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Abstract 

Background Exenatide is a glucagon-like peptide 1 receptor (GLP1R) agonist used in type 2 
diabetes mellitus that has shown promise for Parkinson’s disease in a phase II clinical trial. 
Drugs with genetic evidence are more likely to be successful in clinical trials. In this study 
we investigated whether the genetic technique Mendelian randomization (MR) can 
“rediscover” the effects of exenatide on diabetes and weight, and predict its efficacy for 
Parkinson’s disease. 

Methods We used genetic variants associated with increased expression of GLP1R in blood 
to proxy exenatide, as well as variants associated with expression of DPP4, TLR4 and 15 
genes thought to act downstream of GLP1R or mimicking alternative actions of GLP-1 in 
blood and brain tissue. Using an MR approach, we predict the effect of exenatide on type 2 
diabetes risk, body mass index (BMI), Parkinson’s disease risk and several Parkinson’s 
disease progression markers. 

Results We found that genetically-raised GLP1R expression in blood was associated with 
lower BMI and possibly type 2 diabetes mellitus risk, but not Parkinson’s disease risk, age at 
onset or progression. Reduced DPP4 expression in brain tissue was significantly associated 
with increased Parkinson’s disease risk. 

Conclusions We demonstrate the usefulness of MR using expression data in predicting the 
efficacy of a drug and exploring its mechanism of action. Our data suggest that GLP-1 
mimetics like exenatide, if ultimately proven to be effective in Parkinson’s disease, will be  
through a mechanism that is independent of GLP1R in blood. 
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Introduction 

Modern drug development is remarkably costly and time consuming. It takes approximately 
$1.3 billion and over a decade for a drug to proceed from initial testing in humans to licensing 
(Wouters, McKee, and Luyten 2020), and 90% of drugs that enter phase I clinical trials never 
proceed to be launched (Smietana, Siatkowski, and Møller 2016). Insufficient safety or 
efficacy are the most common reasons drug development projects are unsuccessful, and 
medications for central nervous system disorders are particularly likely to fail (Kesselheim, 
Hwang, and Franklin 2015). One strategy that circumvents safety problems is drug 
repurposing, where already-licensed drugs are used for new medical indications. Since 
licenced medications have passed safety assessment in humans, the same toxicology studies 
do not need to be repeated and so these drugs could reach patients both sooner and at a 
much lower cost (Pushpakom et al., 2018). There are major patent- and regulatory barriers 
to drug repurposing, and robust demonstration of efficacy is a critical step in creating an 
incentive to invest (Pushpakom et al., 2018). As such, more accurate and cost-effective 
approaches for drug target validation must be found. 

Drugs with genetic evidence are considerably more likely to be efficacious (Nelson et al. 
2015), and Mendelian randomization (MR) is a genetic technique that can obtain human 
evidence for efficacy early in the drug development pipeline. MR builds on the principle that 
genetic variants associated with an environmental risk factor mimic exposure thereto 
(Hemani et al. 2018; Evans and Davey Smith 2015). For example, a genetic propensity for 
lower blood glucose is similar to receiving a low-dose glucose-lowering drug throughout life. 
Similarly, genetic variants that are associated with reduced expression levels of a gene 
(expression quantitative trait loci, eQTLs) can be used as proxies to mimic a pharmacological 
antagonist of the encoded proteins (Storm et al. 2020; Schmidt et al. 2020). 

Parkinson’s is a neurodegenerative movement disorder for which finding disease-modifying 
treatments has been a great challenge. In recent years, the drug exenatide has shown 
promise in a phase II clinical trial for Parkinson’s (Athauda et al. 2017). Exenatide is a 
medication used to treat type 2 diabetes mellitus, and it is also known to cause weight loss. 
As a glucagon-like peptide 1 mimetic, exenatide is thought to act on the GLP-1 receptor 
(GLP1R). The protein DPP-4 breaks down GLP-1 in vivo, and there is evidence that toll-like 
receptor 4 (TLR4) may be necessary for intestinal GLP-1 secretion in mice (Wang et al. 
2019). 

In this study we assessed whether MR and eQTL data for the GLP1R pathway can (1) 
”rediscover” the use of exenatide as a treatment for type 2 diabetes mellitus and its effect on 
weight. We then extend this tool to (2) predict the likely efficacy of this drug for Parkinson’s. 

