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Background: The corona crisis hit Austria at the end of February 2020 with one of the first
European superspreading events. In response, the governmental crisis unit commissioned a forecast
consortium with regularly projections of case numbers and demand for hospital beds.

Methods: We consolidated the output of three independent epidemiological models (ranging
from agent-based micro simulation to parsimonious compartmental models) and published weekly
short-term forecasts for the number of confirmed cases as well as estimates and upper bounds for
the required hospital beds.

Findings: Here, we report om four key contributions by which our forecasting and reporting
system has helped shaping Austria’s policy to navigate the crisis and re-open the country step-wise,
namely (i) when and where case numbers are expected to peak during the first wave, (ii) how to safely
re-open the country after passing this peak, (iii) how to evaluate the effects of non-pharmaceutical
interventions and (iv) provide hospital managers guidance to plan health-care capacities.

Interpretation. Complex mathematical epidemiological models play an important role in guid-
ing governmental responses during pandemic crises, provided they are used as a monitoring system
to detect epidemiological change points. For policy-makers, the media and the public, it might be
problematic to distinguish short-term forecasts from worst-case scenarios with undefined levels of
certainty, creating distrust in the legitimacy and accuracy of such models. However, when used as a
short-term forecast-based monitoring system, the models can inform decisions to ease or strengthen
governmental responses.

I. INTRODUCTION

The first known COVID-19 cases in Austria appeared
at the end of February 2020 together with one of the first
European superspreading events in the Tyrolean tourist
region of Ischgl, visited by travellers from all over the
globe [1]. In the first half of March 2020, a nation-
wide spread of the virus occurred with an exponential
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rise of confirmed cases [2]. These developments occurred
against the dramatic backdrop of the neighboring coun-
try of Italy, where despite strict non-pharmaceutical in-
terventions (NPIs) case numbers kept surging, hospital
capacities were exceeded and the military had to step in
to remove piling bodies [3, 4]. To understand how likely
similar developments would have been in Austria, mid-
March a forecast consortium was formed and tasked by
the government with a weekly forecasting the expected
developments in case numbers and how these develop-
ments would translate into demand for healthcare re-
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sources. The overarching policy goal at this stage was to
navigate the crisis without overburdening the Austrian
healthcare system.

At an earlier stage than other middle European coun-
tries, Austria took a series of non-pharmaceutical inter-
ventions (NPIs) in response to the crisis [5]. Next to a
ramping up of healthcare and public health capacities,
airport restrictions and landing bans intensified in the
first week of March, also targeting other countries than
China. Gatherings were limited to 500 persons, cultural
and other events started to be cancelled on March 10. On
March 16, Austria went into a full lockdown with schools,
bars, restaurants, and shops being closed, as well as a
transitioning into home office for all non-essential em-
ployees [5]. Together with other, earlier measures, these
NPIs effectively led to a rapid reduction of daily infec-
tion numbers. The number of new cases per day reached
a first peak on March 26 with 1,065 cases [6]. COVID-19
related hospitalisations peaked on March 31 with 912 reg-
ular beds, whereas the ICU utilization peaked on April
8 with 267 beds being occupied by COVID-19 patients.
Daily new cases decreased over April after which they
fluctuated at values below one hundred until July [7].
Austrian ICU capacities, estimated to be around 1,000
beds that could have been used for COVID-19 patients
while maintaining enough capacity for non-COVID-19
emergencies, have never been in danger of being exceeded
in the considered time period [8].

The Austrian COVID-19 forecast consortium provided
short-term forecasts for case numbers and required hospi-
tal beds. Our consortium consisted of three independent
modelling teams with experience in the use and develop-
ment of sophisticated mathematical and computational
models to address epidemiological and public health chal-
lenges [9–14]. The consortium was complemented with
experts from the Ministry of Health, the Austrian Agency
for Health and Food Safety, as well as external public
health experts in weekly meetings. A plethora of epi-
demiological models to forecast the spread of COVID-19
has been proposed recently [15–20]. Here, we consoli-
dated the output of three models into a single forecast of
case numbers for 8 days and used these case numbers to
predict the numbers of required hospital and ICU beds
for 14 days for the country as a whole and for each of
its nine federal states over the next two weeks. In ad-
dition to these point estimates, we also provided upper
and lower bounds for these numbers at various levels of
uncertainty. These upper bounds of the hospital bed fore-
casts served as a guidance system for the regional hospi-
tal managers, allowing them to estimate how many beds
should be reserved for COVID-19 patients if they were
willing to accept a given level of risk. These forecasts
have been published each week on the homepage of the
Ministry of Health. [21].

