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Abstract 

Comparing transcript levels between healthy and diseased individuals allows the identification 

of differentially expressed genes, which may be causes, consequences or mere correlates of the disease 

under scrutiny. Here, we propose a bi-directional Transcriptome-Wide Mendelian Randomization 

(TWMR) approach that integrates summary-level data from GWAS and whole-blood eQTLs in a MR 

framework to investigate the causal effects between gene expression and complex traits.  

Whereas we have previously developed a TWMR approach to elucidate gene expression to 

trait causal effects, here we are adapting the method to shed light on the causal imprint of complex 

traits on transcript levels. We termed this new approach reverse TWMR (revTWMR). Integrating bi-

directional causal effects between gene expression and complex traits enables to evaluate their 

respective contributions to the correlation between gene expression and traits. We uncovered that 

whole blood gene expression-trait correlation is mainly driven by causal effect from the phenotype on 

the expression rather than the reverse. For example, BMI- and triglycerides-gene expression correlation 

coefficients robustly correlate with trait-to-expression causal effects (r=0.09, P=1.54x10-39 and r=0.09, 

P=1.19x10-34, respectively), but not detectably with expression-to-trait effects.  

Genes implicated by revTWMR confirmed known associations, such as rheumathoid arthritis 

and Crohn’s disease induced changes in expression of TRBV and GBP2, respectively. They also shed 

light on how clinical biomarkers can influence their own levels. For instance, we observed that high 

levels of high-density lipoprotein (HDL) cholesterol lowers the expression of genes involved in 

cholesterol biosynthesis (SQLE, FDFT1) and increases the expression of genes responsible for 

cholesterol efflux (ABCA1, ABCG1), two key molecular pathways in determining HDL levels. 

Importantly, revTWMR is more robust to pleiotropy than polygenic risk score (PRS) approaches which 

can be misled by pleiotropic outliers. As one example, revTWMR revealed that the previously reported 

association between educational attainment PRS and STX1B is exclusively driven by a highly 

pleiotropic SNP (rs2456973), which is strongly associated with several hematological and 

anthropometric traits.   

In conclusion, our method disentangles the relationship between gene expression and 

phenotypes and reveals that complex traits have more pronounced impact on gene expression than the 

reverse. We demonstrated that studies comparing the transcriptome of diseased and healthy subjects are 

more prone to reveal disease-induced gene expression changes rather than disease causing ones.  
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Introduction 

To unravel the genetics of complex diseases and traits causes, multiple approaches have 

concentrated on gene expression, in particular by contrasting the expression of RNA transcripts in two 

different groups of samples to understand how genes are expressed in health and disease [1-4]. The 

purpose of such an approach is to identify differentially expressed genes (DEG) that can be used to 

obtain mechanistic insights from diseases or serve as clinical biomarkers for early diagnostics. 

However, DEG analyses suffer from the inability to distinguish between causes, consequences or mere 

correlations between gene expression and phenotypes. Ideally, to understand the contributions to the 

observed trait-expression correlations, both the assessment of bi-directional causal effects and the 

impact of (unmeasured) confounders is needed. In turn we argue that if the observed correlations and 

bi-directional causal effects are estimated, the contribution of such confounders can be gauged. 

Genome-wide association studies (GWAS) identified thousands of common genetic variants 

associated with complex human traits [5] and studies on expression quantitative trait loci (eQTLs) 

showed how genetic variants contribute to the regulation of gene expression levels [6]. The overlay of 

the two methodologies showed that trait-associated SNPs are three times more likely to be eQTLs [7-

10], suggesting that gene expression is a reliable intermediary between DNA variation and higher-order 

complex phenotypes. Starting from this hypothesis, many statistical approaches integrating GWAS and 

eQTLs summary statistics have been proposed to detect these overlapping associations [9, 11, 12]. 

However, while these studies aim to identify genes whose (genetically determined) expression is 

significantly associated to complex traits, they do not aim to estimate the strength of the causal effect 

and are unable to distinguish causation from pleiotropy (i.e. when a genetic variant independently 

affects gene expression and phenotype). The most efficient way to address this challenge is to combine 

summary level data from eQTL and GWAS studies in a two-sample Mendelian Randomization 

framework [13] to evaluate whether gene expression has a causal influence on a complex trait. Such 

methods successfully identified thousands of genes associated with complex traits.  

Yet, these transcriptome-wide approaches use only cis-eQTLs as instruments to tease out the 

causal effect of gene expression on a complex trait while the variation in gene expression may be 

secondary to, rather than causal for, the disease process (‘reverse causation’). Disease-associated 

genetic variants affect expression levels more often in trans than in cis [14]. Hence, polygenic risk 

scores (PRS) have been used to evaluate the association between genetically predicted complex traits 

and gene expression levels [14]. However, such PRS-based approaches are prone to detect mere 

associations due to pleiotropic SNPs. To circumvent this issue and elucidate the impact of diseases on 

the transcriptome program at a large scale in a principled way, we applied a reverse Transcriptome-

Wide Mendelian Randomization approach (called revTWMR), which integrates summary-level data 

from GWAS and trans-eQTLs studies in a MR framework to estimate the causal effect of phenotypes 

on gene expression. 

By combining revTWMR results with the causal effects of gene expression on phenotypes - 

estimated by Transcriptome-Wide Mendelian Randomization (TWMR) [15] - we obtained a clear 

picture of the bi-directional causal effects between gene expression and complex traits (Figure 1) and 

evaluated their contribution to their observational correlation.  
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Figure 1. Schematic representation of how TWMR and revTWMR dissect bi-directional causal and 

confounder contributions to the observed correlation between gene expression and phenotype. 

