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Abstract 
 
 To account for delays between specimen collection and report, the New York City 

Department of Health and Mental Hygiene used a time-correlated Bayesian nowcasting approach 

to support real-time COVID-19 situational awareness. We retrospectively evaluated nowcasting 

performance for case counts among residents diagnosed during March–May 2020, a period when 

the median reporting delay was 2 days. Nowcasts with a 2-week moving window and a negative 

binomial distribution had lower mean absolute error, lower relative root mean square error, and 

higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving 

window or with a Poisson distribution. Nowcasts conducted toward the end of the week 

outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on 

weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, 

metrics were similar across days the nowcasts were conducted, with Mondays having the lowest 

mean absolute error, of 183 cases in the context of an average daily weekday case count of 

2,914. Nowcasting ensured that recent decreases in observed case counts were not 

overinterpreted as true declines and supported health department leadership in anticipating the 

magnitude and timing of hospitalizations and deaths and allocating resources geographically. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.18.20209189doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.18.20209189


2 
 

Introduction 

Timeliness is a key attribute of surveillance systems for reportable infectious diseases (1, 

2). Timely COVID-19 surveillance data are used by governments and communities to allocate 

resources and to decide when to tighten or loosen physical distancing and other prevention 

measures (3, 4). However, public health authorities track reportable diseases at a lag, given 

delays from infection to symptom onset, care seeking, specimen collection, laboratory testing, 

and reporting (5). Monitoring pre-diagnostic data sources (e.g., emergency department 

syndromic surveillance (6), internet searches and social media (7), participatory surveillance of 

self-reported symptoms (8), smart thermometers (9), etc.) can improve timeliness at the expense 

of specificity, such as an inability to distinguish increases in respiratory illness attributable to 

influenza from COVID-19. Another approach that preserves specificity when monitoring 

COVID-19 disease trends is to leverage partially reported disease data, formally accounting for 

data lags. 

The terms “nowcasting,” or predicting the present, and “hindcasting,” or predicting 

through the day prior to the present, describe a wide range of statistical adjustments used to fill in 

cases that are not-yet-reported, offering health officials a more up-to-date picture for situational 

awareness (10). For example, researchers have assessed the potential to nowcast COVID-19 

cases and deaths using Google Trends data available in near-real time (11), and have applied a 

range of modeling approaches that leverage reporting delays to estimate the number of not-yet-

reported cases and deaths (12, 13). Using mathematical models to exploit COVID-19 

transmission dynamics, nowcasting also has been extended to COVID-19 forecasting systems 

(14, 15). In a majority of these approaches, the nowcasting mechanism relies on accurately 

estimating the distribution of reporting delays; however, infectious disease transmission contains 
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an important temporal component, in that incidence is correlated from one time point to the next, 

which has also been shown to be important in nowcasting (10). We describe the use and 

evaluation of a time-correlated Bayesian nowcasting approach at the New York City Department 

of Health and Mental Hygiene (NYC DOHMH) during the first epidemic wave of COVID-19 to 

support real-time situational awareness and resource allocation. 

 

Methods 

Reportable disease surveillance data 

Persons tested. Clinical and commercial laboratories are required to report all results (including 

positive, negative, and indeterminate results) for SARS-CoV-2 tests for New York State 

residents to the New York State Electronic Clinical Laboratory Reporting System (ECLRS) (16, 

17). For NYC residents, ECLRS transmits reports to NYC DOHMH. These laboratory reports 

include specimen collection date and patient demographic information, including residential 

address. 

For nowcasting persons newly tested, NYC DOHMH deduplicated laboratory reports, 

retaining the first report received (“report date”) in ECLRS per person of a SARS-CoV-2 

polymerase chain reaction (PCR) test. We retained the first specimen collection date for that 

associated test report date and the patient’s ZIP code of residence at time of report. 

ZIP codes are collections of points constituting a mail delivery route. The United States 

Census Bureau developed ZIP code tabulation areas, which are aggregates of census blocks, to 

provide an areal representation of ZIP codes. NYC DOHMH created a custom geography 

referred to as modified ZCTA (modZCTA) by merging ZCTAs with populations <3000 to an 
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adjacent ZCTA with a larger population and merging interior ZCTAs with smaller populations to 

the surrounding ZCTA (18, 19). There are 177 modZCTAs within NYC. 