At the very beginning of our work as consortium we
decided that short-term forecasts have to be clearly sep-
arated from long-term scenarios. Due to the multiplica-
tive growth of uncertainties in epidemiological models,

accurate forecasts are typically only possible over a time
horizon of several days [22–25]. For longer term scenarios
that span several weeks, months or even years, however,
there is no meaningful way to estimate their uncertainty.
For policy-makers and non-technical experts, however, it
would not be immediately clear whether a certain projec-
tion is a prognosis with a defined level of certainty, or a
hypothetical what-if experiment. Therefore, we decided
to publish only short-term forecasts.

In this work we present the forecast and reporting sys-
tem we developed based on the three independent fore-
casting models. After a brief summary of the individ-
ual models, we describe three different strategies we used
to combine their outputs, to forecast healthcare demand
based on the combined output and to communicate the
joint forecast. To evaluate the impact of certain policies
(e.g. the lockdown), we report numerical experiments
that show how the epidemic would have progressed if
measures would have been taken later or not at all. We
discuss how our results were received by policy-makers,
stakeholders in the healthcare system, and the public.
We claim that our approach offered valuable contribu-
tions to chart a safe path to re-open the country after the
lockdown using a strategy that can be described as “driv-
ing on sight”. The aim of this work is to communicate
the methods applied and developed which allowed three
individually thinking modelling and simulation research
units to work together in a joint task force producing a
consolidated forecast, the benefits and shortcomings of
the process, and the political impact of the achieved re-
sults. We conclude that epidemiological models can be
useful as the basis for short-term forecast-based moni-
toring systems to detect epidemiological change points,
but become problematic when used to produce long-term
worst-case scenarios due to their undefined levels of cer-
tainty.

II. METHODS

We used three conceptually different epidemiological
COVID-19 models, developed and operated individually
by three research institutions, namely a modified SIR-X
differential equation model (Medical University of Vienna
/ Complexity Science Hub), an Agent-Based simulation
model (TU Wien / dwh GmbH), and a simplified state
space model (Austrian National Public Health Institute).

A. Data

Although the three models use different parameters
and parametrization routines, they are calibrated us-
ing the same data to generate weekly forecasts. Con-
sequently, differences between the model forecasts are a
result of different model structure and calibration, but
not a result of different data sources. The models also
used different nowcasting approaches to correct for late
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reporting of positive test results. We used data from
the official Austrian COVID-19 disease reporting system
(EMS, [7]). The system is operated by the Austrian Min-
istry of Health, the federal administrations, and the Aus-
trian Agency for Health and Food Safety.

For every person tested positively in Austria, it con-
tains information on the date of the test, date of recovery
or death, age, sex and place of residence. Furthermore,
hospital occupancy of COVID-19 patients in ICU and
normal wards are available from daily reports collected
by the Ministry for Internal Affairs.

B. Extended SIR-X Model

One of our models is an extension of the recently in-
troduced SIR-X model [15]. The original SIR-X model
introduced a parsimonious way to extend the classic SIR
dynamics with the impact of NPIs. In particular, two
classes of NPIs are considered. First, there are NPIs that
lead to a contact reduction of all individuals (susceptible
and infected ones). Such NPIs include social distancing
and other lockdown measures. Second, the model also
represents NPIs that reduce the effective duration of in-
fectiousness for infected individuals. Contact-tracing and
quarantine belong to this category.

The original SIR-X model does not offer a way to
model the return-to-normal, i.e., the taking back of NPIs.
We extended the model by introducing a mechanism by
which susceptible but quarantined individuals increase
their number of contacts again; a model we dub the
XSIR-X model, see SI Appendix A.. Further, we struc-
tured the population according to age, introduced mul-
tiple calibration phases to model behavioural changes
in the population over time, and used mobility data to
identify such turning points [26]. Forecast errors are es-
timated by recalibrating the model to perturbed data
points that are displaced proportionally to the empirical
deviation between model and data; see SI Appendix A.

C. Agent-Based SEIR Model

The second model is an Agent-Based SEIR type model
[12]. It is stochastic, population-dynamic and depicts
every inhabitant of Austria as one model agent. It uses
sampling methods to generate an initial agent population
with statistically representative demographic properties
and makes use of a partially event-based, partially time-
step (1 day)-based update strategy to enhance in time.

It is based on a validated population model of Austria
including demographic processes like death, birth, and
migration [14]. Contacts between agents are responsible
for disease transmission and are sampled via locations in
which agents meet: schools, workplaces, households and
leisure-time. After being infected, agents go through a
detailed disease and/or patient pathway that depicts the

different states of the disease and the treatment of the
patient.

The model input consists of a time-line of modelled
NPIs; parameters are calibrated using a modified bisec-
tion method. Results are gathered via Monte-Carlo sim-
ulations as the point-wise sample mean of multiple sim-
ulation runs. Due to the large number of agents in the
model, 8 simulation runs are used which are sufficient
to have the sample mean approximate the real unknown
mean with an error of less than 1% with 95% confidence
(estimated by the Gaussian stopping introduced in [27]).