 
 

 

Results 

Overview of the approach 

We have recently developed a transcriptome-wide summary statistics-based Mendelian 

Randomization approach (TWMR [15]) integrating summary-level data from GWAS and cis-eQTL 

studies. Applying TWMR to summary data from whole blood cis-eQTL meta-analyses from > 32,000 

individuals (eQTLGen Consortium [14]) and to the largest publicly available GWAS summary 

statistics revealed an atlas of putative functionally relevant genes for several complex human traits 

[15]. This approach can be reversed to design a multi-instrument MR approach to estimate the causal 

effect of a phenotype (exposure) on gene expression (outcome) (revTWMR, Figure 1). For each gene, 

using the inverse–variance weighted meta-analysis of ratio estimates from summary statistics [16], we 

estimate the causal effect of a phenotype on the expression of the probed gene as 

𝛼 =  
𝛽!𝛾!!

!!!

𝛽!!!
!!!

 

where 𝛽! and 𝛾! are the effect sizes of 𝑆𝑁𝑃!  on the phenotype and on the expression level of 

the probed gene, respectively, and N is the number of independent SNPs used as instrument variables.  

  

Applying revTWMR to GWAS and eQTL summary statistics 

We applied revTWMR to data to assess causal associations between 12 complex traits - body 

mass index (BMI), Crohn’s disease (CD), educational attainment (EDU), fasting glucose (FG), high-

density lipoprotein (HDL), height, low-density lipoprotein (LDL), rheumatoid arthritis (RA), 

schizophrenia (SCZ), total cholesterol (TC), triglycerides (TG) and waist-to-hip ratio adjusted for BMI 

(WHRadjBMI) - and the expression of 19,942 genes. We combined summary whole blood trans-

eQTLs data from the eQTLGen Consortium [14], with large publicly available GWAS for the traits of 

interest [17-25]. In parallel, we performed TWMR analyses on the same set of traits, allowing to test 

for the presence of bi-directional effects. In total, we found 69 genes significantly affected by at least 

one phenotype, often corroborating known biological associations (PrevTWMR < 2.5 × 10−6 = 0.05/19,942) 

(Supplementary Table 1).  

 The most influential trait in our analysis was rheumathoid arthritis, which significantly 

influenced the expression of 33 genes. These were analyzed for functional enrichment with KEGG 

Phenotype	Gene	expression	SNP	

Confounders	

SNP	
TWMR	

revTWMR	
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pathway [26], Gene Ontology [27] and InterPro [28]. Immunoglobulin InterPro functional groups 

(IPR013106, IPR007110 and IPR013783) were the top significantly enriched classes (Supplementary 

Table 2). Closer investigation revealed that this enrichment is due to the presence of 11 T cell receptor 

α and β variable genes (TRAV and TRBV). Interestingly, a bias in Vβ gene utilization by T cells in 

patients suffering from RA was reported [29]. In addition, many other immune related genes were 

identified. For instance, RA positively increases the expression of GZMK (𝛼revTWMR = 0.11, PrevTWMR = 

5.2x10-07), a protease that confers cytolytic activity to natural killer cells and T lymphocytes [30]. 

Accordingly, GZMK+ CD8 T cells were found to induce inflammation in the synovium of RA patients 

[31] and elevated expression of GZMK was proposed as a biomarker to discern RA patients from those 

suffering from the related osteoarthritis [32]. Our analysis also revealed genes influenced by Crohn’s 

disease, another autoimmune disease. Guanylate-binding protein (GBP) levels, which are increased in 

individuals with inflammatory bowel diseases, are considered as a marker interferon γ-activated cells 

[33]. We confirmed the association by observing increased expression of GBP2 (𝛼revTWMR = 0.079, 

PrevTWMR = 1.3x10-08) in CD patients. We similarly confirmed the role of STAT1 in CD (𝛼revTWMR = 

0.075, PrevTWMR = 1.4x10-07): the positive causal effect reflects the previously reported up-regulation of 

the gene in CD patients [34]. 

 As the other traits influenced a smaller number of genes, no further significant enrichments 

were found. Nevertheless, a gene-by-gene investigation revealed many known or highly plausible 

associations. For instance, we found a significant effect of body mass index (BMI) on ALDH1A1 

(𝛼revTWMR = -0.26, PrevTWMR = 2.3x10-08), an enzyme that converts retinaldehyde to retinoic acid [35]. 

Retinoids have long been implicated in adipogenesis [36, 37] and ALDH1A1 expression in visceral 

adipose tissue was shown to positively correlate with BMI [38]. Focusing on genes affected by serum 

lipid levels (Supplementary Table 3), revTWMR revealed 13 genes whose expression is altered by 

HDL cholesterol and 20 by TG levels. In line with the commonly observed negative correlation 

between HDL and TG [39], 9 of these genes were impacted by both traits with an opposite direction of 

the causal effect (Supplementary Table 1).  Regarding the impact of high HDL levels, we found that it 

reduces the expression of squalene synthase (FDFT1; 𝛼revTWMR = -0.17, PrevTWMR = 2.3x10-10) and 

squalene epoxidase (SQLE; 𝛼revTWMR = -0.15, PrevTWMR = 2.7x10-09), two key enzymes of the cholesterol 

biosynthesis pathway [40, 41]. Interestingly, serum levels of squalene, the product and substrate of 

squalene synthase and epoxidase, respectively, negatively correlate with HDL-cholesterol [42]. 

According to revTWMR, genes involved in cholesterol transport were impacted too: high HDL 

negatively impacts the expression of the LDR receptor (LDLR; 𝛼revTWMR = -0.16, PrevTWMR = 2.8x10-10), 

while having a positive impact on MYLIP (also known as IDOL; 𝛼revTWMR = 0.27, PrevTWMR =1.4x10-27), 

a ubiquitin ligase that induces degradation of the LDL receptor [43]. In parallel, HDL seems to increase 

the expression of the ABCA1 (𝛼revTWMR = 0.29, PrevTWMR =5.5x10-30) and ABCG1 (𝛼revTWMR = 0.27, 

PrevTWMR =7.1x10-28), two transporters responsible for cholesterol efflux from macrophages [44]. 

