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In Brief 

In Han and Teeple et al., Parkinson’s Disease inherited risk is quantified by a genome-wide 

polygenic risk score (PD-GPRS) approach using 6.2 million variants and data from 80,777 

individuals. For the top 2.5% and 1% of PD-GPRS, individuals had five- and seven-fold greater 

odds of PD, respectively. PD-GPRS was found to be associated with overall PD risk, earlier age of 

onset, and MDS-UPDRS motor scores. Genes nearest to variants observed at higher frequencies 

among high-GPRS individuals are enriched for PD-implicated pathways.     

HIGHLIGHTS 

- Parkinson’s Disease genome-wide polygenic risk score (PD-GPRS) calculated from 6.2 

million variants identifies individuals with inherited clinically significant increased 

neurodegeneration risk. 

- Top percentile PD-GPRS individuals were found to have up to seven-fold greater odds of 

PD and earlier age at PD diagnosis. 

- PD-GPRS scores correlated with all-subjects cohort mean MDS-UPDRS motor scores. 

- Pathway analysis of genes adjacent to frequently occurring variants in the high PD-GPRS 

population identified polygenic risk contributions for variations in PD-implicated 

pathways including dopamine signaling, immune responses, and autophagy pathways. 
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SUMMARY 

Parkinson’s Disease (PD) is the second most common and fastest-growing neurological 

disorder. Polygenic Risk Scores (PRS) using hundreds to thousands of PD-associated variants 

support polygenic heritability. Here, for the first time, we apply a genome-wide polygenic risk 

score approach using 6.2 million variants to compute a PD genome-wide polygenic risk score 

(PD-GPRS) via the LDPred algorithm. PD-GPRS validation and testing used Accelerating 

Medicines Partnership – Parkinson’s Disease (AMP-PD) and FinnGen Consortia genomic data 

from 1,654 PD Cases and 79,123 Controls. PD odds for the top 8%, 2.5%, and 1% of PD-GPRS 

were three-, four-, and seven times greater compared with lower percentiles, respectively 

(p<1e-10). PD age of onset and MDS-UPDRS motor scores also differed by PD-GPRS decile. 

Enrichment for phagosome related, dopamine signaling, immune related, and neuronal 

signaling pathways was found for genes nearest high PD-GPRS variants identified by MAF 

analysis. PD-GPRS offers a promising screening tool to identify high-risk individuals for 

preventive lifestyle or new drug therapy trials.  

 

INTRODUCTION  

Parkinson’s Disease (PD)  is the most common neurogenerative disorder after Alzheimer’s 

Disease and the fastest-growing neurological disorder in the world, with global PD cases 

doubling to more than 6 million from 1990 to 2015 and a further exponential increase to more 

than 12 million predicted by 2040 [1-3]. There is currently no objective laboratory or imaging 

test available to diagnose PD, and early PD symptoms overlap with those of a number of other 

neurological conditions, making early accurate diagnosis challenging [4]. Treatment guidance 

and investigations of potential disease-modifying therapies would benefit from tools which 

improve early diagnosis and enhance profiling of at-risk patients. 

Inherited PD susceptibility was first established by the identification of high-

penetrance mutations in genes such as SNCA, PARK2, PARK7, PINK1, GBA, and LRRK2, which 

confer multi-fold increased PD risk, but family history and/or identified mutations occur only in 

about 5-10% of PD cases [1, 2, 5-8]. Odds of PD vary by mutation severity. For perspective, a 

meta-analysis of GBA mutation carriers including 11,453 PD patients and 14,565 controls found 

odds ratios for PD ranging from 2.84-4.94 for mild GBA mutation carriers and from 9.92 - 21.29 

for severe GBA mutation carriers [9]. A substantial body of recent work has then focused on 

understanding the contributions of polygenetic architectures to disease susceptibility. An 

influential role for polygenetic inheritance in PD is strongly supported by a number of studies 

which have found significant associations between disease risk, age of onset, motor 

progression, and cognitive decline with polygenic risk scores (PRS) calculated based on genome-

wide association study  (GWAS) summary statistics for PD derived from a number of different 

study populations [10-15].   
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To date, the largest and most recent genome-wide association study (GWAS) for PD is a 2019 

meta-analysis conducted by Nalls et. al. which reports association statistics for 7.8 million single 

nucleotide polymorphisms in 37,688 PD cases; 18,618 UK Biobank ‘proxy’ cases defined as non-

PD cases with a first-degree relative PD case; and 1.4 million control subjects without PD [16]. 