The model considers uncertainty with respect to the
stochastic perturbations in the model by tracing the stan-
dard deviation of the Monte Carlo simulations. Param-
eter uncertainty is considered in form of manually de-
fined best and worst case scenarios. Parameter values of
the model are continuously improved and available online
[28].

D. Epidemiological Clockwork Model

The third model is a simplified state space model
that traces individuals through the stages infected, la-
tency period, infectious, reported, contained and immu-
nized/deceased; see also SI Appendix B. Based on the
ratio between infected and infectious, the true infection
rate is calculated and extrapolated in the future using
exponential smoothing or moving average.

The model distinguishes between detected an unde-
tected cases and accounts for the import of infected cases
(who did not acquire the infection from the calculated
number of infectious individuals).

The underlying detection rate, immigration, and the
effectiveness of contact-tracing are time-varying param-
eters that also reflect qualitative information such as
spikes in the number of reported new infected cases that
can be explained by mass test screenings.

Uncertainty can be modelled by varying underlying
model parameters and also results from parameter un-
certainty in the infection rate extrapolation.

E. Model harmonization

In order to harmonize the models and generate a sin-
gle consolidated forecast for the number of accumulated
positive COVID-19 tests, each model was set up to gen-
erate its output in a common data format for each of
the nine federal states of Austria individually. Our fore-
casts consisted of time series that start with the number
of positive tests at the day of the prognosis committee
meeting at 11:59 pm and continued in daily time inter-
vals. The length of the time series, the forecasting scope,
varied between 8 and 14 days.

Three averaging procedures were considered to gener-
ate the joined forecast. These included (1) the point-wise
arithmetic mean and two dynamic weighting procedures
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wherein the timeseries for each model contributes with
a (2) continuous or (3) discrete weighting function with
values proportional to the accuracy of its most recent
forecasts; see SI Appendix C.

Confidence intervals (CIs) for the harmonized model
are derived from the empirical forecast error. Until end
of September CIs where derived from the SIR-X model
before the method was refined using the empirical fore-
cast error of the harmonized model. Concrete, we retro-
spectively evaluate the ratio of the consolidated forecast
and the actual total number of new cases since the start
of the forecast horizon. This ratio follows a log-normal
distribution. The upper and lower limits of the CI are de-
rived from the corresponding percentiles of the empirical
distribution of this forecast error.

F. Hospital bed usage model

Hospital occupancy is modeled in a stock-flow ap-
proach. Inflow (admission to ICU and normal wards)
is calculated as a ratio of the time-delayed number of
reported or projected new infected. Outflow (discharge)
happens after a fixed amount of days for fixed ratios of
patients (e.g. 20% of ICU patients are discharged after
eight days). Admission rates are calculated separately
for sex and age groups (0-39, 40-59, 60-79, and 80 years
and above, respectively) and are scaled in order to fit
the current occupancy in all federal states. The scaling
parameter (one for each federal state) can thus be inter-
preted as the hospitalisation rate.

Confidence intervals for the occupancy forecast are cal-
culated from increments of the forecast error. A technical
description is given in the SI, Appendix D.

Model parameters were initially extracted from liter-
ature [29] and subsequently calibrated to actual data to
better fit the observed time series. A subsequent analysis
based on March–June inpatient data revealed that the
calibrated model parameters correspond with observed
average length of stay. Refer to the supporting informa-
tion for a full list of model parameters.

III. RESULTS

A. Forecasting positive test numbers

We show the results for our rolling forecasts compared
with the actual case numbers in Figure 1. For the time
period from April 4 to September 25 2020, we performed
and harmonized weekly forecasts that are visibly as bun-
dles of lines in Figure 1. The first published forecasts co-
incided closely with the peak of the first epidemic wave in
Austria. This can be seen by a gradual flattening of the
curve of cumulative case numbers over April. From May
until July, the curve showed a linear growth pattern.

While the models showed a clearly discernible diver-
gence for the first prognosis day, the agreement increased

Week 5
strategy weights for mean RMSE (total cases)

SIR-X SEIR SS
naive 0.33 0.33 0.33 211.00

continuous 0.56 0.18 0.25 198.96
discrete 0.45 0.22 0.33 203.89

Week 10
strategy weights for mean RMSE (total cases)

SIR-X SEIR SS
naive 0.33 0.33 0.33 85.33

continuous 0.57 0.21 0.22 79.42
discrete 0.45 0.22 0.33 84.78

Week 15
strategy weights for mean RMSE (total cases)