 

Confirmed cases. At NYC DOHMH, electronic laboratory reports are automatically 

standardized, and positive results indicating a confirmed case (i.e., detection of SARS-CoV-2 

RNA in a clinical specimen using a molecular amplification detection test) (20) are transmitted 

to the NYC DOHMH’s communicable disease surveillance database (Maven, Conduent Public 

Health Solutions, Austin, Texas). For confirmed cases, the “diagnosis date” was defined as the 

specimen collection date of the first positive test. The “report date” was defined as the date the 

case was created in the disease surveillance database, which typically corresponded to the date 

the first positive test was reported to ECLRS. 

Hospitalization status was ascertained by routinely matching demographic data for 

confirmed COVID-19 cases with hospitalized patients in supplemental data systems, including 

regional health information organizations, the New York State Hospital Emergency Response 

Data System, and NYC public hospitals (21). For each hospitalized patient with a confirmed 

COVID-19 diagnosis, the hospital name for the most recent hospitalization in NYC was 

standardized to the name of a fully operational medical center. Patients with hospital discharge 

dates >14 days prior to the collection date of their first positive PCR result were not considered 

hospitalized for COVID-19. The date of hospitalization ascertainment was not retained. 

 

Real-time nowcasting 

NYC DOHMH nowcasted 3 outcomes (i.e., confirmed cases, ever-hospitalized cases, and 

persons tested) among NYC residents at weekly increments, on Mondays using reports received 
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through the prior day on Sunday, in real-time through May 2020. Starting March 24, 2020, 

nowcasts were conducted for all confirmed COVID-19 cases and restricted to the subset of 

confirmed COVID-19 cases among patients ever hospitalized. Starting May 2, 2020 as testing 

became more widely available (22), nowcasts were conducted for persons newly tested by PCR 

for SARS-CoV-2. Each outcome was nowcasted citywide and also stratified by modZCTA of 

patient residence, to support targeting of community-based resources. Hospitalized cases were 

also nowcasted stratifying by health care facility, to support allocating resources to hospitals. 

To account for reporting delays and the shape of the outcome-specific epidemic curve, 

we applied the R package Nowcasting by Bayesian Smoothing (NobBS) (10, 23) to data for 

specimens collected or diagnoses during the 3 weeks prior to the nowcast through the date prior 

to the nowcast, assuming a Poisson distribution. Briefly, this approach corrects for 

underestimation of cases in real-time caused by delays in reporting, learning the historical 

distribution of delays and relationship between cases in sequential time points to estimate the 

number of cases not-yet-reported. The 3-week moving window was selected to balance recency 

with stability. In performing stratified nowcasts, NobBS estimated the delay distribution 

citywide and the epidemic curve uniquely by stratum. Reports visualizing nowcast results were 

distributed weekly to DOHMH leadership for situational awareness. 

 

Retrospective nowcasting evaluation 

For the outcome of confirmed COVID-19 cases, we assessed the sensitivity of 

nowcasting results for patients diagnosed citywide during March 22–May 31, 2020 (excluding 

cases diagnosed during March 1–21 given limited testing) to several choices: [1] day-of-week 

when the nowcast was performed, given outpatients with milder illness sought care and were 
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diagnosed less frequently on weekends, when health care provider offices were typically closed 

or had more limited hours, [2] window length, given time-varying SARS-CoV-2 testing 

availability and uptake in NYC, and [3] assumed underlying distribution (Poisson or negative 

binomial) for case occurrence. In addition, for nowcasting the number of cases stratified by 

modZCTA, we compared results using [1] the “strata” option in NobBS — which estimated the 

delay distribution citywide and epidemic curve separately for each modZCTA — vs. estimating 

both the delay distribution and epidemic curve separately for each modZCTA, and [2] 10,000 vs. 

3,000 adaptations when optimizing the nowcasting algorithm (10). 

Data for the evaluation were frozen as of June 30, 2020, capturing reports received 

through 1-month after the end of the assessment period. We mimicked prospective surveillance 

at weekly intervals and daily temporal resolution, retaining the number of estimated cases for 

each of the prior 7 days (i.e. 1-7 day hindcasts). We used the mean absolute error and the average 

daily relative root mean square error across all days evaluated to compare the point estimate of 

the number of daily hindcasted cases over the time series to the true number of cases reported. 