As part of their meta-analysis, Nalls et. al. computed 88- and 1805-variant PRS models from 

their summary statistics, including the most highly significant variants in their PRS calculations. 

AUC performance for PD case identification by these models was found to be 0.65 and 0.69, 

respectively, corresponding to an estimated genetic liability for PD ranging from 16-36% 

percent [16]. 

Previous PRS analyses in PD have utilized up to a few hundred thousand variants for risk score 

calculations. While these studies have found significant associations between polygenetic 

features and PD susceptibility [10-12], there remains a need for further analyses which further 

account for the summary contribution of genomic variation to PD risk. Khera et. al., from 

Keithersan Lab at the Broad Institute pioneered the application of genome-wide genetic risk 

analyses for more precise estimation of polygenetic disease risk [17], calculating risk scores 

from millions of variants, rather than using only subsets of hundreds to thousands of risk alleles 

[18]. LDPred is one method for such genome-wide polygenic risk estimation and was introduced 

by Vilhjalmsson and colleagues [19].  This approach infers posterior mean effects for genetic 

markers using a Gaussian distribution to refine the estimate of the posterior probability of 

disease while accounting for linkage disequilibrium (LD) [19].  

In this analysis, we apply  the LDPred algorithm [19] to compute a genome-wide polygenic risk 

score (GPRS) for PD with the aim of developing a more precise individual-level PD risk 

estimation tool. For PD-GPRS validation and testing, we used an independent target dataset 

[20] comprised of 80,777 individuals (1,654 PD Cases: 79,123 Controls) drawn from participants 

in the Accelerating Medicines Partnership: Parkinson’s Disease (AMP-PD) study [21]  and the 

FinnGen genomics research project [22] whose data had not been used in Nalls et al. PD-GWAS 

summary statistic calculations. With this analysis, we identified a unique population of patients 

at substantial and significantly increased risk for Parkinson’s Disease. Cumulative PD incidence 

plots by PD-GPRS also demonstrate differentiated trajectories, with top and intermediate PD-

GPRS percentiles found to have greater incidence by age and earlier disease onset compared 

with individuals in the lowest scoring decile. Intriguingly, in a further exploratory analysis of 

AMP-PD cohort data, MDS-UPDRS motor scores were also observed to trend with GPRS score 

decile, a pattern observed even among mid- and lower-score groups. These findings support 

the validity of PD-GPRS as a potential tool for more precise and accurate PD risk quantification. 

Further potential applications for the PD-GPRS are risk stratification for environmental 

epidemiology studies, clinical screening, and identification of individual patients for yet-to-be 

identified targeted therapies. 

RESULTS 
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For this analysis, we used data from the FinnGen (1616 PD Cases and 93,663 Controls) and 
AMP-PD (1606 PD Cases and 1026 Controls) studies. We considered for inclusion all participants 
with age ≥ 19 years. Table 1 presents dataset characteristics. However, data from subsets of 
these studies had been used for GWAS summary statistic calculations [16, 23]. Overlap 
between GWAS base samples and target subjects may result in biased overestimation of the 
association between PRS and the condition of interest [20]. To ensure validation set subjects 
were not included in GWAS summary statistic calculations, we included from AMP-PD only 
BioFIND study participants and PPMI participants whose identifier codes were not included in a 
list of GWAS participant identifiers obtained through correspondence with Dr. Nalls. In addition, 
as a subset of data from the Finnish Parkinson’s Disease Study was used for GWAS calculation 
[23], we also excluded all FinnGen subjects whose records indicated they were FINRISK study 
participants. Pooling the filtered data sets, this left 80,777 individuals (1,654 PD Cases: 79,123 
Controls) in the target data set used for PD-GPRS validation and testing. QC filtering applied to 
the 1000 Genomes reference panel and genomic data from participants from the AMP-PD and 
FinnGen cohorts identified a total of 6,233,374 SNPs eligible for inclusion in the PD-GPRS 
model. 
 
