 303	
case had symptom onset on March 31, the second on April 2. However, several individuals who 304	
later tested PCR-positive reported that they had symptom onset around these dates 305	
(Supplementary Table 3 and S5A Fig). After the first cases were identified on April 4, contact 306	
tracing, symptom screening and PCR testing of symptomatic individuals was performed up to 307	
April 7. On April 8 and 9 mass testing of residents and staff was performed. As of April 10, 308	
2020, 89 individuals out of 175 tested in the shelter were PCR-positive,	of whom 65 were pre-309	
symptomatic/symptomatic (2 unknown status), 4 required hospitalization (2 unknown outcome), 310	
and 1 died. Supplementary Table 3 shows the numbers of positive test results returned from the 311	
different testing that was conducted by day of testing and number of new symptom onsets each 312	
day.  313	
 314	
Demographics and movement of individuals in and out of the shelter 315	
Even before the first cases in the shelter in San Francisco were identified, the shelter was not 316	
running at capacity (340 residents) and efforts were made to move high-risk individuals (those 317	
aged 60 and over or with co-morbidities) out of the shelter. Following identification of the first 318	
cases on April 5, progressively more and more individuals were removed from the shelter into 319	
isolation and quarantine at various sites; first those identified as close contacts and bedmates of 320	
the first cases and those suspected of being infected, then later on April 10 PCR-negative 321	
individuals, particularly high-risk individuals. Efforts were made to cohort the remaining 322	
residents into those who were PCR-positive and those with unknown COVID-status, but this was 323	
hampered by individuals returning to the shelter on the evening of April 10. The shelter was 324	
disbanded and all residents and staff were moved to isolation and quarantine sites on April 11.  325	
 326	
According to the shelter register, there were a total of 255 residents who were present at some 327	
point from March 29 to April 10, 2020. Supplementary Figure 2 shows the breakdown of the 328	
number of residents in each of the different risk groups (no co-morbidities and under-60, co-329	
morbidities and under-60, no co-morbidities and 60 or over, co-morbidities and 60 or over) 330	
present on each day from March 29 to April 10. We initialized the resident population of the 331	
shelter in the simulations such that the numbers in the different risk groups matched those 332	
present on March 29, and assumed the numbers in the different groups remained constant prior to 333	
March 29. We assumed that the proportions of the remaining individuals not present on March 334	
29 in the different risk groups were the same as among those present. The movement of residents 335	
in and out of the shelter each day was simulated by randomly drawing individuals from each risk 336	
group to remove/add such that the number present in each risk group matched that in the register, 337	
accounting for the removal of symptomatic PCR-positive individuals from the testing from April 338	
4–8 and their risk group. 339	
 340	
A total of 64 staff, covering general running of the shelter, support services, maintenance, 341	
laundry and food services over 3 shifts per day with approximately 20-25 staff on each shift, 342	
were present at some point from March 29 to April 10. Due to a lack of detailed information on 343	
staff demographics and movement we assumed that all staff had low risk of clinical symptoms, 344	



hospitalization and death (were all under-60 without co-morbidities), and were present in the 345	
shelter each day for approximately the same amount of time as the average resident, such that 346	
they had the same risk of infection as residents. 347	
 348	
Estimation of impact of different interventions 349	
We estimated the impact of six different intervention strategies, listed in Supplementary Table 6 350	
with their component interventions, on the probability of averting an outbreak and the total 351	
numbers of infections, clinical cases, hospitalizations and deaths over 30 days in a shelter of 250 352	
residents and 50 staff into which one latently infected individual is introduced by comparing 353	
output of simulations in which there were interventions with counterfactual simulations without 354	
any interventions. An outbreak was defined as ≥3 cases that originated within the shelter within 355	
any 14-day period, which we determined by probabilistically assigning an infection source 356	
(background transmission vs infectious individuals within the shelter) to each infected individual 357	
upon infection in the simulations and tracking the number of infections whose source was within 358	
the shelter over time. We ran 1000 simulations for each intervention strategy and the 359	
counterfactual scenario, and calculated the probability of averting an outbreak from pairs of 360	
counterfactual and intervention simulations as the proportion of simulation pairs with an 361	
outbreak in the no-intervention scenario in which there was no outbreak in the intervention 362	
scenario: 363	
 364	
ℙ(outbreak	averted) =