Methods 

MR analyses were performed using R software version 3.6.1 (R Core Team 2019) with the R 
packages “TwoSampleMR” (Hemani et al. 2018) and “MendelianRandomization” (Yavorska 
and Burgess 2017). All expression and GWAS data used are openly available, and full details 
about the recruitment and analyses are provided in the original publications. 
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Mimicking exenatide - genetic instrument development 

We used SNPs associated with the expression of the GLP1R, DPP4 and TLR4 genes in blood 
provided by the eQTLGen consortium (blood samples from 31 684 mostly European-
ancestry individuals). For Parkinson’s-related outcomes, we also looked at gene expression 
data from brain tissue, available from the PsychENCODE consortium (brain tissue samples 
from mostly European-ancestry individuals: 679 healthy controls, 497 schizophrenia, 172 
bipolar disorder, 31 autism spectrum disorder, 8 affective disorder patients) (Võsa et al. 
2018; Wang et al. 2018). We included all SNPs with p < 5 × 10−5. In a secondary analysis, 
we identified SNPs associated with the expression of 15 genes encoding proteins 
hypothesized to be involved in exenatide’s mechanism of action in Parkinson’s: AKT1, AKT2, 
AKT3, FOXO1, FOXO3, GCG, GSK3B, IRS1, MAPK11, MAPK12, MAPK13, MAPK14, MTOR, NFKB1, 
and NFKB2 (Athauda and Foltynie 2016; Athauda et al. 2019). 

Outcome data 

Exenatide is a licensed treatment for type 2 diabetes mellitus, and this drug is known to cause 
weight loss. We therefore used openly available GWAS summary statistics for type 2 diabetes 
mellitus risk (62 892 cases, 592 424 controls) and body mass index (BMI; ~700 000 
individuals) to ascertain if MR using eQTLs can “rediscover” the known effects of exenatide 
(Xue et al. 2018; Yengo et al. 2018). 

For Parkinson’s, we used data pertaining to: disease risk (15 056 cases, 18 618 proxy cases, 
449 056 controls), age at onset (17 996 cases) and 13 markers of progression (4 093 cases): 
total Unified Parkinson’s Disease Rating Scale (UPDRS)/Movement Disorder Society revised 
version total (Parkinson’s progression rating scale), UPDRS parts 1 to 4 (1 = non-motor 
symptoms, 2 = motor symptoms, 3 = motor examination, 4 = motor complications), MOCA 
(cognitive impairment), MMSE (cognitive impairment), SEADL (activities of daily living and 
independence), dementia, depression, dyskinesia, Hoehn and Yahr stage (Parkinson’s 
progression rating scale), and reaching Hoehn and Yahr stage 3 or more (Nalls et al. 2019; 
Blauwendraat et al. 2019; Iwaki et al. 2019). 

Main MR analysis and quality control 

For the main analyses, SNPs were clumped at 𝑟2 = 0.2; this means that if the squared 
correlation coefficient (𝑟2) of two eQTLs for the same gene is greater than 0.2, only the eQTL 
with the smallest p-value will be retained. We applied Steiger filtering to all analyses to 
remove any genes where SNPs explain a greater proportion of variation in the disease 
outcome than variation in the exposure (gene expression). A Wald ratio was calculated for 
each SNP, and for each gene Wald ratios were meta-analysed using inverse-variance 
weighted (IVW), MR-Egger and maximum likelihood methods, incorporating an LD-matrix 
to account for correlation for genes where > 2 SNPs were available (Burgess et al. 2015). 
The MR-Egger intercept, Cochran’s Q and 𝐼2 tests were used to check for directional 
pleiotropy and heterogeneity between SNPs (Hemani et al. 2018; Yavorska and Burgess 
2017). P-values were adjusted for multiple testing using the false discovery rate (FDR) 
method, correcting for the number of genes tested. 
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We used the principal-components-based IVW (IVWPC), factor-based limited information 
maximum likelihood (F-LIML), and factor-based conditional likelihood ratio (F-CLR) 
methods as secondary analyses to probe the robustness of the GLP1R-diabetes association 
(Patel et al. 2020; Burgess et al. 2017). These methods exploit correlation between SNPs and 
build new instruments using principal components or factor analysis, as indicated by the 
name. This is beneficial because highly correlated variants can be included, and there is 
evidence that especially the F-CLR method is robust regardless of instrument strength (Patel 
et al. 2020). Here, SNPs were clumped at 𝑟2 = 0.6, which allows for more correlation between 
eQTLs and so retains a larger number of SNPs per gene (compared to an 𝑟2 cut-off of 0.2). 
For the IVWPC method, we included principal components explaining 99% of variation in 
the weighted correlation matrix (Burgess et al. 2017). 

Results 

In the main analysis, increased expression of GLP1R predicted a reduced diabetes risk at 
nominal significance; DPP4 and TLR4 expression were not associated with type 2 diabetes 
mellitus risk (Figure 1a and Figure S1; Table S1). Raised GLP1R expression predicted a 
significantly reduced BMI, which is consistent with weight loss seen with exenatide use 
(Figure 1c and Figure S2; Table S1). GLP1R passed the MR-Egger intercept and Cochran’s Q 
tests for diabetes (MR-Egger intercept 𝑝 = 0.268, Cochran’s Q 𝑝 = 0.452, 𝐼2 = 0) and BMI 
(MR-Egger intercept 𝑝 = 0.173, Cochran’s Q 𝑝 = 0.107, 𝐼2 = 0.337). We found similar 
results when using the maximum likelihood method, and the MR-Egger estimate tended in 
the same direction of effect. 