For each of these metrics, lower numbers indicate better performance of the hindcast. We also 

assessed the 95% prediction interval coverage, i.e., the proportion of days during the study 

period when the 95% prediction interval included the true number of cases (10), which should 

ideally be 95%. 

This work was reviewed and deemed public health surveillance that is non-research by 

the DOHMH Institutional Review Board. 

 

Results 
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Among confirmed COVID-19 cases residing in NYC and diagnosed during March–May 

2020, the median delay between specimen collection and report was 2 days (interquartile range 

[IQR]: 1–4 days; 90th percentile: 7 days). By month of report for diagnoses during March–May 

2020, the median (IQR; 90th percentile) number of days for this delay for reports received in 

March 2020 was 2 (1–4; 7), in April was also 2 (1–4; 7), in May was 2 (1–3; 5), and in June 

(given the study period included cases diagnosed through May) extended to 7 (4–19; 62). 

Hindcasts were performed weekly on Mondays in real-time, with results visualized for DOHMH 

leadership (e.g., Figure 1). However, the retrospective performance evaluation determined that 

real-time hindcasts on Mondays using a 3-week window and an assumed Poisson distribution 

more often overestimated than underestimated the number of not-yet-reported cases and resulted 

in overly narrow 95% prediction intervals (Figure 2 and and Web Figure 1). 

We found that citywide hindcasts with a 2-week moving window and a negative binomial 

distribution had a 44% lower mean absolute error, a 31% lower relative root mean square error, 

and 0.65 higher 95% prediction interval coverage than hindcasts conducted with a 3-week 

moving window or with a Poisson distribution (Table 1, Web Table 1, Web Figures 1 & 2). 

Hindcasts conducted towards the end of the week (Thursday–Saturday) performed better than 

hindcasts performed earlier in the week, presumably as they had the furthest distance from the 

weekends. Weekends had lower overall case counts than weekdays (Figure 1). Until mid-May, 

hindcasts more often overestimated than underestimated true cases counts, whereas at the end of 

May hindcasts more often underestimated case counts, reflecting changes in the delay 

distribution over time (Figure 1, Web Figure 3).   

To minimize day-of-week effects that were most prominent on weekends, we also 

restricted performance analysis to hindcasts of cases on weekdays only, which resulted in better 
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metrics, as expected (Table 1 and Web Table 1). The hindcasts restricted to estimating case 

counts for weekdays with a 2-week moving window and negative biniomial distribution also 

performed better than the hindcasts with a 3-week moving window and Poisson distribution, with 

54% lower mean absolute error, 46% lower relative root mean square error and 0.69 higher 95% 

prediction interval coverage (Table 1, Web Table 1). Performance metrics were similar across 

days the hindcasts were conducted, with Mondays having the lowest mean average error and 

relative root mean square error, as expected given the 2 additional days between the last day 

reported (Friday) and the day the hindcast was conducted (Monday). On weekdays during the 

study period, the average daily case count after data lags resolved was 2,914, the average 

hindcasted case count with a 2-week window and negative binomial distribution conducted on 

Mondays was 2,878, and the mean absolute error was 183. 

For hindcasts at the modZCTA-level, a 2-week moving window and negative binomial 

distribution performed best across all metrics evaluated (Table 2 and Web Table 1), although the 

prediction interval coverage for the nowcasts with a Poisson distribution was higher than for 

citywide hindcasts. The hindcasts that assumed a citywide delay distribution performed slightly 

better than hindcasts that assumed different distributions by modZCTA. Metrics for 3,000 vs. 

10,000 adapations were essentially the same.   

 

Discussion 

 NYC DOHMH improved situational awareness of COVID-19 testing and cases during 

the first epidemic wave in near-real time by applying NobBS, a readily accessible nowcasting 

and hindcasting method. As a result of the retrospective performance evaluation, to improve 

nowcast accuracy prospectively effective August 2020, we implemented the following changes 
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to the nowcasting approach: (i) used a negative binomial case distribution instead of a Poisson, 

(ii) linked the determination of the moving-window length (2 or 3 weeks) to the 90th percentile of 

the lag between specimen collection and report for reports received in the most recent week, 

choosing 3 weeks if the 90th percentile of the lag distribution is >14 days, and (iii) suppressed 

nowcasting results for specimens collected on weekends, given lack of adjustment for day-of-

week effects. The evaluation supported the results of nowcasting conducted on any weekday. A 

previous evaluation of influenza nowcasts also found a negative binomial distribution more 

appropriately captured uncertainty in case counts than a Poisson distribution (10).  