ℙ(no	outbreak	with	intervention|outbreak	without	intervention)

ℙ(outbreak	without	intervention)
 365	

=
#(pairs	with	no	outbreak	in	intervention	simulation	&	an	outbreak	in	counterfactual	simulation)

#(counterfactual	simulations	with	an	outbreak)
 366	

 367	
Reductions in cumulative incidence of infections and clinical cases under each intervention 368	
strategy were calculated as the median percentage reduction in total number of infections/clinical 369	
cases between the counterfactual simulation and the intervention simulation across all simulation 370	
pairs, where the percentage reduction was treated as 0 if there were no cases in the counterfactual 371	
simulation. 372	
 373	
Scenario and sensitivity analyses 374	
To assess the effect of the transmission potential within the shelter (T3) and the background 375	
infection rate ("4) on intervention impact, we predicted the impact of the different intervention 376	
strategies for the different T3 estimates from the calibration (T3 = 2.9 (Seattle A), 3.9 (Boston), 377	
6.2 (San Francisco)) and T3 = 1.5 (representing a lower-risk setting) for different background 378	
infection rates estimated from recent incidence of confirmed cases in Seattle, Boston and San 379	
Francisco. The background infection rates were estimated as in Equation (2) but with the limits 380	
in the sum replaced by July 4 and July 17, 2020 (to represent reported incidence for June 27–July 381	
10, 2020, with a 7-day infection-to-reporting delay) and an infection-to-reported-case ratio, p, of 382	
4 [28]. This gave background infection rates ranging from 122/1,000,000/day for Boston to 383	
439/1,000,000/day for San Francisco. We used the limits of this range and the mean across the 384	
three cities, along with a zero background infection rate, for the scenario analyses. The results 385	
are provided in Table 2 in the main text and Supplementary Tables 9 and 10. We also assessed 386	
the variation in the probability of averting an outbreak under each intervention strategy for a 387	
larger number of background infection rates over the same range (Figure 1 in the main text). 388	



 389	
We assessed the sensitivity of the intervention impact estimates to uncertainty in key natural 390	
history and intervention parameters (relative infectiousness of subclinical infection and the early 391	
infectious stage, sensitivities and specificities of symptom screening and PCR tests, testing and 392	
masking compliances, and mask effectiveness) by simulating each intervention strategy with all 393	
combinations of minimum and maximum values of these parameters over their uncertainty 394	
ranges (Supplementary Table 5) for the base case background infection rate of 395	
122/1,000,000/day. We then calculated the minimum and maximum values of the outcome 396	
measures (probability of averting an outbreak and reduction in total numbers of infections and 397	
clinical cases) over all parameter combinations to generate uncertainty intervals around the base 398	
case estimates of the outcome measures (Table 2 in the main text). The sensitivity of the 399	
probability of averting an outbreak to variation in the different parameter values is shown in 400	
Supplementary Figure 9 and discussed in the main text.  401	