LDPred computes a posterior mean effect size for each SNP based on Bayesian methods, and 
the prior distribution of this effect size is assumed as a point-normal mixture distribution. The 
final input parameter required to perform this estimation is the fraction of causal variants (ρ), 
which represents an assumption on the number of variants with non-zero effects in the prior 
Gaussian distribution. In practice, the true value of ρ is unknown, and thus a range of values in 
the interval (0, 1] are trialed.  Selection of ρ for the final score calculation in this analysis was 
determined as the value which achieved the highest mean area under the curve (AUC) in 
fivefold cross-validation for prediction of PD case status as a function of GPRS, age, and gender 
using a logistic regression model.  
 
To generate a dataset to perform this validation, pooled target data set subjects were randomly 
assigned to be in either the validation or test datasets in a ratio of 1:2. Data from validation set 
subjects was used to identify the best-performing ρ for GPRS score calculation using fivefold 
cross-validation. Results for these trials are presented in Supplementary Figure 1. GPRS scores 
computed for test subjects using the validated ρ value were used for further downstream 
performance evaluation tasks which then used test set data with this selected ρ. Figure 1 
presents a workflow schematic detailing inputs and tuning parameter increments for each step. 
PD case status prediction was found to be optimized when assuming the maximum possible 
fraction of causal variants (ρ=1.0), which achieved mean validation set AUC of 0.77 ± 0.06 (± 
Standard Deviation (SD)). 
 
PD-GPRS Identifies Individuals at Significantly Increased Risk for Parkinson’s Disease   

Examination of PD-GPRS distributions among PD Cases and Controls from the AMP-PD and 
FinnGen test groups reveals a significant difference in PD-GPRS among PD Cases versus Control 
in the testing data fraction (Fig. 2A; p <1e-10). Prevalence of PD was also found to increase 
sharply among individuals in the highest PD-GPRS percentiles (Fig. 2B). In comparisons between 
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each of the top percentiles and their lower percentile complements, odds ratios for PD were 
substantially and significantly greater for the high-percentile PD-GPRS groups, with subjects in 
the top 8%, 4.5%, 2.5% and 1% of normalized PD-GPRS found to have 3.1, 4.1, 5.2, and 7.9 
times significantly greater odds of PD, respectively (Fig. 2C; p<1e-10).  
 
PD-GPRS Is Associated with Disease Prevalence, Age of Onset, and MDS-UPDRS Motor Scores  

As data from these pooled study cohorts was cross-sectional, cumulative incidence plots were 

constructed for PD cases using age of onset data. PD-GPRS percentile was also found to be 

associated with earlier age of disease onset, with higher-score individuals having earlier age of 

onset and greater cumulative incidence of PD over time (Fig. 2D). Notably, differentiation for 

PD trajectories in these cumulative incidence plots occurs not only between highest- and 

lowest-scoring PD-GPRS percentiles, but also between the high, low, and intermediate scoring-

groups.  

The Movement Disorders Society update of the Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) is among standardized measurements collected for both PD Case and Control 

participants enrolled in the AMP-PD cohorts. MDS-UPDRS consists of four sections: Part I: non-

motor experiences of daily living; Part II: motor experiences of daily living; Part III: motor 

examination; and part IV: motor complications, with items in each section scored with a rating 

from 0 (normal) to 4 (severe) [24]. Apart from a given participant’s classification as a PD case 

versus Control, MDS-UPDRS provides a supplementary assessment of subjective and objective 

neurological function. Intriguingly, among all AMP-PD subjects, including both PD Cases and 

Controls in a plot of MDS-UPDRS versus GPRS decile, we observe a graded difference in average 

MDS-UPDRS scores for parts II and III across PD-GPRS deciles among AMP-PD test group 

subjects (Fig. 3).    