SIR-X SEIR SS
naive 0.33 0.33 0.33 113.00

continuous 0.37 0.35 0.28 97.14
discrete 0.39 0.28 0.33 96.22

Weeks 2-15
strategy RMSE (weeks 2–15, total cases)

naive 213.14
continuous 209.38

discrete 211.47

TABLE I. Forecast accuracy with different model harmoniza-
tion strategies. We consider a naive arithmetic mean (strat-
egy “naive”) as well as a “continuous” and “discrete” func-
tion that weighs the models according to their recent per-
formance. The table displays weights and errors for three
selected weeks and a summary of the first 15 forecasts.
Performance-weighted model harmonization strategies only
marginally improved the accuracy of the forecasts compared
to a naive averaging.

over time. The starting points for the early weekly fore-
casts occasionally lie below the actual cases due to a sub-
stantial amount of very late reporting of cases in these
early periods of the epidemic. In the weeks thereafter,
agreement amongst the three models is typically stronger
than the agreement with the data, meaning if one model
over- or underestimated the actual trend, so did the other
models.

We investigated the performance of different averag-
ing procedures that weigh models according to their past
performance in terms of their root mean square error
(RMSE), see Methods. The results are summarized in
Table I. Performance weighting procedures yielded only
a marginal improvement over simple averaging in terms
of forecast accuracy.

B. Forecasting bed usage

In Figure 2 we show our rolling forecasts for the num-
ber of (A) intensive and (B) normal care beds currently
in use for COVID-19 patients. While the case numbers
and normal ward occupancy peaked in late March, ICU
bed usage peaked about two weeks later in April.

The first forecast for normal care occupancy overshot
the observed values. With more available data and bet-
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FIG. 1. Rolling combined and consolidated out-of-sample forecasts for the number of confirmed cases in Austria. We show
the weekly predictions from the three different models, their arithmetic average with it corresponding CI, and the actual case
numbers. In the first two weeks, no CI was given.

ter calibration, the model adequately captured the trends
for both normal and intensive care beds. When case
numbers started to rise again in late August/September,
the model correctly anticipated the corresponding rise in
bed usage. In general, ICU occupancy forecasts featured
higher accuracy than normal ward occupancy forecasts.

C. What-if scenario results

Using individual models, we considered what-if scenar-
ios to study the impact of NPIs on the infection curve.
In particular, we evaluated what would have happened if
(i) all NPIs would have been implemented later in time
and (ii) the lockdown implemented on March 16, 2020
would not have been taken.

1. The impact of delayed NPIs

We evaluated the delayed implementation of all hy-
giene campaigns and social distancing policies, including
closure of stores and schools, cancelling of events, and
the restriction of leisure time contact opportunities. Fig-
ure 3 displays the simulation results of Agent-Based SEIR
Model for a scenario in which these NPIs would have been
delayed by 1 to 7 days. The results show that the peak of
the confirmed active COVID-19 cases would increase by
about 300% if the NPIs would have been implemented 7
days later.

D. No lockdown

Here we consider scenarios in which not all but only
measures implemented on March 16 (the lockdown)
would have been delayed or not taken at all, see Fig-
ure 4. We evaluated scenarios where, all other things be-
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FIG. 2. Rolling combined and consolidated out-of-sample forecasts for the number of (A) intensive and (B) normal care beds
currently in use for COVID-19 patients including corresponding CI, and the actual numbers of beds occupied.

ing equal, this lockdown was applied (A) one week later
or (B) not at all. By end of April, instead of the ap-
prox. 16,000 actual cases, we would have expected 32,000
(95%CI 18,000–51,000) cases would the lockdown have
been implemented one week later and 58,000 (95%CI
26,000–114,000) cases in the complete absence of a full
lockdown. Assuming a constant case fatality rate, on
April 30 these cases would have translated into (A) 1,100
(95%CI 650–1,800) or (B) 2,100 (95%CI 930–4,100) in-
stead of the recorded 549 deaths. With no lockdown
taken on March 16, the size of the outbreak in Austria
would therefore have been comparable with the dynamics
observed in Sweden at the time.

E. Reporting of the forecasts

We developed a standard reporting template used to
communicate our forecasts to other stakeholders and
decision-makers, see Figure 5. These visual reports
showed our forecasts for cases and beds, as well as in-

formation on the effective reproduction number and the
daily increments in positive tests. The visual reports
are complemented by a brief synopsis of the researcher’s
appraisal of the current situation and particularities of
the most recent forecast. We highlight what drives our
results and illustrate the nature of the underlying uncer-
tainty, such as the role of tourists returning from risk
areas in late August. Furthermore, the researchers are
at disposal for any questions that members of the health
ministers’ office or the regional crisis management units
may have.

The first panel in Figure 5 provided an outlook for the
expected developments in cases. The trends in these de-
velopments, i.e. whether the growth in case numbers ac-
celerates or decelerates, is shown with the timeseries for
the daily increments and the effective reproduction num-
ber. We communicated the bed forecasts by reporting
the prognosis with two CIs, giving the current capacity
in an inset. The upper limit of the 95%CI we defined
as the “capacity provision”, i.e. the upper limit for the
number of needed beds at the given level of certainty.
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FIG. 3. Agent-Based SEIR Model: Impact of all social distancing NPIs of the Austrian lockdown delayed by up to 7 days on
the active confirmed COVID-19 cases.