Supplementary results 402	
 403	
Model calibration 404	
Supplementary Figure 10 shows the posterior distributions and pairwise correlation plots for the 405	
calibrated parameters T3, s3 and o for each of the shelters. The considerable uncertainty in the 406	
parameter estimates due to the predominantly cross-sectional aggregate nature of the data is 407	
reflected in the  broad posterior distributions, covering most of the range of the prior 408	
distributions for the parameters for all the shelters except the San Francisco shelter, and the 409	
strong correlation between T3 and o for the Boston and San Francisco shelters. 410	
The effective sample sizes of the output for the different shelters ranged between 640 for Seattle 411	
shelter C and 951 for the San Francisco shelter, indicating that a sufficient number of particles 412	
was used to estimate the posterior distributions. The acceptance rates varied across shelters and 413	
decreased over successive generations, remaining above 50% for all of the Seattle shelters but 414	
decreasing to 4% for the San Francisco shelter, but overall suggest that the algorithm sampled 415	
efficiently from the posterior distributions. 416	
 417	
Impact of infection control strategies 418	
The relative impact of the different infection control strategies on reducing cumulative infection 419	
incidence followed the same pattern as the probability of averting an outbreak (cf. 420	
Supplementary Table 10 with Table 2 in the main text and Supplementary Table 9). However, 421	
the percentage reduction in cumulative incidence varied non-linearly with T3 due to the bimodal 422	
nature of the outbreak size distribution (Supplementary Figures 6–8), such that the highest 423	
percentage reductions were achieved for the T3 = 2.9 scenario. Daily symptom screening alone, 424	
and daily symptom screening with relocation of high-risk individuals led to reductions in 425	
cumulative incidence of 9% for T3 = 6.2 to 45% and 43% for T3 = 2.9. Twice-weekly PCR 426	
testing of staff provided modest additional benefit, increasing the percentage reduction to 13-427	
54%. Reductions under universal masking and twice-weekly PCR testing of all residents and 428	
staff were much greater (51–75% and 37–81%), though the impact of PCR testing attenuated 429	
more than that of masking with increasing T3. The highest percentage reductions of 71–90% 430	
were achieved under the combination strategy, with the biggest gain from combining 431	
interventions occurring in the highest transmissibility setting (T3 = 6.2).  432	
 433	
The pattern of impact of the intervention strategies in terms of reduction in total numbers of 434	
clinical cases was the same (Supplementary Table 10), except for relocation of high-risk 435	
individuals, which led to greater percentage reductions in clinical cases than symptom screening 436	
and routine PCR testing of staff. Total numbers of hospitalizations and deaths over 30 days were 437	
small with or without interventions (medians ≤ 4) and therefore not considered relevant at the 438	
scale of a single shelter. 	 	439	



Supplementary Table 1. Definition of states in the transmission model 440	
State Symbol Infectious Symptomatic Detectable viral load Immune 

Susceptible !(#) û û û û 
Exposed to infection ℰ(#) û û û û 
Early subclinical 
infection 

ℐ!,#(#) ü û ü û 

Late subclinical 
infection 

ℐ!,$(#) ü û/ü (no/mild 
symptoms) 

ü û 

Early clinical infection ℐ%,#(#) ü û ü û 
Late clinical infection ℐ%,$(#) ü ü ü û 
Recovered ℛ(#) û û ü/û ü 

 441	
  442	



Supplementary Table 2. Risk of clinical symptoms and hospitalization by age 443	
group and co-morbidity status  444	
Risk group Probability of 

developing clinical 

symptoms, !(#.) 

Probability of 

hospitalization for 

clinical cases 

Probability of 

death for 

hospitalized cases 

admitted to ICU 

Low risk: age <60 yrs + 
no co-morbidities 

0.473 0.040 0.22 

Moderate risk: age <60 
yrs + co-morbidities 

0.473 0.085 0.58 

High risk: age ≥60 yrs + 
no co-morbidities 

0.747 0.289 0.52 

Very high risk: age ≥60 
yrs + co-morbidities 

0.747 0.618 1 

 445	
  446	



Supplementary Table 3. Numbers of PCR-positive individuals by day of test result 447	
and daily new symptom onsets in San Francisco shelter March 28–April 10, 2020  448	
Date Number 

tested in 

random 

testing 

Number 

PCR-

positive in 

random 

testing  

Number of 

early 

symptomatic 

cases tested 

Number of early 

symptomatic 

cases PCR-

positive 

Number of new 

symptom onsets 

Mar 28 1 0 0 - 2 
Mar 29 1 0 0 - 0 
Mar 30 2 0 1 0 3 
Mar 31 0 - 0 - 2 
Apr 1 0 - 0 - 3 
Apr 2  0 - 0 - 1 
Apr 3  0 - 0 - 1 
Apr 4 1 0 1 1 2 
Apr 5  0 - 1 1 3 
Apr 6 0 - 3 2 7 
Apr 7 1 0 5 5 3 
Apr 8 89 35 - - 4 
Apr 9  64 44 - - 16 
Apr 10  5 1 - - 15 

 449	
  450	



Supplementary Table 4. Numbers of residents and staff PCR tested and PCR 451	
positive at three shelters in Seattle during two testing events March 30–April 1, 452	
2020 and April 7–8, 2020 453	
Shelter Testing event 1 (Mar 30–Apr 1, 2020) Testing event 2 (Apr 7–8, 2020) 