ABCA1 was also the only gene impacted by total cholesterol levels (TC; 𝛼revTWMR = -0.17, PrevTWMR 

=5.8x10-08). While we did not observe a significant effect of ABCA1 on HDL and TC levels through 

TWMR, a GWAS has previously reported an association between ABCA1 and these two traits [24], 
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suggesting a complex regulatory mechanism. Together, these results are reminiscent of the well-

described negative feedback mechanisms that tightly control cholesterol biosynthesis and uptake [45]. 

 Despite strong indications of functional relevance, most revTWMR-implicated genes fall into 

genomic regions completely missed by GWAS, as is illustrated by the fact that revTWMR p-values are 

completely uncorrelated (r < 0.05) with those obtained by classical gene-based GWAS test performed 

using PASCAL [46] (See Methods; Supplementary Figure 1). In line with this observation, only two 

out of the 69 revTWMR-identified genes were significant for TWMR: AFF3 and FADS1, known 

susceptibility loci for RA [47] and HDL levels [24], respectively, show a negative (𝛼!"#$  = 0.08, 

PTWMR = 1.6x10-04 and 𝛼revTWMR = -0.13, PrevTWMR = 3.0x10-07) and positive (𝛼!"#$  = -0.06, PTWMR = 

7.8x10-11 and 𝛼 revTWMR = -0.12, PrevTWMR = 4.8x10-07) causal feedback loop between the traits, 

respectively. The complexity of the FADS1-HDL interaction was recently highlighted by Dumont et 

al., who suggested that dietary intake of linoleic acid can modulate the impact of rs174547, a FADS1 

intronic variant, on HDL-cholesterol levels [48]. 

 

Pleiotropic SNPs lead to biased causal effect estimates 

The validity of revTWMR, as any MR approach, relies on three assumptions about the 

instruments: (i) they must be sufficiently strongly associated with the exposure; (ii) they should not be 

associated with any confounder of the exposure-outcome relationship; and (iii) they should be 

associated with the outcome only through the exposure. The third assumption (no pleiotropy) is crucial 

as MR causal estimates will be biased if the genetic variants have pleiotropic effects [49, 50]. 

Accordingly, revTWMR assumes that all genetic variants used as instrumental variables affect the gene 

expression only through the phenotype under scrutiny and not through independent biological 

pathways.  

To test for the presence of pleiotropy, we used a similar approach to MR-PRESSO global test 

[50, 51], performing Cochran’s Q test. Under the assumption that the majority of SNPs influence gene 

expression only through the phenotype tested in the model, SNPs violating the third MR assumption 

would significantly increase the Cochran’s heterogeneity Q statistic (see Methods) and hence can be 

detected and removed. This was the case for 65 of the 119 originally significant trait →  gene 

associations. Out of these 65 associations, 21 passed the heterogeneity test after removing up to 5 

pleiotropic SNPs from the instrumental variables. Moreover, this procedure led to the identification of 

4 additional associations initially masked by heterogeneity, giving the final number of 79 robust 

associations (Supplementary Table 1). Importantly, this method discriminates likely causal effects from 

pleiotropy. This is well illustrated by the example of STX1B, a gene that was found to be associated 

with educational attainment (EDU) through a PRS approach (PPRS = 1.25x10-20) [14]. While revTWMR 

originally detected a significant association between EDU and STX1B, the association failed the 

heterogeneity test. After excluding the highly pleiotropic variant rs2456973 (strongly associated with 

hematological and anthropometric traits [52], Supplementary Table 4) from the instruments, the effect 

of EDU on STX1B was lost (Supplementary Figure 2). 
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Trait correlation 

Exploring the shared effect of complex traits and diseases on the transcriptional programs can 

provide useful etiological insights. Hence, for every phenotype-pair (𝑃! ,𝑃!) we computed the gene 

expression perturbation correlation (𝜌!(!,!) = 𝑐𝑜𝑟𝑟(𝛼!"→! ,𝛼!"→!)) between the respective causal effect 

estimates of each phenotype on the gene expression (i.e. the Z scores from our revTWMR analysis) 

across a subset of 2,974 independent genes across the genome [15]. Among the 66 pairs of traits, we 

found 21 significant correlations (FDR<1%). We compared these results with the genetic correlation 

(𝜌!) between traits estimated by LD score regression [53] and found a remarkable concordance 

between the two estimates (r = 0.80). Of note, 𝜌! seems to be 55% of 𝜌!  on average. Although 

𝜌!  having smaller variance may explain part of this attenuation, we think that the main reason behind 

this observation is that only a part of 𝜌!  translates into consequences on gene–expression level in 

whole blood (Supplementary Figure 3). In particular, 8 pairs of traits showed significance for both 𝜌! 

and 𝜌! , whereas 12 were significant only for 𝜌!, and 8 only for 𝜌! . Among the significant correlations 

not identified by LD score regression 𝜌! , we found that HDL and LDL are negatively correlated (𝜌! = 

-0.12, FDR = 6.23x10-08) and that RA positively correlated with several traits: Crohn’s disease (𝜌!= 

0.09, FDR = 6.97x10-05), schizophrenia (𝜌! = 0.16, FDR = 1.91x10-13), height (𝜌! = 0.12, FDR = 

6.23x10-08), total cholesterol (𝜌! = 0.07, FDR = 2.38x10-03) and triglycerides (𝜌! = 0.1, FDR = 

8.30x10-06) (Supplementary Table 5). 

 

Observational correlation is driven by reverse association 

As a proof-of-concept, we asked how highly revTWMR-identified causal genes would rank in 

a DEG analysis. To address this question, we collected the observational correlation estimates between 

whole blood gene expression levels and the quantitative traits in three independent European cohorts 

(EGCUT (N = 488), InChianti (N = 609), and SHIP-Trend (N = 991)).  