 Despite a mature electronic laboratory reporting system and strong informatics 

infrastructure and data cleaning procedures at NYC DOHMH, input data available for 

nowcasting had several limitations. First, for records with long lags between specimen collection 

and report, as long as the specimen was reported to have been collected during the pandemic 

period, it was not possible to distinguish long lags attributable to true delays in testing or 

reporting — and thus informative to the delay distribution —  from long lags attributable to 

laboratory data entry errors in specimen collection dates. Second, nowcasting by patient 

modZCTA of residence relied on accurate laboratory reporting of patient address. For example, 

one week of real-time nowcasting results were biased when, for a batch of reports, one 

commercial laboratory misreported its own address as the residential address of all patients 

tested. Third, a large proportion of records had missing onset date. NobBS is designed for use 

with complete linelists with no missing onset or report dates. Given the complexities of imputing 

onset date from diagnosis date, nowcasts were instead conducted by specimen collection or 

diagnosis date. Fourth, patient hospitalization status was largely ascertained by matching 

administrative records. To allow time for record matching, hospitalization nowcasts were 
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conducted at a 3-day lag, limiting the real time availability of results. Furthermore, records from 

certain facilities were unavailable in near-real time, so nowcasts of hospitalizations by patient 

residence and by facility were subject to spatial bias, although still considered by DOHMH 

leadership to be useful for situational awareness. 

 This version of NobBS (0.1.0) also had several limitations when applied for nowcasting 

COVID-19 in NYC. First, citywide nowcasting was based on a linelist with only 2 data 

elements: specimen collection or diagnosis date and report date. Stratified nowcasts included a 

third data element: modZCTA or health care facility. There was no built-in functionality in 

NobBS to account for additional observable factors influencing data lags, including day-of-week 

and holiday effects in outpatient testing, and time-varying testing backlogs at specific 

laboratories differentially processing specimens for residents across neighborhoods. Similarly, 

there was no functionality to account for temporal trends in testing, e.g., the time-varying ratio of 

number of tests performed to number of cases detected. Increased testing uptake strongly 

influenced the shape of the observed epidemic curve during the study period as testing criteria at 

public health laboratories were relaxed, commercial and hospital labs developed testing capacity, 

and additional testing sites were opened and promoted. Third, while 95% prediction intervals 

reflected uncertainty in the nowcasts themselves — encompassing uncertainty in the estimation 

of the delay distribution as well as in the time evolution of the epidemic curve — they did not 

reflect uncertainty introduced by the user-specified window length. In other words, the moving 

window length had the potential to change nowcast estimates considerably. Analysts found it 

challenging to select the optimal window length in real time, and, given competing priorities 

during a pandemic, busy DOHMH officials would not have had adequate time to consider 

multiple nowcast versions with different window lengths as sensitivity analyses. The 
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retrospective analysis, which covered a period when the 90th percentile of delay between 

specimen collection and report was 7 days, found that a 2-week nowcasting window resulted in 

higher performance than a 3-week window. This finding might not be generalizable to periods 

with more extensive reporting delays (24). Fourth, in generating geographically stratified 

nowcasts, the “strata” option in NobBS estimated the delay distribution citywide and epidemic 

curve separately for each modZCTA or health care facility stratum. For a highly transmissible 

infectious disease, nowcasting performance might be improved by considering spatial 

relationships across geographic strata, including spatial autocorrelation. Fifth, early in the 

pandemic when case counts were sparse, cumulative case counts with 95% prediction intervals 

were of interest to DOHMH leadership, but this functionality was not built into NobBS and 

required a separate solution, though is now in a development version of the package available at 

https://github.com/sarahhbellum/NobBS. Finally, although government officials have 

demonstrated interest in publicizing test percent positivity by report date (25, 26), which can be 

biased by data lags, NobBS did not have functionality to nowcast percentages as an outcome. 

NobBS could be used to separately nowcast persons testing positive and negative and then to 

calculate test percent positivity, but there is no functionality to appropriately account for the 

separate uncertainties in the numerator and denominator of this percentage. 