Nearest Genes to High PD-GPRS Variants are Enriched for PD-GWAS Loci and PD-Implicated 

Pathways 

In this analysis, we observed significantly increased odds of PD among high-PD-GPRS 

individuals. Based on this finding, we proposed that alleles observed with higher frequency in 

high-GPRS populations are those most likely to be related to genes with causal contributions to 

PD pathogenesis. MAF analyses was then used to identify alleles with the greatest odds of being 

present in the genomes of individuals in the highest versus lowest 5% of PD-GPRS scores (Fig. 

4A). Pathway and gene ontology analysis was then performed for the set of the top 1000 genes 

identified as nearest genes to variants found to occur with significantly greater frequency 

among high-GPRS individuals in contrast to the low-GPRS cohort. Enrichment network analysis 

using NetworkAnalyst [25] to profile these genes revealed enrichment of this gene set for a 

number of PD-implicated pathways, including phagosome , dopaminergic synapse, and 

GABAergic signaling pathways, as well as peripheral adaptive immunity pathways involved in 

inflammation (Fig. 4B).  
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DISCUSSION  

In this analysis, we describe a new polygenetic PD risk estimation tool which computes PD-GPRS 

using genomic data for 6.2 million variants using the LDPred method. Subjects in the top 

percentiles of PD-GPRS were found to have substantially and significantly increased risk for PD, 

with more than five-fold greater odds of PD in the top 2.5% of scores and seven-fold greater 

odds of PD in the top 1%. Further, cumulative incidence plots by PD-GPRS decile demonstrated 

differences in incidence and age of onset trajectories between high, low, and middle PD-GPRS 

score percentiles, and MDS-UPDRS motor scores were found to trend with PD-GPRS, as well. 

These results provide strong evidence for the influence of complex inheritance in determining 

PD susceptibility and invite further questions regarding whether heterogeneous PD polygenetic 

subtypes may exist. 

Estimated genetic heritability for PD calculated by LDPred in our study is 47.6%. This estimate is 

higher than the PD genetic liability estimate of 16-36% reported by Nalls et al. [16] in the study 

from which we obtained summary statistics used for our PD-GPRS calculations. Although in this 

study we used the same GWAS summary statistics, the LDPred approach supports the inclusion 

of a much higher number of variants for polygenic risk calculation, which likely accounts for our 

greater heritability estimate. Nalls et. al. also evaluated PD case prediction by PRS models using 

subsets of highly significant variants, achieving an average AUC performance of 0.65 and 0.69 

for 88- and 1805- variant PRS, respectively.  Including a greater number of variants in our PD-

GPRS model (6.2 million) enables us to achieve a slightly higher average test set AUC of 0.77. 

This finding is consistent with our PD-GPRS model capturing an increased proportion of disease 

variability attributable to genetic variation. LDPred applications in other disorders have 

reported similar improvements in GPRS prediction accuracy [19]. Our heritability estimate is 

also consistent with an upper range estimate for PD heritability reported in another recently 

published study: in a genome-wide complex trait analysis performed by  Keller et al. for a 

number of different PD population data sets, estimates of PD heritability ranged from 

approximately 16% in a UK cohort to nearly 49% in a cohort from Finland [26].  

Genetic variants associated with greater PD risk have been linked with diverse cellular 

pathways, including lysosomal storage, lipid metabolism, ion channel function, and oxidative 

phosphorylation [1, 5, 8]. How individual genetic architectures may contribute to the 

pathogenesis of PD remains incompletely understood. Several intriguing pathways were found 

to be enriched for among genes linked to higher frequency PD alleles among top versus bottom 

percentile PD-GPRS cohorts by MAF analysis. These pathways include pathways related to cell 

adhesion, Dopaminergic synapses, antigen presentation pathways, neuronal growth and 

development, and immune responses. Interestingly, genes linked with high PD-GPRS alleles 

were found to be enriched for pathways linked with multiple autoimmune inflammatory 

disorders, including inflammatory bowel disease, type I diabetes and autoimmune thyroid 

conditions. Previous studies have reported associations between PD and inflammatory bowel 

disease[27] as well as autoimmune thyroid disorders [28].  Another recent study of pleiotropic 
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genetic risk factors identified 17 loci which are shared risk factors for Parkinson disease and 

type 1 diabetes, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, celiac disease, 

psoriasis, and multiple sclerosis [29]. In addition, cellular adhesion molecules, which was found 

to be among the pathways enriched for among the identified genes, has also attracted recent 

attention for a possible significance in PD [30], further highlighting the novelty and importance 

of pathways identified through polygenetic risk stratification by PD-GPRS.   