Correlating revTWMR effects to observational correlations (equivalent to DEG analysis), we 

found a significant agreement for all the traits, with the exception of LDL, for which we speculate that 

the lack of agreement might be due to the low number of significantly correlated genes, as well as the 

lack of concordance among cohorts (Table 1, Supplementary Figure 4). We re-estimated these 

correlations accounting for the error in the compared estimates (regression dilution bias) (see 

Methods). No significant correlation between observational correlations and the causal effects of the 

gene expression on phenotypes estimated by TWMR was observed (Table 1). Of note, when we 

correlated the P-values of the observational correlations with those obtained by conventional gene-

based tests using GWAS results, we detected a significant concordance only for triglycerides (r = 0.02, 

P = 3.50x10-04) (Supplementary Table 6). 

 

 

Table 1. Correlation between observational phenotype-gene expression correlation and revTWMR 

and TWMR effects. For each phenotype available in at least two cohorts, we calculated the 

correlation between the observational correlation estimates and the revTWMR and TWMR effects. For 

significant correlations, we computed the adjusted correlation correcting for regression dilution bias. 
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Trait revTWMR TWMR 

correlation (adjusted) Pvalue correlation  Pvalue 

BMI 0.09 (0.46) 1.54E-39 0  0.56 

Educational attainment 0.05 (0.27) 1.30E-12 0.01 0.11 

Fasting Glucose 0.08 (0.57) 5.58E-17 0.02 0.82 

HDL 0.06 (0.22) 1.35E-15 0 0.56 

height 0.11 (0.72) 1.95E-53 0.02 0.01 

LDL 0.01 (0.06) 0.24 0.01 0.39 

Total Cholesterol 0.02 (0.25) 5.44E-04 0.01 0.27 

Triglycerides 0.09 (0.26) 1.19E-34 0 0.57 

Waist-to-hip ratio 0.04 (0.51) 1.14E-07 0 0.55 

 

As TWMR and revTWMR results showed that causal feedback loops are rare (i.e. 𝛼!"#$ ∗

 𝛼!"#!"#$ = 0), the observational correlation (r) can be approximated as the sum of the bi-directional 

effects estimated by TWMR and revTWMR plus the contribution of the confounding factors (see 

Methods). Hence we were able to calculate the proportion of correlation due to confounders. For each 

gene we calculated the contribution of TWMR and revTWMR as !!"#$
!

 and !!"#$%&'
!

, respectively. 

Consequently, the contribution of confounders is 1 −  !!"#$
!

−  !!"#$%&'
!

. In each correlation bin 

(Figure 2) we combined such contributions using inverse variance meta-analysis and revealed that the 

observed correlation between gene expression and phenotype is mainly driven by confounders. For 

example, for genes correlated (|r| > 0.1) with BMI, 83% (P < 5.0x10-324) of the correlation is due to the 

confounders, 17% (P = 1.12x10-36) to the effect of BMI on gene expression and 0% (P = 0.65) to the 

forward effect (Figure 2 and Supplementary Table 7). We observed the same scenario for triglycerides: 

89% (P < 5.0x10-324) of the correlation is due to confounders and 10% (P = 1.02x10-26) and 1% (P = 

0.012) are due to reverse and forward effect of the gene expression on height respectively. For HDL we 

observed a stronger effect due to confounders (96%, P < 5.0x10-324) and a mild reverse effect 

contribution (4%, P = 2.40x10-05) (Figure 2).   

 

Figure 2. Partitioning of the gene expression-trait observational correlation for BMI, HDL and 

triglycerides. For each bin of correlation (absolute value) we plotted the combined contributions of the 

forward (TWMR, blue dots) and reverse (revTWMR, red dots) effect of the gene expression on the trait, 

the contribution of confounders (black dots) and their confidence interval. 
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Genes affected by lipid traits are linked to drug targets 

We assessed whether the protein products of the transcripts perturbed by a disease/trait in our 

revTWMR analysis are targets of drugs used to treat the disease in question. We started by defining a 

set of drugs relevant to the traits under investigation according to DrugBank [13]. Next, we retrieved 

high confidence interactions (confidence score > 0.7) involving these drugs, from STITCH, a manually 

curated database of predicted and experimental chemical-protein interactions [12]. We then searched 

for proteins that were a) identified as dysregulated by revTWMR and b) targeted by a drug indicated 

for the treatment of a given trait.  

 The gene product of four out of the 13 genes detected by revTWMR for low HDL met these 

criteria: phospholipid-transporting ATPase ABCA1 (ABCA1), squalene synthase (FDFT1), low-density 

lipoprotein receptor (LDLR) and sterol regulatory element-binding protein 1 (SREBF1) which interact 

with atorvastatin, lovastatin, pravastatin and simvastatin. We found that these four genes are also 

dysregulated by high triglyceride levels and ABCA1 was the only detected gene dysregulated by high 

total cholesterol. We did not find drug targets among the genes significantly dysregulated by Crohn’s 

disease, rheumatoid arthritis and schizophrenia (Supplementary Table 8). 

 
Tissue-specific effects 

As many traits manifest themselves only in certain tissues, it is essential to integrate data from 

the tissue of interest to estimate the impact of a phenotype at the transcriptome level. For this reason, 

we performed tissue-specific revTWMR analyses using tissue-specific trans-eQTLs identified by the 

Genotype Tissue Expression Project (GTEx) [54], which provides a unified view of genetic effects on 

gene expression across 49 human tissues. We tested the 79 previously identified significant trait → 

gene associations found in whole blood and detected three genes showing tissue-specific associations 

(PrevTYMR < 0.05/79, Supplementary Table 9). We found a negative effect of RA on MYO1B in the 

kidney cortex (𝛼revTWMR = -1.71, PrevTWMR = 2.4x10-04), as well as a significant effect of HDL on LDLR 

(𝛼revTWMR = -0.63, PrevTWMR = 4.3x10-04) and ABCG1 (𝛼revTWMR = 0.61, PrevTWMR = 6.1x10-04) in the 

thyroid, a key tissue for lipid metabolism regulation [55]. Of note, the effect sizes of these associations 

are >6 fold larger than those estimated using whole blood data. 

