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Superspreaders and lockdown timing explain the power law dynamics of COVID-19
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Infectious disease outbreaks are expected to grow exponentially in time when left unchecked. Con-
tainment measures such as lockdown and social distancing can drastically alter the growth dynamics
of the outbreak. This is the case for the 2019-2020 COVID-19 outbreak, which is characterized by a
power law growth. Strikingly however, the power law exponent is different across countries. Here I
illustrate the relationship between these two extreme scenarios, exponential and power law growth,
based on the impact of superspreaders and lockdown strategies to contain the outbreak. The theory
predicts a relationship between the power law exponent and the time interval between the first case
and lockdown that is validated by the observed COVID-19 data across different countries.

Research from the late 90s and the 2000s uncovered
the heterogeneity of social connectivity patterns, caus-
ing deviations from common expectations [1-4]. Super-
spreaders are the manifestation of this heterogeneity in
the contest of infectious disease outbreaks: most infected
individuals infect a few other people, but a few infected
superspreaders infect many people [5]. More precisely,
superspreaders are primary cases generating a number
of secondary cases much larger than the median of sec-
ondary cases generated by all infected individuals. The
existence of superspreaders was noticed in the 2002-2004
severe acute respiratory syndrome (SARS) outbreak, as
well as in the 2012 Middle East respiratory syndrome
(MERS) outbreak. It is then not surprising that super-
spreaders have been observed in the ongoing COVID-19
outbreak [6-8].

In an earlier work, I investigated the influence of super-
spreaders on infectious disease outbreaks [9]. These anal-
yses showed that superspreaders can lead to a new type
of infectious disease dynamics that is better described by
a power law growth. Recent reports indicate that the
COVID-19 outbreak is in fact better fitted by a power
law growth rather than an exponential growth [10, 11].
Here I provide further support for the power law growth
by linking the power law exponent with the timescales of
the outbreak.

Spreading processes are generally modelled using dif-
ferential equations [3], generating functions [12] or
branching process formulations [9, 13]. T will adopt the
branching process formulation because it provides an in-
tuitive understanding of how the superspreaders and the
lockdown affect the outbreak dynamics. Figure 1A shows
a schematic representation of a causal tree of disease
transmission associated with an epidemic outbreak. The
root, of the tree is patient zero. Every other node repre-
sents an individual that was infected during the outbreak.
Each link represents the transmission of the disease from
one individual (the primary case) to another individual
(the secondary case).
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At the first generation we expect Ry infected individu-
als, where Ry is the average number of infectious gener-
ated by patient zero. At the second generation we expect
RoR infected individuals, where R is the average num-
ber of infectious generated by patients other than patient
zero. By applying the latter rule recursively we will ex-
pect

24 = NoRoR*™! (1)

infected individuals at the generation d of the disease
transmission tree. Here Ny represents the number of pa-
tients zero. Ny can be 1 or larger depending how many
individuals got infected from the original source, e.g. an
animal host or another country.

Notice that I have made an explicit distinction between
patient zero and any other infected individual. This is
done to take into consideration that the process of dis-
ease transmission introduces a bias in the connectivity
statistics of infected individuals. For example, consider
a model where each individual 7 is in close proximity
with other individuals at a rate )\;, measured in proxim-
ity contacts per unit of time. Patient zero is an individ-
ual selected with uniform probability 1/N, where N is
the population size. FEach time patient zero is in close
proximity with another individual, the latter is infected
with probability r, where r is the probability of disease
transmission upon contact. If T = 1/~ is the infectious
period, the inverse of the recovery rate 7, and 8; = r\;
is the rate of disease transmission, then patient zero will
generate the average number of secondary cases given by

SrANiT = (2)

In contrast, subsequent infected individuals are not se-
lected at random from the population. In a fully mixed
population, when an infected case is in close proximity
to another individual, the probability that it is the i-th
individual is A;/N(A). In turn, if ¢ gets infected it will
transmit the disease at a rate r\; = ;. Therefore

B Ai - 1 (8%
B=2 my™5 = ®)
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FIG. 1. Causal tree of disease transmission of an infectious
disease outbreak. A) Typical topology leading to an expo-
nential growth. B) Typical topology leading to a power law
growth. The comparison of the two panels highlights the dis-
tinctive difference between the trees topologies.