Excitingly, as shown in this analysis, PD-GPRS performance for case identification and decile-

stratified risk profiling may provide further opportunities to identify and examine the metabolic 

profiles of individuals with scores which reflect the co-occurrence of varying numbers of alleles 

with intermediate disease associations in population studies. It is possible that PD genetic risk 

architectures may harbor heterogeneous subgroups defined by such co-occurrences and that 

such subgroups might benefit from targeted therapies yet to be developed. Identification and 

characterization of preclinical metabolic profiles among individuals at varying risk would be 

beneficial for understanding the interaction of genetic and metabolic conditions which may 

precede disease onset or identify pathophysiological subtypes. In addition, information 

obtained from orthogonal sources, such as wearable devices for objective functional motor 

performance assessment and clinical and family history may be integrated with PD-GPRS for 

further refinement in diagnostic or screening applications. Such applications would be of 

immediate use for individuals presenting with undifferentiated neurological syndromes which 

may be prodromal symptoms of PD or other disorders.  Further studies are needed to fully 

interrogate these possibilities, as well as to replicate these analyses in diverse populations.    
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TABLE AND FIGURE LEGENDS 

Figure 1. Workflow Schematic for PD-GPRS Validation and Testing. Marker weight estimates 
are first generated by LDPred for multiple ρ values. GPRS for Case and Control subjects 
computed based on marker presence/absence and LDPred weights. Odds ratios for PD are 
reported for top GPRS percentiles. Logistic regression predicting PD case status by GPRS, Age, 
Gender evaluated by AUC and compared for each ρ.   
 

Figure 2. Individuals with high GPRS are at greater risk of PD. GPRS score distributions differ 

significantly between PD Cases and Controls with higher mean GPRS in PD cases (A). Prevalence 

of PD increases with increasing GPRS percentile (B). Individuals in the top 8%, 4.5%, 2.5%, 1% of 

GPRS have 3, 4, 5, 7-fold greater odds of PD versus the rest of the study cohort (C) Cumulative 

incidence of PD by age of onset and GPRS percentile shows earlier onset age and greater 

prevalence with higher GPRS (D). 

 

Figure 3. MDS-UPDRS scores among AMP-PD Cases and Controls by GPRS.  Permutation testing 

finds significant differences in clinical scores between High/Low GPRS populations for MDS-

UPDRS Parts II and III. Score distributions for MDS-UPDRS Part II (A) and Part III (B) for high and 

low GPRS. Mean MDS-UPDRS plotted by decile shows a trend for increasing mean Part II (C) and 

III (D) scores with increasing GPRS.  

 
Figure 4. Two-tail analysis comparing variants observed for high versus low PD-GPRS 

populations from AMP-PD and FinnGen. Top variants identified by MAF as more frequent 

among high GPRS individuals (A). Canonical pathways identified from top 1000 genes associated 

with most significant variants are enriched for pathways including cell adhesion, 

growth, dopaminergic signaling, and immune responses; node size and color saturation indicate 

greater enrichment statistical significance (cancer and infectious disease pathways excluded) 

(B). 

 

Supplement Figure 1. ROC curve in validation dataset. (A) Average AUROC in 5-fold cross 

validation with different parameters (ρ = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0). (B) The ROC 

curve derived with ρ = 1.0 in 5-fold cross validation. 

 

Supplement Figure 2. ROC curve in validation dataset with different parameters (ρ = 0.001, 

0.003, 0.01, 0.03, 0.1, 0.3, 1.0) 

 

Supplement Table 1. Dataset Characteristics 
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METHODS 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and code files should be directed to the Lead 

Contact: Dinesh Kumar (Dinesh.Kumar3@sanofi.com)  

Materials Availability 

• Information and access to the Terra computing platform can be found at 

https://terra.bio/.  Terra is developed by the Broad Institute of MIT and Harvard in 

collaboration with Verily Life Sciences. The Terra system was used for access to AMP-PD 

data and for computing PD-GPRS scores using LDPred algorithm. 