 

 

Discussion 

We presented a Mendelian randomization approach to study the impact of human phenotypes 

on the transcriptome. Across the 69 genes identified by our revTWMR approach, we observed a clear 

trend for functional relevance. Genes perturbed by complex diseases seem to confirm several 

previously reported associations between immune-related genes and autoimmune diseases such as RA 

(TRBV, GZMK) [29, 31, 32] and CD (GBP2, STAT1) [33, 34]. In addition, revTWMR could be used as 

a tool to gain insight into the regulatory mechanisms controlling biological pathways, as illustrated 

with our example regarding serum lipid levels. We observed that high HDL-cholesterol lowers the 

expression of genes involved in cholesterol biosynthesis (SQLE, FDFT1) and cellular cholesterol 
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uptake (LDLR), while it increases the expression of genes responsible for degradation of LDLR 

(MYLIP) and cholesterol efflux (ABCA1, ABCG1). Together, this suggests that high HDL levels 

prevent intracellular cholesterol overload, which could explain its known cardioprotective effects [56]. 

However, TG levels, which were shown to independently increase risk of coronary artery disease 

(CAD) [57],  impact the expression of the same genes in the opposite direction. An alternative scenario 

could be that high TG levels increase CAD risk through intracellular accumulation of cholesterol. The 

biological relevance of our findings is further supported by our drug target analysis, which found that 

four genes (SREBF1, FDFT1, LDLR and ABCA1) whose expression was perturbed by serum lipid traits 

were targets of statins, a category of drugs aiming at regulating the very same traits. Lipids are major 

modulators of CAD risk [56, 58] and established regulators of gene expression [59]. Hence, drugs 

targeting these downstream genes might modulate CAD risk, even though mediation analysis is 

warranted to support this hypothesis. 

 Combining results of DEG analysis and bi-directional TWMR allowed to decompose the 

observational correlation between whole blood gene expression and complex traits. This analysis 

showed that differentially expressed genes often reflect disease-induced changes in the transcriptome 

rather than disease-causing ones. Importantly, we observed that most of the correlation between gene 

expression and complex traits is due to confounders, which is plausible because age and sex are 

important determinants of both. The rest of the correlation can be almost entirely explained by the trait-

to-gene expression causal effects. Indeed (just like single SNPs) individual genes’ expression has only 

minute contribution to complex traits, even if cumulatively they may contribute substantially. Diseases, 

however, represent a major burden for the organism, which can lead to drastic changes in the 

transcriptome program. In light of these considerations, it might be unsurprising that the correlation 

between a gene’s expression level and a complex trait is reflecting disease status rather a trait-to-

expression link.  

 Like all methods, our approach has its limitations, which need to be considered when 

interpreting the results. First, our results are mainly focused on eQTLs and DEGs in whole blood. 

When conducting a tissue-specific analysis using GTEx data, we had considerably lower power to 

detect trait→gene associations because analysis of trans-eQTLs require much larger sample sizes than 

those collected by GTEx. However, because gene regulation is tissue-specific and many diseases 

manifest themselves only in certain tissues, the possibility to interrogate more tissues could unravel 

causative disease-gene links for genes not differentially expressed in blood. Furthermore, preliminary 

studies suggest that trans-eQTLs are particularly cell type-specific [60].  

Then, TWMR and revTWMR results are difficult to compare because of the difference of 

power in the two approaches. One of the most important determinants of statistical power for MR is the 

sample size available for the outcome, thus revTWMR is less powered and prone to pick up mostly 

stronger effects. Still, another factor influencing power is the number and strength of instruments. 

Hence, TWMR results will be more accurate once larger eQTL data sets become available, which will 

in turn increase the number of testable genes (currently 16K). Finally, as every MR approach, 

revTWMR is at risk of violating the MR assumptions. In particular, horizontal pleiotropy and indirect 

effects of the instruments on the exposures can substantially bias causal effect estimates. RevTWMR 
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assumes that the top GWAS SNPs have a direct effect on the phenotype. However, many SNPs show 

indirect or pleiotropic effects. We therefore protect our results from potential biases by excluding 

pleiotropic SNPs failing the heterogeneity test. Further gain in robustness should be obtained by 

including additional phenotypes (as exposures) through which instruments may act, as accounting for 

pleiotropy is a better approach than directly excluding violating instruments. Such multi-phenotype 

revTWMR approach will be possible only once genome-wide trans-eQTLs summary statistics will 

become available.  

A very exciting perspective is that revTWMR can theoretically be extended to other types of 

omics data, e.g. integrating methylomics data, as alterations in DNA methylation are more often the 

consequence rather than the cause of diseases [61]. It would be interesting to apply revTWMR on 

protein levels as well (revPWMR), to gain further insights into the effects of complex traits on 

biomarkers but unfortunately, the sample size of proteomics datasets is still too small.  

In conclusion, our bi-directional analysis disentangles causes and consequences of gene 

expression for complex traits and reveals that complex traits have more pronounced impact on gene 

expression than the reverse. Therefore, studies comparing gene expression levels of diseased and 

healthy subjects may still point to useful biomarkers of disease predisposition or severity, but 

interventions that restore levels of the biomarker to normal levels will not necessarily be disease 

modifying. 

 

 
Methods 

Reverse Transcriptome-wide Mendelian Randomization (revTWMR) 

 RevTWMR is a multi-instrument MR approach designed to estimate the causal effect of the 

phenotypes (exposure) on gene expression (outcome). For each gene, using inverse–variance weighted 

method for summary statistics [16], we define the joint causal effect of the phenotypes on the outcome 

as 

𝛼 = 𝛽!𝐶!!𝛽 !! 𝛽!𝐶!!𝛾  

Here 𝛽 is a n-vector that contains the effect size of n independent SNPs on the phenotype, 

derived from GWAS. 𝛾 is a vector of length n that contains the effect size, in trans-, of each SNP on 

the gene expression. C is the pair-wise LD matrix between the n SNPs.  