Since exenatide is a known drug for diabetes mellitus, we were surprised to find that this 
effect did not remain significant upon multiple testing. Many SNPs are lost during clumping 
at 𝑟2 = 0.2, so we repeated the analysis using the IVWPCA and F-CLR methods, which exploit 
linkage between SNPs and therefore remove fewer SNPs. When clumping at 𝑟2 = 0.6, the IVW, 
IVWPCA and F-CLR methods demonstrated a consistently reduced type 2 diabetes mellitus 
risk with raised GLP1R expression, providing further support for this drug indication (Figure 
2b and Figure S3; Table S3). 

For Parkinson’s, we found no association between GLP1R expression in blood and disease 
risk, age at onset nor any progression outcome (Table S1). Importantly, there were no SNPs 
associated with GLP1R in brain tissue. Raised DPP4 expression in brain tissue however, 
which would be associated with reduced brain GLP-1 levels, predicted a significantly raised 
Parkinson’s risk (Figure 2a and Figure S4; Table S1), and this result passed our quality 
control (MR-Egger intercept 𝑝 = 0.245, Cochran’s Q 𝑝 = 0.057, 𝐼2 = 0.368). Similarly, 
greater DPP4 expression in brain tissue tended to be linked to a younger age at onset, and 
raised TLR4 expression in blood was associated with a later age at onset at nominal 
significance (Figure 2b and Figure S5; Table S2). Although DPP4 expression in blood was not 
associated with Parkinson’s risk nor age at onset, the result tended in the same direction. 
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Figure 1: Forest plots illustrating the MR estimates of GLP1R, DPP4 and TLR4 in blood. 
All results computed per 1-standard-deviation increase in gene expression. P-values were 
corrected for the number of genes tested using the FDR method. (A) Wald ratio or IVW 
estimates of GLP1R, DPP4 and TLR4 in blood for type 2 diabetes mellitus, clumping at 𝑟2 = 0.2. 
(B) Results for GLP1R in type 2 diabetes mellitus using IVW, F-LIML, F-CLR and IVWPC methods, 
clumping at 𝑟2 = 0.6. The F-CLR method provides a confidence interval and p-value, but not a 
point estimate. (C) Wald ratio or IVW estimates of GLP1R, DPP4 and TLR4 in blood for BMI, 
clumping at 𝑟2 = 0.2. 95% CI, 95% confidence interval; NA, not applicable; OR, odds ratio; SD, 
standard deviation; T2DM, type 2 diabetes mellitus. 
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Figure 2: Forest plot illustrating the MR estimates of GLP1R expression in blood, as well 
as DPP4 and TLR4 expression in in blood and brain tissue. All results computed per 1-SD 
increase in gene expression. Results are colour-coded according to the tissue (red = blood, blue 
= brain tissue). P-values were corrected for the number of genes tested using the FDR method. 
(A) Wald ratio or IVW estimates of GLP1R, DPP4 and TLR4 in blood and brain tissue for 
Parkinson’s risk, clumping at 𝑟2 = 0.2. (B) Wald ratio or IVW estimates of GLP1R, DPP4 and 
TLR4 in blood and brain tissue for Parkinson’s age at onset, clumping at 𝑟2 = 0.2. 95% CI, 95% 
confidence interval; OR, odds ratio; SD, standard deviation. 
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For the 15 additional genes tested, AKT3 expression in brain tissue was associated with the 
Parkinson’s risk and MOCA scores in Parkinson’s, and GSK3B expression in blood was 
associated with developing dyskinesias (Table S1 and S2). Both genes passed the MR-Egger 
intercept and Cochran’s Q tests for these outcomes. Expression of AKT1, AKT2, MAPK13 and 
MTOR were associated with BMI (Table S1 and S2). 

Discussion 

In this study, we demonstrate that MR using eQTLs can predict the efficacy of a drug; we 
found that genetically-raised expression of GLP1R is causally related to a lower BMI and 
possibly type 2 diabetes mellitus risk, “rediscovering” the effects of GLP1 receptor agonists 
in these conditions. While GLP-1 receptor agonists and DPP4 inhibitors are used as 
symptomatic agents to control blood sugar through effects on insulin release, there is also 
evidence of a trophic effect on beta islet cells resulting from GLP-1 receptor stimulation that 
may mitigate the risk of developing type 2 diabetes (Foltynie and Athauda 2020). 