The latter result is similar to what obtained in static net-
works [3, 9, 12], where the reproductive number is pro-
portional to the ratio between the first and second mo-
ments of the degree distribution. The mapping between
the contact dynamics and static network representation
can be done after taking into account that the number
of contacts in a time interval T follows a Poisson distri-
bution, resulting in the degree distribution

1D r
Pk = N zl: k! e (4)
From the latter equation we can calculate the first and
second moment of the degree distribution, obtaining
(k) = (\)T and (k(k — 1)) = (A2)T/({)), respectively.
Substituting these values into equations (2) and (3) we

finally obtain

(k(k — 1))
(k)

which is the average reproductive numbers of the root
and other nodes as obtained in the static network repre-
sentation [3, 9, 12]. The —1 in equation (6) excludes the
link from where the node gets infected.

To determine the number of new infectious at a given
time, we need to make a mapping from generation to
infection time. For an infected individual at generation
d;, the infection time equals the sum of d transmission
times.

R=r (6)

d;
t; = ZTM (7)
d=1

where 7;4 is the disease transmission time from the pri-
mary case at layer d — 1 to the secondary case at layer
d, within the path from patient zero to node i (see Fig.
1A). If g(t) is the probability density function of the dis-
ease transmission time from a primary to a secondary
case, then the probability distribution that an infected
individual at generation d gets infected at time t is given
by the d — 1 order convolution of g(t), denoted by

fa(t) = gV (t) (8)

If infected individuals are removed at a rate -, then the
generation time distribution is exponential, g(t) = ye ™7
with average generation time 7' = 1/+. In this particular
case we can derive an analytic expression

fa(t) = I (yt) "t ye (9)

d—1

Now we are ready to complete the mapping from gen-
erations to time. From equations (1) and (9) it follows
that the average number of new infections at time ¢ is
given by

D
I(t) =Y zafalt) (10)
d=1

D

= yNoRoe "
=1

d—1
(B~t) (11)
(d—-1)!

where D is the final generation, when the outbreak ends
due to natural extinction or interventions strategies. A
formal derivation of equation (11) can be found in [9, 13].
To understand the impact of superspreaders and lock-
down, let us have a look at the two trees of disease trans-
mission in Fig. 1A and B. In Fig. 1A most individuals
transmit the disease approximately to the same number
of other individuals, and the chain of transmissions ex-
tends in this manner over several generations. When D is
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very large, equation (11) represents the Taylor expansion
of the exponential, resulting in

I(t) = yNyRoe =1t (12)

This approximation is valid for vtR < D. If R > 1
then the outbreak grows exponentially over time, else if
R < 1 the outbreak decays exponentially. This is the
canonical expectation of infectious disease dynamics. In
this scenario the key quantity is the reproductive number
R and interventions strategies are focused on bringing it
below 1.

However, there are a number of assumptions behind
equation (12) that make it inadequate to model all in-
fectious diseases outbreaks. First, we have just assumed
that D is large, i.e. that the free spreading of the disease
goes over several generations. That would typically be
true for infectious diseases with mild symptoms such as
the common cold, but it is not the case for COVID-19.
The mortality and hospitalization rate of COVID-19 in-
fections have led governments to impose strict lockdown
measures. As a consequence, the tree of disease trans-
mission is truncated after a few generations, as shown in
Fig. 1B.

Second, there are superspreaders. The reproductive
number of individuals other than patient zero is propor-
tional to the ratio between the second and first moments
of the distributions of contact rates. If there is a wide
variation of contact rates in the population, (5%) > (),
and the probability of disease transmission upon contact
is high, then according to equation (3) R will be large.
In the specific case of the COVID-19 outbreak, the prob-
ability distribution g of secondary cases k generated by
a primary case has a fat tail. The fat tail is well ap-
proximated by the power law g ~ k™7 where v; =~ 2
based on world-wide data [14]. The exponent v; = 2
is the expectation for a contagion spreading in networks
with multiple topologies and therefore it has a theoretical
foundation [15]. When v; < 2, the value of R = )", qik
is ill-defined, it will increase as more disease transmis-
sions are allowed. When 71 £ 2 the value of R is well
defined but it will be very large, diverging as v; — 2.