FIG. 4. Extended SIR-X Model: Results for scenarios where only the lockdown from March 16 would have been implemented
(A) one week later or (B) not at all. We show the actual data (blue circles) with the model fit (blue lines) and compare it with
the scenario simulation (red lines). By end of April, we would have expected around (A) 32,000 or (B) 60,000 instead of 16,000
confirmed cases.

IV. DISCUSSION

Considering the impact of COVID-19 policy measures
on economic and social life, any related decision support
needs to be done with caution. Our approach considers
the high impact of COVID-19 forecasts by (1) focusing
on monitoring rather than long term prognosis and (2)
consolidation of three different “model opinions” which
not only improved the quality of the short term forecast,
but also distributed the responsibility of the decision sup-
port.

Our forecasts provided sound evidence for the expected
number of total and hospitalised cases that include ap-
praisals of uncertainty via forecast intervals. This is in
contrast to what has come to be known as ”worst case
coronavirus science”, i.e. the communication of worst
case scenarios as baselines in the public pandemic man-
agement strategy. For instance, the UK policy change
toward adopting more drastic NPIs on March 23 was in-
formed by worst case scenarios created by the Imperial
College COVID-19 Response Team that within the cur-
rent policy regime 250,000 deaths were to be expected.
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FIG. 5. Example for a reporting template of our out-of-
sample forecasts. The visual reports consist of five panels.
First, we report the harmonized forecast, its 68% and 95% CI,
and the historic case numbers, stratified according to their
status of being dead, recovered, or active. Four additional
panels show the daily increments in cases, the effective repro-
duction number, and the forecasts for intensive and normal
care beds in use for COVID-19 patients.

In a press conference in April, the Austrian chancellor
publicly stated that soon “everyone will know someone
who died because of COVID-19”, based on an external
SIR-model-based worst case scenario that contained a
death toll of 100,000 people (1.1% of the Austrian popu-
lation) [30]. Such scenarios are problematic due to their
undefined level of certainty and contributed to a public
perception of unreliable epidemiological models. While
scenario analysis and numerical experiments in ”what if”
scenarios have their merits in evaluating effectiveness of
certain NPIs, they reduce the trust in government policy
once it becomes obvious that the worst case is not going
to materialize. If it is the fear of hundreds of thousands
of victims in UK or Austria that should compel us to
wear masks, why continue wearing them once it is clear
that this scenario has been avoided?

Based on our results, we argue that the main benefit
of epidemiological models comes from their use as short-
term monitoring systems. The models are typically cali-
brated to the infection dynamics of the last couple of days
or weeks and forward project this dynamic based on epi-
demiological parameters often assumed to be fixed. If a
short-term forecast is accurate this means that infection
numbers have continued as expected, based on a recent
trend. If however, the short term forecast severely over-
or underestimates the observed dynamics, one should in-
quire more closely what might have caused this change.
This is in line with our observation that if one of our
models considerably underestimated future growth, so
did typically the other models that expected a similar
trend. Inaccurate short term forecasts therefore signal a
change in the epidemiological situation that needs to be
explained. Inaccurate predictions can be highly informa-
tive from a practical point of view.

Next to its role in monitoring, our approach informed
both the strategy to re-open the country and to re-instate
measures during the second infection wave. The main
insight was that even if a second wave would start the
next day, experiences from March told us that we would
have several weeks for appropriate reactions (namely re-
instating NPIs) before there would be any concern for an
overburdening of the healthcare system. For those weeks
we could additionally provide estimates for the required
number of beds hospitals would need to free for COVID-
19 patients, the “capacity provision” for ICU beds. First,
it gave hospital managers an estimate for providing a
certain number of beds at a given level of risk, thereby
freeing up capacities for the treatment of non-COVID pa-
tients and minimizing health-related collateral damage.
Second, and maybe more importantly for the re-opening,
these forecasts clearly revealed that an overcrowding of
ICU beds was extremely unlikely from April onward, even
in the most pessimistic scenarios (upper limits of the con-
fidence level). Further, the average length of stay for
non-COVID-19 patients in ICUs in Austria is less than a
week. By postponing non-essential treatments it would
therefore be possible to free up additional beds in time if
the capacity provision would exceed the number of avail-
able beds. Based on such insights, the Austrian govern-
ment decided to gradually ease the NPIs in intervals of
14 days.