We use several MR methods and quality control metrics with different underlying 
assumptions to probe the robustness of our results, including methods that relax the 
requirement of strictly independent SNPs. Although exenatide has shown much promise in 
Parkinsons (Athauda et al. 2017), we found no effect linking peripheral GLP1R and 
Parkinson’s risk, age at onset or progression. Notably, there is previous genetic evidence that 
a rare variant in GLP1R is associated with lower type 2 diabetes mellitus risk but not 
Parkinson’s risk (Scott et al. 2016). 

Moreover, we find that raised DPP4 expression is associated with an increased Parkinson’s 
risk. Interestingly, there is longitudinal observational evidence that diabetic patients taking 
DPP4 inhibitors have a lower incidence of Parkinson’s disease (Brauer et al. 2020). Since 
DPP4 breaks down GLP-1, this indicates that any protective actions of GLP-1’s may not 
involve GLP1R in blood and that exenatide may be effective in Parkinson’s through an 
alternative mechanism. 

It is unclear whether any effects of GLP-1 receptor agonists in Parkinson’s are related to 
peripheral or central GLP1R stimulation. We found no eQTLs for GLP1R in brain tissue, and 
Parkinson’s risk, age of onset or progression may be modulated by GLP1R stimulation in the 
brain. This explanation is supported by our results that raised DPP4 and reduced TLR4 
expression in brain tissue may be linked to a younger age at onset of Parkinson’s. Although 
these genes reached nominal significance for age at onset, this trend further suggests that 
GLP-1 may influence Parkinson’s independently of GLP1R in blood. Furthermore, Athauda 
and colleagues analysed the neuronal-derived exosomes from Parkinson’s patients in the 
Exenatide-Parkinson’s trial, and they found that patients treated with exenatide had elevated 
total Akt at 48 weeks (Athauda et al. 2019). When looking at 15 additional proteins thought 
to be involved in the exenatide pathway, we found evidence for target engagement with the 
Akt-signalling pathway. This potently illustrates how MR can be used to explore molecular 
mechanisms of action. 
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Although we have included the largest Parkinson’s progression GWAS available, there is a 
possibility that exenatide acting on GLP1R in blood has a weaker effect on Parkinson’s 
progression than is detectable by this MR study. For our disease risk and age at onset 
outcomes, our power is boosted by large GWAS sample sizes. This MR study therefore mostly 
pertains to whether exenatide could prevent or delay disease, rather than halt progression. 
This is an important consideration, because previous work suggests a disconnect between 
the molecular mechanisms driving Parkinson’s risk versus progression (Storm et al. 2020; 
Nalls et al. 2019; Iwaki et al. 2019; Blauwendraat et al. 2019). 

Furthermore, increased GLP1R expression in blood may not accurately represent the 
biological consequences of exenatide, which involve GLP-1 receptor stimulation in 
pancreatic cells. It may be more appropriate to use expression data from biologically 
relevant tissue such as the pancreas for diabetes and the brain for Parkinson’s disease, 
however the sample sizes of current tissue-diverse eQTL datasets are small compared to 
whole-blood projects. Similarly, SNPs associated with protein levels (pQTLs) may be a more 
suitable mimic, however to our knowledge no pQTL has been found for the GLP-1 receptor. 

While the randomized controlled trial remains the gold-standard for evaluate a drug, MR has 
shown promise in predicting the success of a drug. Two MR studies about the effect of serum 
urate levels on Parkinson’s found no causal effect (Kia et al. 2018; Kobylecki and 
Nordestgaard 2018), and sooner thereafter a phase III clinical trial was terminated ahead of 
schedule due to insufficient efficacy (https://www.ninds.nih.gov/Disorders/Clinical-
Trials/Study-Urate-Elevation-Parkinsons-Disease-Phase-3-SURE-PD3/). Many advocate the 
use of MR and QTL data in in drug development (Evans and Davey Smith 2015; Schmidt et 
al. 2020; Storm et al. 2020), and this project provides a valuable example for the potential 
and limitations of this approach. 
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Data sharing 

The GWAS data used by this study are publicly available as stated in the original publications. 
The supplementary information contains full results. We make our code openly available at 
https://github.com/catherinestorm/mr_exenatide. 
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Figure S1: Scatter Plot. GLP1R and type 2 diabetes type 2 diabetes; blood. 
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Figure S2: Scatter Plot. GLP1R and BMI; blood. 
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Figure S3: Scatter Plot. GLP1R and type 2 diabetes risk clumping at 𝑟2 = 0.6; blood. 
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Figure S4: Scatter Plot. DPP4 and Parkinson’s disease risk; brain tissue 
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Figure S5: Scatter Plot. TLR4 and Parkinson’s disease age at onset; blood. 
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