• LDpred is a Python-based software package which adjusts GWAS summary statistics for 

the effects of linkage disequilibrium (LD). The method reference is  Vilhjalmsson et al. 

(AJHG 2015) [http://www.cell.com/ajhg/abstract/S0002-9297(15)00365-1]. LDPred code 

is available at https://github.com/bvilhjal/ldpred.  

• Parkinson’s Disease Genome-Wide Association Study (GWAS) summary statistics from 

Nalls et al. used for PD-GPRS calculation using LDPRed are available from a 

supplementary table to the publication[16]. Complete summary statistics table: 

https://www.biorxiv.org/content/10.1101/388165v3.full.pdf, link to data table file is 

found under heading “DATA ACCESS”.   

• Genome reference panel source is 1000 Genomes Project phase 3:  

https://www.internationalgenome.org/data/ . 

Data and Code Availability 

• Analysis code will be made available as supplemental files at the time of publication. 

• FinnGen data is restricted and requires authorization for access: 

https://www.finngen.fi/en/about.   

• Unified Amp-PD Cohorts data is restricted and requires authorization for access: 

https://amp-pd.org/ 

 

METHOD DETAILS 

Data Sources 
Whole-genome sequencing data from PD Case and Control subjects was obtained from 
participants in two large cohorts, the Accelerating Medicines Partnership: Parkinson’s Disease 
(AMP-PD) Study [21] and the FinnGen Biobank Cohort [22].  
 
The Accelerating Medicines Partnership: Parkinson’s Disease (AMP-PD) Study: 
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AMP-PD is a public-private partnership between the United States National Institutes of Health, 
non-profit organizations, and pharmaceutical and life sciences companies which aims to 
identify and validate new, impactful biological targets for PD therapeutics. Using the Terra 
platform for data access and analysis, AMP-PD makes available unified data from a number of 
published PD cohort studies: the Michael J. Fox Foundation (MJFF) and National Institutes of 
Neurological Disorders and Stroke (NINDS) BioFIND study, Harvard Biomarkers Study (HBS), the 
NINDS Parkinson's Disease Biomarkers Program (PDBP), and MJFF Parkinson’s Progression 
Marker Initiative (PPMI) [21]. 
 
FinnGen:  
FinnGen is a public-private partnership between the Finnish National Institute for Health and 
Welfare, universities, biobanks, and a number of pharmaceutical companies which was 
launched in 2017 with the aim of collecting health and genomic sequencing data from 500,000 
individuals for use in analysis to identify new diagnostic methods and therapies [22]. Patients 
and control subjects in FinnGen provided informed consent for biobank research, based on the 
Finnish Biobank Act. Alternatively, separate research cohorts, collected prior the start of 
FinnGen (August 2017), were collected based on study-specific consents and later transferred 
to the Finnish biobanks after approval by Fimea, the National Supervisory Authority for Welfare 
and Health. Recruitment protocols followed the biobank protocols approved by Fimea. The 
Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) approved 
the FinnGen study protocol Nr HUS/990/2017. 
The FinnGen project is approved by Finnish Institute for Health and Welfare (THL), approval 

number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019), Digital and population data service agency 

VRK43431/2017-3, VRK/6909/2018-3, the Social Insurance Institution (KELA) KELA 58/522/2017, 

KELA 131/522/2018, KELA 70/522/2019 and Statistics Finland TK-53-1041-17.  

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 4 

include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 

BB2018_71, BB2019_7 Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank 

HUS/359/2017, Auria Biobank AB17-5154, Biobank Borealis of Northern 

Finland_2017_1013,  Biobank of Eastern Finland 1186/2018, Finnish Clinical Biobank Tampere 

MH0004, Central Finland Biobank 1-2017, and Terveystalo Biobank STB 2018001.  