 No. tested No. (%) positive No. tested No. (%) positive 

Seattle A*      
Residents 43 7 (16.3) - - 
Staff 15 4 (26.7) - - 

Seattle B     
Residents 74 2 (2.7) 52 4 (7.7) 
Staff 2 0 (0) 8 1 (12.5) 

Seattle C     
Residents 37 6 (16.2) 44 10 (22.7) 
Staff 10 0 (0) 7 1 (14.3) 

* Shelter A closed April 5, 2020, so data from testing event 2 was not used. 454	
 455	
  456	



Supplementary Table 5. Input parameters for microsimulation of COVID-19 transmission in homeless shelters  
Parameter Symbol Base case value Range in sensitivity analysis References 
Demography     
Number of residents     

Seattle A  43 - [31] 
Seattle B  109 - [31] 
Seattle C  93 - [31] 
Boston  408 - [42] 

San Francisco  
Time-varying (see 
Supplementary Figure 2) -  

Number of staff     
Seattle A  15 - [31] 
Seattle B  8 - [31] 
Seattle C  10 - [31] 
Boston  50 - [42] 
San Francisco  64 -  

Age group of individual ! (<60 years, ≥60 
years) "! Shelter-specific (see text)  [31,32] 
     
Natural history      
Mean duration of latent infection period, 
days #" 3 - [6] 
Shape parameter of negative-binomially-
distributed latent infection period $" 4  [1] 
Mean duration of early infectious stage 
(subclinical/clinical), days ## 2.3 - [6] 
Shape parameter of negative-binomially-
distributed early infectious stage 
(subclinical/clinical) $# 4  [1] 
Mean duration of late infectious stage 
(subclinical/clinical), days  #$ 8  - [6,9,43,44] 
Shape parameter of negative-binomially-
distributed late infectious stage 
(subclinical/clinical) $$ 4  [1] 



Relative infectiousness of subclinical 
infection to clinical infection ℎ 1 0.5–1 [8,45,46] 
Relative infectiousness of early infectious 
stage to late infectious stage & 2 1–3 [6,7] 
Probability of developing clinical 
symptoms '("!) 

Age-dependent (see 
Supplementary Table 2) - [1] 

Mean duration of detectable viral load 
from start of late infectious stage, days  20 - [6,9–13] 
Minimum duration of detectable viral load 
from start of late infectious stage, days  5 - [6,9–13] 
Maximum duration of detectable viral load 
from start of late infectious stage, days  37 - [11,13] 

Mean time from symptom onset to 
hospitalization, days  8  

Assumed same as 
duration of late 
infectious stage [24,47] 

Probability of hospitalization for clinical 
cases    

Age- and co-morbidity 
dependent (see 
Supplementary Table 2) - [4] 

Probability of ICU admission among 
hospitalized cases  0.261 - [3] 

Probability of death for hospitalized cases 
admitted to ICU  

Age- and co-morbidity 
dependent (see 
Supplementary Table 2) - [4] 

Infection-to-reported-case ratio * 10  [27] 
Background infection rate in community 
outside shelter, infections/1,000,000 
person-days !%    

Seattle A  561  [21] 
Seattle B  543  [21] 
Seattle C  543  [21] 
Boston  2018  [22] 
San Francisco  445  [23] 

Relative risk of infection for homeless 
individuals $ 2   
Background infection rate in homeless 
community outside shelter, 
infections/1,000,000 person-days + = $!%    



     
Intervention scenarios     
Simulation duration, days  30  Assumed 
Number of residents  250  Assumed 
Number of staff  50  Assumed 
Initial number of infected individuals  1 (assumed latent)  Assumed 

Age- and co-morbidity stratification  
Same as for San Francisco 
shelter  Assumed 

Basic reproduction number -&    
“low-risk”  1.5  Assumed 
“Seattle”  2.9  Calibrated 
“Boston”  3.9  Calibrated 
“San Francisco”  6.2  Calibrated 

Infection-to-reported-case ratio * 4  [28] 
Background infection rate in community 
outside shelter, infections/1,000,000 
person-days !%  0–439  

No background infection  0   
Low  122  [22] 
Moderate  253  [21–23] 
High  439  [23] 