 

Conclusion 

When tracking ongoing outbreaks using epidemic curves, public health officials 

recognize that data for recent days are incomplete because of reporting delays. Data lags can 

make it difficult for policymakers to discern in near real-time whether apparent decreases in 
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recent case counts are the result of public health interventions, such as social distancing 

guidelines.  

NYC DOHMH filled in COVID-19 epidemic curves using NobBS, which helped ensure 

that recent decreases in observed case counts were not overinterpreted as true declines in disease 

and supported the continuation of policies to reduce transmission. Nowcasting citywide case 

counts supported situational awareness and assisted DOHMH leadership in anticipating the 

magnitude and timing of hospitalizations and deaths. Nowcasting hospitalizations by health care 

facility was useful in helping to route patient transports and avoid overburdening facilities. As 

the COVID-19 pandemic continues and jurisdictions brace for second waves of infections, state 

and local health departments should incorporate nowcasting into their workflows. 
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Table 1. Performance Measures for Hindcasting Approaches Applied to Citywide Case Counts 

of New York City Residents Diagnosed with COVID-19, March 22–May 31, 2020.  

The first value in each column represents the metric across all days nowcasted, and the 

second assesses only weekdays. 

 
Sensitivity analysis Approach Mean 

absolute 
error 

Relative 
root mean 

square 
error 

95% 
prediction 

interval 
coverage 

Base scenario used in near real-time 
by NYC DOHMH, using 3-week 
window with Poisson distribution 

All days 544; 559 0.20; 0.19 0.16; 0.16 
Hindcasting each 
Monday for the 
previous Monday–
Sunday 

556, 338 0.25, 0.12 0.14; 0.20 

Day-of-week hindcasting was 
performed for previous 7-day period 
(2-week window, negative binomial 
distribution) 

All days 306; 258 0.14; 0.10 0.81; 0.84 
Monday 336, 183 0.20, 0.07 0.86, 0.82 
Tuesday 335, 233 0.16, 0.08 0.83, 0.84 
Wednesday 307, 275 0.14, 0.11 0.81, 0.87 
Thursday 271, 257 0.11, 0.11 0.81, 0.84 
Friday 255, 267 0.10, 0.11 0.75, 0.84 
Saturday 260, 267 0.11, 0.11 0.73, 0.80 
Sunday 372, 273 0.16, 0.10 0.87, 0.88 
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Table 2. Performance Measures for Hindcasting Approaches Applied to Case Counts of New 

York City Residents Diagnosed with COVID-19, March 22–May 31, 2020, Stratified by 

Modified ZIP Code Tabulation Area of Residence (modZCTA). 

The first value in each column represents the metric across all days hindcasted, and the 

second assesses only weekdays. 

 
Sensitivity 

analysis 
Approach Mean 

absolute 
error 

Relative 
root mean 

square 
error 

95% 
prediction 

interval 
coverage 

Base scenario 
used in near real-
time by NYC 
DOHMH 

“strata” option in 
NobBS (which 
estimated the delay 
distribution citywide 
and epidemic curve 
separately for each 
modZCTA), conducted 
on Mondays 

3-week Poisson 
(10,000 nAdapt) 

3.82; 2.75 0.37; 0.18 0.84; 0.84 

3-week Poisson 
(3,000 nAdapt) 

3.83; 2.76 0.37; 0.18 0.84; 0.84 

2-week negative 
binomial (10,000 
nAdapt) 

2.92; 2.09 0.33; 0.15 0.93; 0.93 

2-week negative 
binomial (3,000 
nAdapt) 

2.93; 2.08 0.34; 0.15 0.93; 0.93 

Conducting 
hindcasts on 
Fridays  

“strata” option in 
NobBS (which 
estimated the delay 
distribution citywide 
and epidemic curve 
separately for each 
modZCTA), conducted 
on Fridays 

2-week negative 
binomial 

2.62; 2.98 0.22; 0.25 0.94; 0.95 

Estimate delay 
distribution 
separately by 
modZCTA 

Estimating both the 
delay distribution and 
epidemic curve 
separately for each 
modZCTA, conducted 
on Mondays 

2-week negative 
binomial 

3.55; 2.57 0.36; 0.21 0.94; 0.95 
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Figure 1. Example hindcast visualization of epidemic curve of reported and estimated but not-yet-reported number of confirmed cases 

among New York City residents diagnosed with COVID-19, March 1–April 30, 2020. Illustrative hindcast performed using cases 

reported through April 30, 2020 (i.e., a Thursday), a 2-week moving window, and a negative binomial distribution. 
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Figure 2. Comparison of 7-day hindcasts conducted on Fridays with a 2-week window and negative binomial distribution and 7-day 

hindcasts conducted on Mondays with a 3-week window and Poisson distribution. Total cases reported as of June 30, 2020 shown 

with black line. 
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Web Table 1. Performance measures for additional hindcasting approaches applied to citywide 

case counts of New York City residents diagnosed with COVID-19, March 22–May 31, 2020. 