Based on our use of a European reference genome panel, for this analysis, eligible subjects 
were AMP-PD Caucasian/White participants and all FinnGen participants for whom genome 
sequencing data was available and who were over 19 years of age. A small number of AMP-PD 
participants with PD prodromal symptoms without a confirmed diagnosis of PD and participants 
with a PD diagnosis whose diagnosis was changed to another neurological disorder during the 
study were identified and excluded (n = 79). Eligible participants with a diagnosis of Parkinson’s 
Disease were classified as PD Cases (AMP-PD Cases: n = 1606; FinnGen Cases: n = 1616) and 
participants without a Parkinson’s Disease Diagnosis were classified as Controls (AMP-PD 
Controls: n = 1026; FinnGen Controls: n = 93,663). Subjects whose data was used for PD-GWAS 
summary statistic calculations were identified by their cohort and/or subject ID (AMP-PD/PPMI 
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participants) (n = 1809) or in the case of FinnGen, indication of FINRISK participation in the 
subject record (n = 15,325). Excluding these subjects, the independent target dataset used for 
PD-GPRS validation and testing was comprised of 80,777 individuals (1,654 PD Cases: 79,123 
Controls). 
 
LDPred PD-GPRS Calculation  
GPRS is derived to predict the likelihood of a specific outcome according to cumulative effect of 
multiple variants. This score is obtained as the aggregation of weighted variants, where the 
weight represents the strength of variants association with disease risk, which can be derived 
from a genome-wide association study. PD-GPRS was calculated in this analysis using the 
LDpred algorithm [19] to generate posterior effect sizes for each SNP. The algorithm computes 
a posterior mean effect size based on Bayesian methods, with the prior distribution of effect 
size assumed as a point-normal mixture distribution.  In contrast to unadjusted, clumped, and 
LD-pruned PRS approaches [31, 32], LDPred was proposed as a method by which to reduce loss 
of information that can occur when variants are thresholded by significance level or relative 
locations and was explicitly designed to support inclusion of a much higher number of variants 
for genome-wide polygenic risk score (GPRS) calculation. LDPred has been shown to increase 
the proportion of variability in disease incidence explained by genomic variation in comparison 
to unadjusted and LD-pruned PRS, and has been successfully applied for identification of 
individuals with clinically significant increased risk for diseases including obesity, coronary 
artery disease, atrial fibrillation, type 2 diabetes, and schizophrenia [17-19]. 
 
To determine the prior distribution, LDpred algorithm requires several inputs: PD-GWAS 
summary statistics for markers to be used for GPRS calculation, a genomic reference panel used 
to account for linkage disequilibrium, and an estimate (manually adjustable) of the fraction of 
causal variants, which represents the number of variants with non-zero effects in the prior 
Gaussian distribution (ρ) [19]. We made experiments with seven different values for the 
fraction of causal variants, then selected the parameter with best prediction performance in 
the validation dataset. For this study, we used GWAS summary statistics reported by Nalls et al. 
for 7.8 million single nucleotide polymorphisms [16]. LDPred also requires input of a reference 
genome panel [19]. The reference panel used for this analysis consisted of 503 samples from 
individuals of European ancestry obtained from the 1000 Genomes Project [33]. Reference 
panel data is used to filter SNPs with high missing rates (>5%) from inclusion in the GPRS 
calculation. In this preprocessing step, SNPs with low minor allele frequency (MAF) (<0.01) are 
also filtered, for both GWAS hits and reference panel samples, and ambiguous nucleotides are 
removed.  
 
Summary statistics reported by Nalls et al. were used as input for the LDPred algorithm in order 
to estimate variant posterior mean effects. Nalls et al. report summary statistics calculated 
from 7.8 million single nucleotide polymorphisms in 37,688 cases; 18,618 UK Biobank ‘proxy’ 
cases defined as non-PD cases with a first-degree relative PD case; and 1.4 million controls. The 
genomic LD reference panel used for this analysis was a panel of 503 Europeans samples from 
1000 Genomes Project [33]. In the reference panel, we filtered out SNPs with high missing 
rates, which we defined as greater than 5%. We also filtered out SNPs with low MAF, defined as 
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less than 0.01, in either GWAS hits or reference panel. All ambiguous nucleotides (A/T, C/G) 
were removed, as well.   
 