As instrumental variables, we used independent (r2 < 0.01) significant (PGWAS < 5x10-08) SNPs 

chosen among the 10K pre-selected trait-associated SNPs included in trans-eQTL dataset from 

eQTLGen Consortium (31,684 whole blood samples). As we are using only strongly independent 

SNPs, we use the identity matrix to approximate C. 

The variance of α can be calculated approximately by the Delta method 

𝑣𝑎𝑟 𝛼 =  
𝜕𝛼
𝜕𝛽

!

∗ 𝑣𝑎𝑟 𝛽 +
𝜕𝛼
𝜕𝛾

!

∗ 𝑣𝑎𝑟 𝛾 +
𝜕𝛼
𝜕𝛽

∗
𝜕𝛼
𝜕𝛾

∗ 𝑐𝑜𝑣(𝛽, 𝛾)  

where cov(𝛽,𝛾) is 0 if 𝛽 and 𝛾 are estimated from independent samples (or if 𝛽 and 𝛾 are independent). 

We defined the causal effect Z-statistic for gene i as 𝛼!/𝑆𝐸(𝛼!),	where	𝑆𝐸 𝛼! = 𝑣𝑎𝑟 𝛼 !,! .		
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We applied revTWMR across the human genome for causal association between a set of 12 

phenotypes and the expression levels of 19,942 genes using summary statistics from GWAS and 

eQTLs studies. The analysed traits include: body mass index (BMI) [18], Crohn’s disease (CD) [17], 

educational attainment (EDU) [21], fasting glucose (FG) [19], high-density lipoprotein (HDL) [24], 

height [25], low-density lipoprotein (LDL) [24], rheumatoid arthritis (RA) [20], schizophrenia (SCZ) 
[22], total cholesterol (TC) [24], triglycerides (TG) [24] and waist-to-hip ratio adjusted for BMI 

(WHRadjBMI) [23]. All summary statistics (estimated univariate effect size and standard error) 

originate from the most recent meta-analyses and were downloaded from the publicly available NIH 

Genome-wide Repository of Associations Between SNPs and Phenotypes (https://grasp.nhlbi.nih.gov/). 

We only used SNPs on autosomal chromosomes and available in the UK10K reference panel, which 

allowed to estimate the LD among these SNPs and prune them. Strand ambiguous SNPs were removed. 
 
Heterogeneity test 

The validity of all MR approaches, such as revTWMR, relies on three assumptions. The third 

assumption (no pleiotropy) is crucial as MR causal estimates will be biased if the genetic variants (IVs) 

have pleiotropic effects [50]. Hence, revTWMR assumes that all genetic variants used as instrumental 

variables affect the outcome only through gene expression and not through independent biological 

pathways. To test for the presence of pleiotropy, we used Cochran’s Q test [49, 51]. In brief, we tested 

whether there is a significant difference between the revTWMR-effect of an instrument (i.e. 𝛼𝛽!) and 

the estimated effect of that instrument on the gene expression (𝛾!).  We defined 

𝑑! = 𝛾! −  𝛼𝛽! (1) 

and its variance as 

𝑣𝑎𝑟 𝑑! = 𝑣𝑎𝑟 𝛾! + 𝛽! ! ∗ 𝑣𝑎𝑟 α +  𝑣𝑎𝑟 𝛾! ∗ α ! + 

+𝑣𝑎𝑟 𝛽! ∗ 𝑣𝑎𝑟 α    (2) 

Next, we tested the deviation of each SNP using the following test statistic 

𝑇! =
!!
!

!"#(!!)
  ~ 𝜒!!    (3) 

In case where P < 1x10-4, we removed the SNP with largest |𝑑! | and then repeated the test.  

 

Transcriptome-wide Mendelian Randomization (TWMR) 

In order to test the presence of a feedback loop of association, we ran TWMR [15] for all the 

significant revTWMR genes. The associations between the instrumental variables and the exposure 

(gene expression) and the outcome (complex traits) are estimated from the same studies used for 

revTWMR. 

 

Gene-based test 

 To compare GWAS and revTWMR results, we performed gene-based test for association 

summary statistics using PASCAL [46]. PASCAL assesses the total contribution of all SNP within 

close physical proximity to a given gene by combining SNP association Z-statistics into gene-based P-

values while accounting for local LD structure. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20213538doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20213538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Replication cohorts 

EGCUT 

Study population 

The Estonian Genome Center, University of Tartu (EGCUT) cohort denotes for the Estonian 

Biobank sample of more than 200,000 individuals, or about 20% of the Estonian adult population. All 

Biobank participants have been genotyped and linked to electronic health records (EHR) of the Health 

Insurance Fund, national registries and major hospitals. The EHR linkage captures the participants’ 

medical history together with demographics, lifestyle information and laboratory measurements; 

additional information is provided by self-completed questionnaires. Disease diagnoses are in the form 

of ICD-10 codes. RNA-seq data is available on 491 unrelated individuals. All Biobank participants 

have signed a broad informed consent to allow using their genetic and medical information for research 

purposes.  

 

Whole-Blood-Transcriptome analysis 

The preparation of RNA-seq data has been described in detail elsewhere 

[https://doi.org/10.1371/journal.pcbi.1005766] [62]. RNA-seq reads were trimmed of adapters together 

with low-quality leading and trailing bases using Trimmomatic (version 0.36) [63]. Additional quality 

control was performed with FastQC (version 0.11.2). The final set of reads were mapped to a human 

genome reference version GRCh37.p13 using STAR (version 2.4.2a) [64]. Sample mix-ups were tested 

and corrected for using  MixupMapper [65]. Principal component analysis on RNA-seq read counts 

revealed a batch of outlying samples which was uncovered to be due to a technical problem in library 

preparation – affected samples were discarded. Data was normalized using weighted trimmed mean of 

M-values [66] and used as log2-transformed counts per million. To account for (hidden) batch effects, 

the sequencing batch date together with first gene expression principal components were used in all 

subsequent analyses. 