The first value in each cell represents the metric across all days hindcasted, and the 

second assesses only weekdays. For each method and metric, the best performing day of week is 

italicized.  

Method 
Day of week 
hindcast 
conducted 

Mean absolute 
error 

Relative root 
mean square 

error 

95% prediction 
interval coverage 

 1-week window, 
negative binomial  

All 359; 390 0.14; 0.12 0.54; 0.51 
Monday 405, 358 0.20, 0.12 0.39, 0.24 
Tuesday 355, 369 0.15, 0.11 0.51, 0.42 
Wednesday 375, 440 0.13, 0.14 0.62, 0.53 
Thursday 338, 399 0.11, 0.12 0.65, 0.62 
Friday 343, 419 0.12, 0.14 0.60, 0.62 
Saturday 267, 314 0.10, 0.11 0.62, 0.76 
Sunday 415, 432 0.16, 0.13 0.41, 0.40 

 2-week window, 
negative binomial  

All  306; 258 0.14; 0.10 0.81; 0.84 
Monday 336, 183 0.20, 0.07 0.86, 0.82 
Tuesday 335, 233 0.16, 0.08 0.83, 0.84 
Wednesday 307, 275 0.14, 0.11 0.81, 0.87 
Thursday 271, 257 0.11, 0.11 0.81, 0.84 
Friday 255, 267 0.10, 0.11 0.75, 0.84 
Saturday 260, 267 0.11, 0.11 0.73, 0.80 
Sunday 372, 273 0.16, 0.10 0.87, 0.88 

 2-week window, 
Poisson  

All 367; 372 0.15; 0.14 0.24; 0.26 
Monday 380, 193 0.20, 0.08 0.29, 0.34 
Tuesday 444, 417 0.18, 0.14 0.25, 0.33 
Wednesday 393, 421 0.16, 0.16 0.24, 0.22 
Thursday 374, 457 0.14, 0.17 0.16, 0.18 
Friday 307, 371 0.13, 0.15 0.22, 0.20 
Saturday 358, 468 0.14, 0.18 0.24, 0.18 
Sunday 320, 302 0.13, 0.11 0.30, 0.32 

 3-week window, 
negative binomial  

All 608; 542 0.21; 0.16 0.78; 0.82 
Monday 627, 358 0.27, 0.12 0.79, 0.72 
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Tuesday 653, 477 0.23, 0.13 0.83, 0.84 
Wednesday 609, 572 0.21, 0.17 0.79, 0.87 
Thursday 532, 536 0.17, 0.16 0.78, 0.87 
Friday 534, 570 0.17, 0.18 0.73, 0.84 
Saturday 579, 690 0.18, 0.21 0.73, 0.78 
Sunday 706, 602 0.24, 0.17 0.80, 0.80 

 3-week window, 
Poisson  

All 544; 559 0.20; 0.19 0.16; 0.16 
Monday 556, 338 0.25, 0.12 0.14, 0.20 
Tuesday 601, 579 0.22, 0.17 0.16, 0.16 
Wednesday 538, 590 0.20, 0.20 0.14, 0.16 
Thursday 519, 614 0.18, 0.21 0.14, 0.16 
Friday 477, 545 0.17, 0.20 0.19, 0.18 
Saturday 591, 748 0.20, 0.26 0.21, 0.13 

 Sunday 525, 524 0.19, 0.17 0.16, 0.12 
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Web Figure 1. Estimates (black) with 95% confidence bounds (grey) for hindcasts conducted on 

Mondays, with a 3-week window and Poisson distribution. 
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Web Figure 2. Estimates (black) with 95% confidence bounds (grey) for hindcasts conducted on 

Fridays, with a 2-week window and negative binomial distribution. 
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Web Figure 3. Median (interquartile range) of delays by week. 
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