Symptom screening     
Sensitivity  0.4 0.3–0.5 Assumed based on [48] 
Specificity  0.9 0.8–0.9 Assumed 
Compliance of symptomatic individuals 
with PCR testing, %  80 50–100 Assumed 

PCR testing     
Sensitivity  0.75 0.6–0.9 [17–20] 
Specificity  1 0.95–1 [17,20] 
Frequency  Twice weekly Daily–Monthly [49–51] 



Compliance, %  80 50–100 Assumed 
Masks     

Effectiveness (reduction in 
transmission)  30  10-50 [52–57] 
Compliance, %  80 50–100 Assumed 

 
  



Supplementary Table 6. Different intervention strategies tested 
Strategy Interventions 
 Daily 

symptom 
screening 

Twice-
weekly 
PCR 
testing of 
residents 

Twice-
weekly 
PCR 
testing of 
staff 

Universal 
masking 

Relocation 
of high-risk 
individuals 

(1) Symptom screening ü	 û	 û	 û	 û	
(2) Routine PCR testing ü	 ü	 ü	 û	 û	
(3) Universal mask 
wearing 

ü	 û	 û	 ü	 û	
(4) Relocation of high-
risk individuals 

ü	 û	 û	 û	 ü	
(5) Routine PCR testing 
of staff only 

ü	 û	 ü	 û	 û	
(6) Combination strategy ü ü ü ü ü 

 
  



Supplementary Table 7. Estimated epidemiologic parameters based on observed 
outbreak data from homeless shelters in Seattle, Boston and San Francisco 

Shelter  

Basic 
reproduction 
number !!, 
median (95% CI)* 

Number of latently 
infected individuals who 
initially entered shelter 
"!, median (95%CI)* 

Number of days prior to first 
reported infection that 
infected individuals entered 
shelter† #, median (95% CI)* 

Seattle A  2.9 (1.1–7.3) 3 (1–5) 16 (9–25) 
Seattle B 2.9 (1.1–6.7) 3 (1–5) 10 (7–14) 
Seattle C 3.0 (1.2–7.2) 3 (1–5) 15 (8–24) 
Boston 3.9 (2.2–7.6) 3 (1–5) 15 (9–23) 
San Francisco 6.2 (4.0–7.9) 3 (1–5) 21 (17–26) 

CI = credible interval. 

Data was available for three shelters in Seattle (labeled A-C).  

* 95% CIs calculated as 2.5%–97.5% quantile interval of posterior distribution. 
† ! is calculated from the estimated time since introduction of infection into the shelter at the end of data collection, ", as:  

! = date	first	case	identified − (end	date	of	data	collection − ") + 1  

  



Supplementary Table 8. Estimated cumulative infection incidence at the end of 
the PCR testing period in homeless shelters in Seattle, Boston and San Francisco  

Shelter  

Cumulative 
infection incidence, 
median (95% CI)*, % 

Seattle A  40 (10–81) 
Seattle B 14 (1–41) 
Seattle C 37 (12–71) 
Boston 64 (52–78) 
San Francisco 83 (72–92) 

CI = credible interval. 

* 95% CIs calculated as 2.5%–97.5% quantile interval of posterior distribution. 
 



Supplementary Table 9. Probability of averting an outbreak over a 30-day period in a generalized homeless 
shelter* with simulated infection control strategies for different background infection rates in the community 
outside the shelter 
 Probability of averting an outbreak 

Infection control strategy  
!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & (San 
Francisco) 

Background infection rate = 0 
(1) Symptom screening  0.61 0.31 0.21 0.12 
(2) Routine twice-weekly PCR 
testing 0.78 0.40 0.28 0.12 
(3) Universal mask wearing 0.73 0.44 0.31 0.16 
(4) Relocation of high-risk 
individuals 0.61 0.31 0.21 0.11 
(5) Routine twice-weekly PCR 
testing of staff only 0.67 0.34 0.24 0.13 
(6) Combination strategy 0.86 0.56 0.41 0.20 

Background infection rate = 253/1,000,000/day 
(1) Symptom screening  0.20 0.04 0.02 0.01 
(2) Routine twice-weekly PCR 
testing 0.36 0.14 0.03 0.02 
(3) Universal mask wearing 0.31 0.08 0.04 0.01 
(4) Relocation of high-risk 
individuals 0.19 0.04 0.02 0.01 
(5) Routine twice-weekly PCR 
testing of staff only 0.21 0.05 0.02 0.00 
(6) Combination strategy 0.51 0.23 0.09 0.02 