When these two elements are taken into consideration,
a small number of generations D and the existence of su-
perspreaders, then equation (11) is better approximated
by [9]

_ yNoRoRP~!
I~ =5,

This approximation is valid for v¢R > D. In short, the
number of infected cases from one generation to the next
can increase so dramatically that the number of new daily
infectious will be dominated by the time the individuals
at the last generation get infected. The power law be-
haviour predicted by equation (13) is so different from
the readily explainable exponential behaviour (12) that
it has been neglected for 14 years.

Equation (13) makes a testable prediction, that the
exponent of the power law growth, I(¢) ~ t*, depends on

()P te (13)
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FIG. 2. Number of new infections in the Netherlands as a
function of time, measured in days from February 28th, when
first case was reported. Based on data retrieved from the
World Health Organization (WHO) website. The red line
represents a power law growth ~ 32,

D,
a=D-1 (14)

In turn, D can be estimated as the number generations
of disease transmission from patient zero to the imple-
mentation of lockdown,

tr, —to

D~
T

(15)
where tr, is the time when the lockdown was implemented
and tg is the time when the first case was reported. T, as
before, is the average time from being infected to disease
transmission. Combining equations (14) and (15) then
yields

tr — to
o= ————7

7 1 (16)

To test equation (16), I collected data for the observed
power law exponents. Singer has conducted an extensive
analysis of the fitting of a power law or logistic growth
to the plot of new infections as a function of time [11].
Here, I focus on those countries were the power law fit
was dimmed a better fit than a logistic function. As
an example, Fig. 2 shows the data for the Netherlands.
The log-log plot emphasizes the power low growth of the
outbreak before lockdown (Fig. 2, red line). The power
law exponents are reported in the Table 3 of Ref. [11].

In parallel, I have estimated the power law exponent
using equation (16). To this end, the time of first con-
firmed case were retrieved from the World Health Orga-
nization (WHO) website at https://covid19.who.int.
Except for China, that was assumed as 8th of De-
cember, when the first suspected case in Wuhan
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FIG. 3. Relationship between the observed and expected

power law exponent. The points are based on observational
data for the COVID-19 outbreak in the indicated countries.
The line represents the prediction being equal to the observa-
tion.

was reported having symptoms of coronavirus. The
time of lockdown was assumed to be the 20th of
March for all countries but China, as reported in [16]
and available at https://www.politico.eu/article/
europes—-coronavirus-lockdown-measures-compared.
For China we assumed the 1st of January, when the
Wuhan market was closed. T was estimated as the

COVID-19 incubation time, which is approximately 5
days [17]. Based on these parameter estimates we obtain
the exponent values predicted by equation (16), which
are in very good agreement with the exponents obtained
by Singer from a direct fit to the n(¢) vs t data (Fig. 3).

In conclusion, the power law dynamics of the COVID-
19 outbreak is a validation of the new power law of infec-
tious disease spreading [9]. This is further demonstrated
by the relationship between the power law exponent and
the time interval between first case and lockdown. Fur-
thermore, it can be shown that the power law growth
persists even if there are degree correlations [18] or mul-
tiple types of spreaders [19]. Again this study also under-
scores the crucial importance of early lockdown timing in
the control of an infectious disease in a population with
superspreaders.

These results are relevant for the management of coro-
novirus outbreaks or any other outbreak with super-
spreaders. First, the common assumption of exponen-
tial growth/decay needs to be revised. Specially when it
comes to estimate the basic reproductive number from
the plot of new infections as a function of time. Sec-
ond, the theory explains why the power law exponent is
variable across countries. The value of the power law
exponent contains information about the number of gen-
erations the outbreak went through.
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