Case and Control subjects from the two cohorts were pooled and randomized in a 1:2 ratio to 
either Validation or Testing sets. Validation Set data was used to determine the optimal value 
for ρ, which is the parameter representing an assumption about the proportion of causal 
markers. For variant weight calculations, we used LDPred-Fast, the sparsified prediction 
method described by Mefford et al. [34].  For each trialed ρ value in the set =  [0.001, 0.003, 
0.01, 0.03, 0.1, 0.3, 1.0], PD-GPRS scores were first calculated for validation set subjects 
followed by prediction of PD status as a function of age, gender, and PD-GPRS was tested using 
a logistic regression model, with area under the curve (AUC) performance reported following 
fivefold cross-validation. The ρ parameter found to achieve the best AUC performance was ρ = 
1.0; PD-GPRS scores for further analysis were thus computed for Test Set subjects under the 
assumption ρ = 1.0.  
 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Test set data not previously used to select ρ for PD-GPRS score calculation was used to evaluate 
PD-GPRS prediction of PD. We first performed an exploratory data analysis comparing PD-GPRS 
in Control versus PD Case subjects using two-sample t-test. To further investigate if GPRS 
predicts risk of PD, we then built a logistic regression model to calculate the odds ratio of being 
diagnosed with PD comparing high-percentile GPRS individuals with all subjects in percentiles 
below this cutoff, taking gender and age into account as confounding factors in the 
model. Cumulative incidence plots of age of onset versus prevalence of PD were also examined, 
separated as the top and bottom deciles of PD-GPRS scores and a grouping of the middle 2-9 
deciles. PD Case and Control subjects in the Unified AMP-PD cohort also had available 
standardized motor function assessments: MDS-UPDRS parts 2 and 3.  Mean scores for PD Case 
and Control cohorts were compared by permutation test for the top and bottom 10% of PD-
GPRS , and mean Parts II and III scores by PD-GPRS decile were plotted to examine whether any 
trend between PD-GPRS and motor function might be observed.   
  
Two-tail Analysis  
Genetic attributes enriched for among samples in the two tails of PD-GPRS may provide 
valuable insights. Samples in the top 5% and bottom 5% of GPRS among Test set were 
considered as the high GPRS group and low GPRS group, respectively. Genetic attributes 
were then compared for high GPRS versus low GPRS subjects, with identification of those alleles 
which were observed with significantly greater odds among high-PD-GPRS individuals by 
Fisher’s exact test.  
 
PATHWAY ANALYSIS 
 
Nearest genes to variants identified as occurring with significantly greater frequency among the 
top 5% of PD-GPRS score individuals were explored for pathway enrichment using the 
Enrichment Network analysis tool available in NetworkAnalyst [25]. 
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KEY RESOURCES TABLE  

Deposited Data  

 Accelerating Medicines Partnership:  
Parkinson’s Disease 

  https://amp-pd.org/ 
   

 FinnGen   https://www.finngen.fi/en 
   

Software and Algorithms  

  Terra Platform   https://terra.bio/ 
   

  R/RStudio   https://www.r-project.org/ 
  https://rstudio.com/ 

  Python   https://www.anaconda.com/ 

  LDPred   https://github.com/bvilhjal/ldpred 
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Supplement Table 1. Dataset Characteristics 

                                                                     AMP-PD                                                     FinnGen 
Biobank 

Exploratory Analysis Data  

Study Design Case Control Cross Sectional 

Participants(n) 
  PD Cases 
  Healthy Controls 

2632 
    1606 
    1026 

95,279 
    1616 
    93,663 

Age (Range in Years) 19-90+ 19-90+ 

Percent Female 44% 58% 

Outcomes: 
 

PD, Age at Diagnosis, 
MDS-UPDRS 

PD, Age at Diagnosis 
Neurodegenerative Diseases 

Independent Target Data (excludes subjects used for Nalls et al. 2019 PD-GWAS) 

Participants (n) 
   

PPMI PD Cases: 312 
PPMI Controls: 352 
BioFIND PD Cases: 92 
BioFIND Controls: 67 

PD Cases: 1250 
Controls: 78704 

Exclusions All PDBP participants 
PPMI participants with IDs in 
list used for PD-GWAS. 

All FINRISK participants 

AMP-PD: Accelerating Medicines Partnership program for Parkinson’s Disease 
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