Background infection rate = 439/1,000,000/day 
(1) Symptom screening  0.07 0.01 0.01 0.00 
(2) Routine twice-weekly PCR 
testing 0.22 0.03 0.01 0.00 
(3) Universal mask wearing 0.14 0.02 0.01 0.01 
(4) Relocation of high-risk 
individuals 0.07 0.01 0.01 0.00 
(5) Routine twice-weekly PCR 
testing of staff only 0.08 0.01 0.00 0.00 
(6) Combination strategy 0.34 0.08 0.03 0.01 

!! = basic reproduction number. 
* Generalized homeless shelter defined as 250 residents and 50 staff. 



Supplementary Table 10. Reductions in the total number of infections and symptomatic cases over a 30-day 
period in a generalized homeless shelter* with simulated infection control strategies for different background 
infection rates in the community outside the shelter 
Infection control strategy  Median reduction in total infections, % Median reduction in total symptomatic cases, % 

 
!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & 
(San 
Francisco) 

!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & 
(San 
Francisco) 

Background infection rate = 0         
(1) Symptom screening  50 60 41 10 40 55 43 24 
(2) Routine PCR testing 86 85 78 38 60 75 75 53 
(3) Universal mask wearing 75 87 83 56 59 77 79 67 
(4) Relocation of high-risk 
individuals 50 60 40 10 44 58 48 31 
(5) Routine PCR testing of 
staff only 71 65 56 17 50 54 52 35 
(6) Combination strategy 93 95 94 81 75 88 90 86 

Background infection rate = 122/1,000,000/day 
(1) Symptom screening  38 45 40 9  33 41 42 23 
(2) Routine PCR testing 62 81 79 37 50 72 76 50 
(3) Universal mask wearing 55 75 74 51 49 67 71 62 
(4) Relocation of high-risk 
individuals 38 43 38 9 40 47 48 33 
(5) Routine PCR testing of 
staff only 50 54 45 13 33 47 47 28 
(6) Combination strategy 71 89 90 74 63 86 89 82 

Background infection rate = 253/1,000,000/day 
(1) Symptom screening  33 43 31 5 29 39 32 19 
(2) Routine PCR testing 55 73 64 24 44 67 60 42 
(3) Universal mask wearing 53 71 65 39 44 63 63 56 
(4) Relocation of high-risk 
individuals 32 40 30 5 35 45 40 27 
(5) Routine PCR testing of 
staff only 39 49 38 7 33 44 39 21 
(6) Combination strategy 61 84 82 62 58 81 80 75 

Background infection rate = 439/1,000,000/day 
(1) Symptom screening  28 37 25 4 20 36 30 15 
(2) Routine PCR testing 52 66 60 20 45 61 62 42 
(3) Universal mask wearing 45 65 61 28 38 60 62 48 



(4) Relocation of high-risk 
individuals 27 35 24 3 29 42 38 26 
(5) Routine PCR testing of 
staff only 34 42 33 4 27 39 38 19 
(6) Combination strategy 61 79 81 56 58 76 81 74 

!! = basic reproduction number. 
* Generalized homeless shelter defined as 250 residents and 50 staff. 
 	



Supplementary Table 11. Numbers of PCR tests used under each infection control 
strategy 

Infection control 
strategy  

Mean number of tests 
used per person per 
month* 

(1) Symptom screening  2.0 
(2) Routine PCR testing 6.6 
(3) Universal mask 
wearing 2.0 
(4) Relocation of high-
risk individuals 2.0 
(5) Routine PCR testing 
of staff only 2.8 
(6) Combination strategy 6.6 

* All strategies use tests as they all include daily symptom screening. 
Numbers only shown for !! = 2.9 (Seattle), chosen as representative example, and a background infection rate of 
122/1,000,000/day as numbers vary little with !! and background rate. 
  