By continually benchmarking the actual case numbers
against our trend-following short-term predictions, we
could offer an unambiguous signal for whether potential
rises in case numbers would be reason for concern or not.
The capacity provision served as a weekly checkpoint for
the epidemiological situation in this sense: as long as it
was not exceeded, there were no significant changes in
the infection dynamics and the opening could continue.

Our first ICU forecast that severely underestimated
the actual development occurred in September. During
the summer, infection numbers increased from around 20
confirmed cases per day to about 200 cases, mostly driven
by patients aged below 40y. Consequently, the number
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of severe COVID-19 cases remained low and the effective
rate to require intensive care dropped to one percent and
below. The situation changed qualitatively in Septem-
ber, when not only case numbers started to soar again,
but also bed usage increased much more strongly than
projected. Our analysis revealed that the driver behind
above-forecast ICU occupancy was above-forecast total
case numbers, while age-specific ICU rates remained con-
stant. In other words, the bed usage forecasts were inac-
curate because of the infection number forecast, but not
because the characteristics of the detected cases changed
(e.g., more symptomatic or severe cases). This result re-
assured crisis managers that an uncontrolled spread of
the disease, characterised by an increase in undetected
cases and, subsequently, an increase in ICU rates, was
not happening. What drove this change was a shift of
the age distribution of cases from younger patients to-
ward a demographic more representative of the Austrian
population. This development was amplified by several
non predictable infections in nursing care homes. The
fact that our forecast severely underestimated the actual
developments, combined with similar signals from other
indicators, contributed to a shift in Austria’s policy from
re-opening to re-instating NPIs.

Our forecast-based decision support comes with lim-
itations. First of all, the weekly prognosis is based on
shared data from the Ministry of Health and the Min-
istry of Internal Affairs which comes with quality and
reporting bias limitations. Moreover, even though the
consortium has access to the most accurate and up-to-
date data about the epidemic in Austria, a lot of in-
formation required for valid epidemiological forecasting
is available only with considerable delay, or unavailable,
since it is and cannot be measured. For instance, the frac-
tion of undetected persons due to asymptomatic disease
progression would be one example for such a variable.
Further, our forecast is based on simulation models which
are generally subject to errors that come from abstrac-
tion and simplification of the real system. Through the
harmonized handling of three models with entirely differ-
ent approaches we attempted to reduce such structural
uncertainties. Finally, our decision support framework
is mostly limited by its political and public visibility.
According to our experience, our forecast was of special
public and policy interest in periods of rapid movements
but also had a confirmatory effect in times of decreasing

case numbers or slow growth with respect to taken policy
measures.

In conclusion, we argue that worst-case coronavirus
science is maybe interesting as an academic exercise, but
modellers need to be more cautious and responsible in
communicating the strongly speculative nature of their
results to politicians and the public. Even if their limita-
tions are adequately discussed in lengthy reports, what
often surfaces in the public discourse are tweets and pow-
erpoint slides showing horrific future case numbers and
death tolls. Instead, we argue that short-term epidemi-
ological models can be valuable ingredients of a compre-
hensive monitoring and reporting system to detect epi-
demiological change points and thereby inform decisions
to ease or strengthen governmental responses.
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SUPPORTING INFORMATION

Appendix A: Details on the Extended SIR-X Model

The SIR-X model [15] was originally devised to model the transition from exponential to sub-exponential growth
due to the implementation of non-pharmaceutical interventions (NPIs). With the entry into containment 2.0, i.e.
the taking back of NPIs, a couple of modifications are therefore needed to the original model. In particular, the
process of “quarantining” susceptibles has to be added. In the following we give a description of how we extended the
baseline SIR-X model in order to implement such processes. We also discuss additional extensions to the model, such
as introducing age-structured populations and multiple calibration periods. Note that this document only discusses
aspects of the model implementation not described or treated different than in the original model description.

1. Compartments for quarantined infected and susceptibles

Here we give the extended SIR-X model to account for scaling back NPIs. The baseline model includes two different
types of NPI. First, there are NPIs that act on the susceptible population (social distancing, home office, etc.). Second,
there are NPIs that act on the infected population, in particular an accelerated detection of cases (e.g., testing and
contact tracing). Clearly, scaling back of the NPIs affects primarily the first type of NPIs, while it might be reasonable
to expect that NPIs targeting the infected population might even increase in effectiveness.