 

InChianti 

Study population 

The InCHIANTI study is a population based sample that includes 298 individuals of <65 age 

and 1155 individuals of age ≥65 years. The study design and protocol have been described in detail 

previously [67]. The data collection started in September 1998 and was completed in March 2000. The 

INRCA Ethical Committee approved the entire study protocol. 

 

Whole-Blood-Transcriptome analysis 

Peripheral blood specimens were collected from 712 individuals using the PAXgene tube 

technology to preserve levels of mRNA transcripts. RNA was extracted from peripheral blood samples 

using the PAXgene Blood mRNA kit (Qiagen, Crawley, UK) according to the manufacturer's 

instructions. 
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RNA was biotinylated and amplified using the Illumina® TotalPrep(tm) -96 RNA 

Amplification Kit and directly hybed with HumanHT-12_v3 Expression BeadChips that include 48 803 

probes. Image data were collected on an Illumina iScan and analysed using Illumina GenomeStudio 

software. These experiments were performed as per the manufacturer's instructions and as previously 

described [68]. Quality-control analysis of gene expression levels were previously described [69]. 

 

SHIP-Trend 

Study population 

The Study of Health in Pomerania (SHIP-Trend) is a longitudinal population-based cohort 

study in West Pomerania, a region in the northeast of Germany, assessing the prevalence and incidence 

of common population-relevant diseases and their risk factors. Baseline examinations for SHIP-Trend 

were carried out between 2008 and 2012, comprising 4,420 participants aged 20 to 81 years. Study 

design and sampling methods were previously described [70]. The medical ethics committee of the 

University of Greifswald approved the study protocol, and oral and written informed consents were 

obtained from each of the study participants. 

 

Whole-Blood-Transcriptome analysis 

Blood sample collection as well as RNA preparation were described in detail elsewhere [71]. 

Briefly, whole-blood samples of a subset of SHIP-TREND were collected from the participants after 

overnight fasting (≥10 hours) and stored in PAXgene Blood RNA Tubes (BD). Subsequently, RNA 

was prepared using the PAXgeneTM Blood miRNA Kit (QIAGEN, Hilden, Germany). Purity and 

concentration of RNA were determined using a NanoDrop ND-1000 UV-Vis Spectrophotometer 

(Thermo Scientific). To ensure a constantly high quality of the RNA preparations, all samples were 

analyzed using RNA 6000 Nano LabChips (Agilent Technologies, Germany) on a 2100 Bioanalyzer 

(Agilent Technologies, Germany) according to the manufacturer’s instructions. Samples exhibiting an 

RNA integrity number (RIN) less than seven were excluded from further analysis. The Illumina 

TotalPrep-96 RNA Amplification Kit (Ambion, Darmstadt, Germany) was used for reverse 

transcription of 500 ng RNA into double-stranded (ds) cDNA and subsequent synthesis of biotin-UTP-

labeled antisense-cRNA using this cDNA as the template. Finally, in total 3,000 ng of cRNA were 

hybridized with a single array on the Illumina Human HT-12 v3 BeadChips, followed by washing and 

detection steps in accordance with the Illumina protocol. Processing of the SHIP-Trend RNA samples 

was performed at the Helmholtz Zentrum München. BeadChips were scanned using the Illumina Bead 

Array Reader. The Illumina software GenomeStudio V 2010.1 was used to read the generated raw data, 

for imputation of missing values and sample quality control. Subsequently, raw gene expression data 

were exported to the statistical environment R, version 2.14.2 (R Development Core Team 2011). Data 

were normalized using quantile normalization and log2-transformation using the lumi 2.8.0 package 

from the Bioconductor open source software (http://www.bioconductor.org/). Finally, 991 samples 

were available for gene expression analysis. Technical covariates used in all statistical models included 

RNA amplification batch, RNA quality (RIN), and sample storage time. The SHIP-Trend expression 
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dataset is available at GEO (Gene Expression Omnibus) public repository under the accession GSE 

36382: 991 samples were available for analysis. 

 

 

Phenotype-Gene expression correlation 

To calculate the correlation between the phenotypes and the gene expression levels, we asked 

each cohort to run the following analysis. First, inverse normal transformation was applied to 

phenotypes and gene expression. Next, transformed phenotypes were adjusted only for sex, age and 

age2, while gene expression was also corrected for other known relevant covariates. Finally, Pearson’s 

correlation was calculated between the adjusted trait and the adjusted expression. Finally, correlations 

from single cohorts were combined using inverse variance meta-analysis, where weights are 

proportional to the squared standard error of the correlation estimates, as implemented in METAL [72]. 

 

Observed and true correlation between gene expression and traits 

The correlation between the effects estimated by revTWMR (𝛼!"#$%&') and the observational 

correlation (𝑐𝑜𝑟𝑟(𝐸,𝑇)) measured in the individual data from EGCUT, InChianti and SHIP-Trend was 

calculated using the Pearson’s correlation. As such correlation does not consider the error of the 

estimations, for the significant correlations we used the linear errors-in-variables models to compute 

the potential true correlation using the following equation 

 

𝑐𝑜𝑟𝑟!"# = 𝑐𝑜𝑟𝑟!"#$ ∗ 1 −
𝑆𝐸 𝛼!"#$%&' !!!"#"$

!!!

𝛼!"#$%&'!
!!"#"$
!!!

∗ 1 −
𝑆𝐸 𝑐𝑜𝑟𝑟(𝐸,𝑇) !!!"#"$

!!!

𝑐𝑜𝑟𝑟(𝐸,𝑇)!!!"#"$
!!!