 
 
Supplementary Figure 1. Structure of stochastic individual-level susceptible-
exposed-infectious-recovered ("-#-$-%) model of COVID-19 transmission in 
homeless shelter. Notation as defined in Supplementary Tables 1 and 5 and Equation 
(1). 
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Supplementary Figure 2. Daily numbers of residents by risk group present in the 
San Francisco shelter March 29–April 10, 2020. Shelter was disbanded April 11. 
	 	



 
  
Supplementary Figure 3. Distribution of duration of detectable viral load from 
start of late infectious stage 
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Supplementary Figure 4. Calibration of microsimulation to observed PCR testing 
data from outbreaks in homeless shelters in Seattle, Boston and San Francisco. 
Data was available for three shelters in Seattle (labeled A-C). Vertical black lines show 
exact binomial 95% confidence intervals for observed numbers of PCR-positive 
individuals in random testing.  

5.0

7.5

10.0

12.5

15.0

17.5

Mar 31 Apr 01 Apr 02
Date

N
o.

 P
C

R
 p

os
iti

ve
Seattle A

0

3

6

9

Apr 01 Apr 03 Apr 05 Apr 07 Apr 09
Date

N
o.

 P
C

R
 p

os
iti

ve

Seattle B

0

5

10

15

Apr 01 Apr 03 Apr 05 Apr 07 Apr 09
Date

N
o.

 P
C

R
 p

os
iti

ve

Seattle C

140

150

160

170

180

Apr 02 Apr 03 Apr 04
Date

N
o.

 P
C

R
 p

os
iti

ve

Boston

0

10

20

30

40

50

Mar 30 Apr 06
Date

N
o.

 P
C

R
 p

os
iti

ve Type of testing
early symptomatic cases (observed)

early symptomatic cases (simulated)

random (simulated)

random (observed)

San Francisco



A            B 

					 	
Supplementary Figure 5. Calibration of microsimulation to additional data from 
San Francisco shelter outbreak. (A) Calibration to daily numbers of symptom onsets. 
Black dots show reported number of symptom onsets, grey lines show simulation 
output. (B) Estimated daily numbers of new infections over time in 1000 calibrated 
simulations. Black line and grey shaded region show mean and range respectively 
across all simulations. 
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Supplementary Figure 6. Outbreak size distributions 30 days after introduction of 
infection in a generalized homeless shelter under different infection control 
strategies for &! = (. * (low-risk setting). Red and green histograms show outbreak 
size distributions with no interventions and under the intervention strategy respectively. 
Background infection rate of 122/1,000,000 person-days. 
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Supplementary Figure 7. Outbreak size distributions 30 days after introduction of 
infection in a generalized homeless shelter under different infection control 
strategies for &! = +. , (Seattle). Red and green histograms show outbreak size 
distributions with no interventions and under the intervention strategy respectively. 
Background infection rate of 122/1,000,000 person-days.	  
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Supplementary Figure 8. Outbreak size distributions 30 days after introduction of 
infection in a generalized homeless shelter under different infection control 
strategies for &! = -. + (San Francisco). Red and green histograms show outbreak 
size distributions with no interventions and under the intervention strategy respectively. 
Background infection rate of 122/1,000,000 person-days. 
	 	

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

1

1) Symptom screening

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

2

2) Routine PCR testing

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

3

3) Universal mask wearing

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

4

4) Relocation of high−risk individuals

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

5

5) Routine PCR testing of staff only

0.000

0.005

0.010

0.015

0.020

0 100 200 300
Total no. infections

D
en

si
ty Strategy

None

6

6) Combination strategy



	
Supplementary Figure 9. Spider diagrams showing the sensitivity of the 
estimated probability of averting an outbreak to variation in key natural history 
and intervention parameters for different &! values. The horizontal axis shows the 
percentage variation in each parameter relative to its base case value (see 
Supplementary Table 5). The vertical axis shows the mean probability of averting an 
outbreak for each parameter across all combinations of the minimums and maximums 
of the other parameter values. 
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Supplementary Figure 10. Posterior distributions and pairwise correlation plots for calibrated model parameters 
– !!, "! and # – for (A)-(C) Seattle shelters A–C, (D) Boston shelter and (E) San Francisco shelter. $" = basic 
reproduction number; %" = number of latently infected individuals who initially entered the shelter; & = number of days 
before the end of data collection that these individuals entered the shelter. 
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