The baseline SIR-X model is of the following form,

∂tS = −αSI − κ0S (A1)

∂tI = αSI − βI − κ0I − κI (A2)

∂tR = βI + κ0S (A3)

∂tX = (κ+ κ0)I . (A4)

We now introduce two extensions, namely (i) having two compartments of locked down individuals (susceptibles, XS ,
and infecteds, XI) and (ii) introducing a scaling back of NPIs affecting susceptibles encapsulated in the rate κ1 ≥ 0.
The extended SIR-X model is then of the following form,

∂tS = −αSI − κ0S + κ1X
S (A5)

∂tI = αSI − βI − κ0I − κI (A6)

∂tR = βI + κ0S (A7)

∂tX
I = κI (A8)

∂tX
S = κ0S − κ1XS . (A9)

(A10)

There are two notable differences now. First, the compartment XI is the cumulative number of confirmed cases, it will
be used to calibrate the model. It is imperative to note that the model was explicitly designed to make statements
concerning XI . A couple of further straight-forward extensions could be introduced to model, for instance, also
recovery within the active XI compartment. Such extensions would further add to the model complexity while
providing no value at all for modelling the development of XI . Secondly, the compartment XS is now an explicit
model representation of locked down or socially distanced susceptibles. The parameter κ0 gives the inflow to this
compartment from the susceptibles (strength of corresponding NPIs), κ1 gives the outflow (how fast people increase
their levels of social contacts back to normal).

2. Age structure

We include an age structure in the model in the ususal way. All compartments (S, I, R, XI , XS) become vector-
valued, so do the rates κ0, κ1, κ, and β. The parameter α becomes a matrix αij giving the likelihood that a susceptible
of age group j will be infected by an infected from age group i. Entries in α have been calibrated using mobile phone
data, where we assume that they are proportional to the probability that a call will take place between individuals of
age group i and j. The spectral radius of α is chosen in accordance with [15].

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.18.20214767doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.18.20214767
http://creativecommons.org/licenses/by/4.0/


12

3. Calibration

As already mentioned, the model is calibrated via the timeseries of the cumulative number of confirmed cases XI

in each federal state of Austria. The basic calibration procedure follows [15], i.e. we solve the model for solutions to
the parameters κ and κ0, as well as the initial condition I(t = 0) via a trust region reflective algorithm (MatLab’s
lsqnonlin function). Calibration takes place in different time windows that roughly represent the different phases
of the epidemic in Austria. The first phase lasts from t = 0 to end of March and encompasses the “first wave”.
With beginning of April, Austria moved into a containment phase characterized by less than hundred new confirmed
cases per day. The second calibration phase ends mid-June where the daily cases started to increase again with most
days showing more than hundred new cases. The third calibration phase lasts until the end August, when infection
numbers started to increase again, after which the fourth calibration phase commenced.

Appendix B: Details on the Epidemiological Clockwork Model

The epidemiological stage model tracks individuals through the stages “infected”, “infectious”, “reported”, “iso-
lated”, and “immunized”. It aims to isolate the true infection rate via augmenting reported case numbers with
time-constant epidemiological parameters and time-varying assumptions on detection rate, isolation rate, and number
of imported cases. This infection rate is then extrapolated using exponential smoothing models in order to forecast
future case numbers.

1. Data preparation

In a first step, assumptions on detection and isolation rates are made based on the cluster analysis. For example,
if a large share of new reported cases is attributed to a single workplace setting where the whole staff was tested,
we assume that contact isolation and detection rate are high at the day these cases were reported, and were lower
in days before the mass testing. We furthermore subtract sporadically imported cases as reported in the cluster
analysis. This serves to isolate domestically acquired infections for the calculation of the infection rate.

In a second step, case numbers are cleared in a nowcasting procedure, where expected delays and weekend effects
are accounted for based on historic values of the relevant federal states. We use exponential smoothing to identify
seasonality, error and level of the case numbers for each federal state.

In a third step, assumptions on the risk of importing infectious cases are made, i.e. people who have not acquired
the infection domestically but increase the number of infectious.. This figure is parameterised to account for size of
federal states and adjusted to reflect travel patterns in risk areas. For example, this value was increased to account
for a spike in reported cases that were traced back to travellers from Croatia.

2. Model parameters

Fixed parameters

• Duration infected before infectious: d1 = 1 day

• Duration infectious before reported: d2 = 1 day

• Duration infectious for non-severe cases: d3 = 6 days
Latency period is therefore 2 days. This value was initially set to 3 days but was reduced owing to evidence
that average latency period is shorter. Note that transmission relies on both pre-symptomatic detected cases as
well as non-detected cases, who may or may not have mild symptoms.

Variable parameters (default values)

• Background infection riskt = population/100, 000

• Detection rate: new reported casest/new total casest = r1 = 1/5

• Effectiveness of contact isolation: new isolated casest/new reported casest = r2 = 2/5
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Those given values are standard parameterisations that are adjusted to account for specific circumstances. In the
standard case, there would be four additional undetected cases for every reported case, and on average two infected
people would be quarantined for every reported case.

3. Mathematical model

The model calculates the number of individuals in each stage according to the following difference equations,

new infectious casest = new total casest+1 − new isolated casest − new immunized casest (B1)

new immunised casest = new total casest−6 − new isolated casest−6 (B2)

infection ratet = (new total casest+2 − sporadically imported casest+2)/total infectious casest (B3)

wheretotal infectious =
t∑
0

new infectious cases + background infection riskt . (B4)

4. Trend extrapolation

In a last step, the isolated true infection rate is forecasted in an exponential smoothing model (R, package ‘forecast‘).
Owing to the tendency of the disease to progress linear instead of exponential [11], all trends are damped.