 

 
 
Proportion of observational correlation explained by bi-directional causal effects 

Let E and T denote the gene expression and the trait respectively. In addition there may exist a 

confounding factor U causally impacting both of them. We can express E and T as: 

𝑇 =  𝛼!"#$ ∗ 𝐸 +  𝑞! ∗ 𝑈 +  𝜀! 

and 

𝐸 =  𝛼!"#$%&' ∗ 𝑇 +  𝑞! ∗ 𝑈 +  𝜀! 

where 𝛼!"#$ and 𝛼!"#$%&' are the causal effects of E on T and of T on E estimated by TWMR and 

revTWMR respectively; qT and qE are the causal effects of the confounders on T and E; and 

𝜀!~𝑁(0,𝜎!) and 𝜀!~𝑁(0,𝜎!) represent uncorrelated errors. More specifically, 𝜀!, 𝜀!, and U are all 

independent of each other, because all dependence between T and E are due to bi-directional causal 

effects and the confounder U, the residual noises are independent of each other and of the confounder.  

 For simplicity, we assume that E, T and U have zero mean and unit variance, so that the 

correlation between E and T can be expressed as 

𝑐𝑜𝑟𝑟 𝐸,𝑇 = 𝑐𝑜𝑣 𝐸,𝑇 = 𝐸 𝐸 ∗ 𝑇 =  

= 𝛼!"#$ +  𝛼!"#$%&' −  𝛼!"#$ ∗ 𝛼!"#$%&' ∗ 𝐸 𝐸 ∗ 𝑇 +  𝑞! ∗ 𝑞! 
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Equivalently,  

𝑐𝑜𝑟𝑟 𝐸,𝑇 =
𝛼!"#$ +  𝛼!"#$%&' +  𝑞! ∗ 𝑞!

1 +  𝛼!"#$ ∗ 𝛼!"#$%&'
 . 

As we know the correlation, the bi-directional causal effects estimated by TWMR and revTWMR, we 

can estimate the contribution of the confounders (𝑞! ∗ 𝑞!) to the observed correlation.  

 To avoid the recursive equations expressing the forward and reverse causal effects of E on T, 

we can substitute T into the equation for E and obtain 

𝐸 =  𝛼!"#$%&' ∗ 𝛼!"#$ ∗ 𝐸 +  𝑞! ∗ 𝑈 +  𝜀! +  𝑞! ∗ 𝑈 +  𝜀! 

𝐸 =  𝛼!"#$%&' ∗ 𝛼!"#$ ∗ 𝐸 + (𝛼!"#$%&' ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$%!" ∗ 𝜀! + 𝜀! 

1 − 𝛼!"#$%&' ∗ 𝛼!"#$ ∗ 𝐸 =  (𝛼!"#$%&' ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$%&' ∗ 𝜀! + 𝜀! 

𝐸 =
(𝛼!"#$%&' ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$%&' ∗ 𝜀! + 𝜀!

1 − 𝛼!"#$%&' ∗ 𝛼!"!"
 

Similarly for T 

𝑇 =  𝛼!"#$ ∗ 𝛼!"#$%&' ∗ 𝑇 +  𝑞! ∗ 𝑈 +  𝜀! +  𝑞! ∗ 𝑈 +  𝜀! 

𝑇 =  𝛼!"#$ ∗ 𝛼!"#$%&' ∗ 𝑇 + (𝛼!"#$ ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$ ∗ 𝜀! + 𝜀! 

1 − 𝛼!"#$ ∗ 𝛼!"#$%&' ∗ 𝑇 =  (𝛼!"#$ ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$ ∗ 𝜀! + 𝜀! 

𝑇 =
(𝛼!"#$ ∗ 𝑞! +  𝑞!) ∗ 𝑈 +  𝛼!"#$ ∗ 𝜀! + 𝜀!

1 − 𝛼!"#$ ∗ 𝛼!"#$%&'
 

 

 

GWAS hits trans-eQTL mapping in GTEx 

Genotypes and gene expression quantifications from the GTEx project v8 dataset [54] were obtained 

via dbGaP accession number phs000424.v8.p1. This includes genotypes of 838 subjects, 85.3% of 

European American origin, 12.3% African American and 1.4% Asian American. The phased version of 

the genotype files was used and the genotypes for 2,177 out of 2,212 GWAS hits used as instrument 

variables in revTWMR were retrieved, matching for chromosome, position and reference/alternative 

allele, after conversion to GRCh38 coordinates using the UCSC liftOver tool [73]. Gene expression 

quantification (TPM values) from RNA-seq experiments across 49 tissues (for which genotype data is 

also available for >=70 individuals) processed and provided by the GTEx project v8 were also 

downloaded. These gene expression quantifications had been mapped to Gencode v26 [74] gene 

annotations on GRCh38 and normalised by TMM between samples (as implemented in edgeR), and 

inverse normal transform across samples. Moreover, only genes passing an expression threshold of 

>0.1 TPM in >=20% samples and >=6 reads in >=20% samples had been retained. The association 

between each of the 2,177 GWAS hits genotyped in GTEx v8 and each gene expression (20315 to 

35007 genes per tissue, all gene types) across 49 tissues of the GTEx v8 was computed using QTLtools 

v1.3.1 trans function [75]. This consists of more than 2 billion association tests performed. For this, the 

--nominal option for calculating nominal p-values was used, as well as the --normal option, to enforce 

the gene expression phenotypes to match normal distributions N(0,1). To include all associations, no 

cis window filtering was applied. Moreover, covariates provided by GTEx v8 for each tissue were 

regressed out of each expression matrix to account for potential confounding factors, by using the --

covariate option on QTLtools. These included 15 to 60 PEER factors (depending on tissue sample size) 
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[76], 5 Genotype PCA PCs as well as information about the sequencing platform, PCR usage, and the 

sex of the samples provided by GTEx v8. 
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