5. Strengths and Limitations

In the Epidemiological Stage Model, isolation of the true infection rate is by a large degree driven by researcher
assumptions on the key time-varying variables of imported cases and detection rates. This follows the understanding
that reported case numbers should be assessed with available additional information before being further processed
by mathematical models. Known sources of error, such as non-detection of cases, travel activity of infected or non-
randomised testing will affect, unless these sources of bias are time-constant and the relevant sample size is large. The
otherwise simple mechanic of the model facilitates attribution of case numbers to such causes as time of reporting
determines day of infection. Of course, researchers may err as well as model when trying to attribute observed patterns
to causes, or parameters. The Epidemiologic Clockwork Model will perform better than more data-driven models
if known particularities in the time-series of reported cases play a substantial role in the course of transmission. A
limitation of the model is that due to the nature of the information used in assessing the time series of reported cases,
which is often qualitative in nature, the data clearing process is not transparent. Ongoing improvements of the model
will address these shortcomings as the pandemic progresses.

Appendix C: Combining the three models into a consolidated forecast

In summary, three strategies have been evaluated in terms of their forecast error. Let F j
i (t) denote the forecasts

for the total number of COVID-19 cases on day t for model j for runs made in week i,

Fh
i (t) =j=1,2,3 a

j
iF

j
i (t) (C1)

the harmonized forecast, and Ri the corresponding reported number, then the following three strategies have been
investigated to calculate the weights aji , j = 1 . . . 3. Note that, here and in the following, j is an index and not an
exponent.

• Naive average. This strategy describes a static arithmetic average of the forecasts.

aji
1

3
∀j. (C2)

• Continuously weighted dynamic mean. This strategy describes a dynamically weighted average. The
weights are determined from the forecasting errors of the previous three weeks.

aji =
1

3

i−1∑
k=(i−3)

wj
k, wj

k =

1

max(|F j
k−Rk|,0.5)∑3

r=1
1

max(|F r
k−Rk|,0.5)

. (C3)
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• Discrete weighted dynamic mean. In contrast to the continuous weighting, the weights are determined by
a step function as follows,

aji =
1

3

i−1∑
k=(i−3)

wj
k, (C4)

wj
k =

1/6, |F j
k −Rk| = maxr({|F r

k −Rk|}),
1/2, |F j

k −Rk| = minr({|F r
k −Rk|}),

1/3, else.

(C5)

Appendix D: Confidence Intervals

Validation of the model is now conducted by evaluating the model’s forecast error in each federal state over the
last forty days. We compute the empirical distribution of the daily ratios beteen the fitted and observed numbers of
cumulative confirmed cases. This gives us a 68% and 95% confidence interval (CI) for the expected accuracy of the
model for the prediction for the next day. Following a similar strategy as reported in the online implementation of
the baseline model [31], we than recalibrate the model in the last (third) calibration phase by doing as if the upper
and lower bounds of these CIs are the actual data points for the next day. The CIs for the forecast are obtained from
the forecasts that start from these “virtual” observations.

For the confidence intervals of the ICU and hospital occupancy we decided to apply a different strategy because
the fluctuations of the occupancy numbers played a much higher role for the error than the parameter uncertainty.

We found the strategy on increments of the forecasting errors. Assuming that the difference between the real Yi
and simulated Ỹi ICU/hospital occupancy Yi − Ỹi at date ti is displayed as Yi−1 − Ỹi−1 + Xi with iid increments
Xi ∼ N (0, σ) we may estimate the standard deviation σ of this unknown distribution from previous forecasts. With

Yi, i ∈ {1, . . . , n} available reported occupancy data points and corresponding Ỹi, i ∈ {1, . . . , n} already performed
forecasts, we get

σ ≈ σ̃ =

√√√√ 1

n− 2

n∑
i=2

(
(Ỹi − Yi)− (Ỹi−1 − Yi−1)

)2
, (D1)

and assume Xi ∼ N (0, σ̃). Since,

Xi ∼ N (0, σ)⇒

(
n+1+k∑
i=n+1

Xi

)
∼ N (0,

√
kσ),

and

Yn+1+k − Ỹn+1+k = (Yn − Ỹn)︸ ︷︷ ︸
=0

+
n+1+k∑
i=n+1

Xi =
n+1+k∑
i=n+1

Xi

we estimate confidence levels for the k-th forecasting day by multiplying the corresponding percentiles of the standard
normal distribution by

√
kσ̃. Note, that simulation and real data are synced for the day of the new forecast.
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