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interest.

ABSTRACT

Objective: To present Motiro,  an unified framework for non-supervised statistical

analysis endomicroscopy videos of the colorectal mucosa.

Materials and Methods:  We wrote an open-source Python wrapper using ImageJ

software with OpenCV, Seaborn and NumPy libraries. It generates a mosaic from

the  video  of  the  mucosa,  evaluates  morphometric  properties  of  the  crypts,  their

distribution, and return their statistics. Shannon entropy (and Hellinger distance) are

used for quantifying variability (and comparing different mucosa).

Results: The  segmentation  process  applied  to  normal  mucosa  of  pre(post)-

neoadjuvant patient is presented along with the corresponding statistical analysis of

morphometric parameters.

Discussion:  Our  analysis  provides  estimation  of  morphometric  parameters

consistent  with  available  methods,  is  faster,  and,  additionally,  provides statistical

characterization of the mucosa morphometry. Motiro enables the analysis of large

amounts of endomicroscopy videos for building a normal rectum features dataset to

help on: detection of small  variability;  classification of post-neoadjuvant  recovery;

decision about surgical intervention necessity.

Key words: image processing, gastrointestinal, confocal endomicroscopy, colorectal

cancer, computer-assisted decision making

INTRODUCTION

Probe-based laser endomicroscopy  (pCLE) of  colorectal  cancer (CRC) enhanced

screening and post-neoadjuvant surveillance(1). pCLE videos aid endoscopists to

classify  population  groups  accordingly  with  their  probabilities  of  developing  a
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CRC(2), e.g. by aberrant crypt foci quantification for inference of recurrence(3) and

neoplasms(4)  chances.  That  entails  the  use  of  computational  tools  for

complementing  human analysis(5)  using  machine  learning-based classification  of

polyps(6)  or  quantitative  analysis  of  the  mucosa  architecture  by  supervised,

decoupled use of Icy and ImageJ softwares(7). In Ref.(7), the necessity of a unified

framework for  the analysis of  the architecture of the mucosa was raised.  In this

manuscript we present  Motiro1, a Python-based non-supervised unified framework

for statistically characterize the morphometry of the colorectal mucosa at pre or post

neoadjuvant  CRC  using  pCLE  videos.  Because  of  its  unified,  non-supervised

functioning, Motiro enables the efficient creation of a database of analyzed images

and  clinical  data(8)  to  be  jointly  used  for  elaborating  an  optimal  screening  and

surveillance agenda for CRC patients(2,9,10). 

The molecular processes controlling tissue patterning in the colorectal mucosa(11)

are unavoidable noisy(12). That may cause small fluctuations on the position, shape,

and size of the crypts of the normal mucosa. Indeed, the link between molecular

level  fluctuations  and  tissue  level  variation  has  been  reported  on  analysis  of

Drosophila embryos  development(13,14)  and  it  is  fair  to  extrapolate  such  a

conceptual  framework for  understanding the patterning of  the colorectal  mucosa.

Therefore, we analyze the morphometric parameters of the crypts using histograms

to  represent  the  small  degree  of  disorder  exhibited  by  the  normal  mucosa.  For

distinguishing the disorder of normal mucosa from that observed at earlier stages of

a  neoplasm  or  recurrent  CRC,  Motiro  brings  two  methods  for  evaluating  the

distribution of morphometric parameters, namely, the differential Shannon entropy

and  the  Hellinger  distance.  The  former   has  been  widely  used  to  quantify  the

1 From tupi-guarani, the language of native Brazilians, meaning a reunion for building.
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disorder in physical systems(15), and the latter is employed to compare the overlay

of  two  histograms  (16)  representing  the  distribution  of  a  given  morphometric

parameter. These two quantities enable one to comparatively compute the degree of

disorder of the mucosa of, for example, a patient and a population, the crypts at pre-

and post-neoadjuvant therapy, or different regions of the mucosa of a patient. They

also set  a  quantitative criterion for  helping on the distinction of  normal-abnormal

variability of the mucosa's architecture. Moreover, the unsupervised functioning of

Motiro  enables  one  to  efficiently  construct  a  large  database  of  endomicroscopic

images  statistically  characterized.  That  has  a  clear  clinical  implication:  one  may

quantify the probability of an observed variability within the colon mucosa of a patient

to be the classified as either normal or as the early stage of a neoplasm or recurrent

CRC by, e.g., application of a hypothesis test.

METHODS

Dataset images

The images were acquired  using  pCLE.  pCLE is  a  real  time  in  vivo method for

acquisition  of  1000  times  magnified  optical  biopsies  for  evaluating  cellular  and

vascular patterns. Before the pCLE procedure, 5 ml of 10% fluorescein diluted in 100

ml of saline solution were injected intravenously. The probe was inserted through the

working channel of the endoscope into the rectum a few minutes after the fluorescein

injection.  The  pCLE  (2.5  mm  UHD  ColoFlex  probe,  Cellvizio;  Mauna  Kea

Technologies, Paris, France)  provided depth of examination of 55 to 65 μm, a 240

μm field of view at a resolution of 1 μm and magnification of 1000X at 12 frames/s. In

all patients, normal mucosa located at least 5 cm from the target lesion was also

examined by pCLE, in order to have a comparison image to the altered mucosa.  
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Figure 1: Motiro flowchart.  A visual representation of the major stages of Motiro.

Stage 1 receives endomicroscopic videos as input and provides mosaics and the

elliptical  contours  as  results.  Stage  2  the  contours  are  used  to  analyze  the

morphometric data and highlight the images for visual assessment of the parameters

estimation. Stage 3 generates the output by plotting the statistical analysis of the

morphometric parameters.

Framework software

Figure 1 shows a flowchart of the major stages of Motiro. We use a pCLE video as

input  of  our  wrapper(17).  Stage  1,  Motiro  combines   tools  from  Open  Source

Computer Vision Library (OpenCV)(18),  and ImageJ plugin Register Virtual Stack

Slices (RVSS)(19,20). OpenCV (RVSS) is used for dismantling the video into frames

and  text  removal  (frame  stitching).  On  the  resulting  mosaic,  OpenCV  tools  are

employed  for  pre-processing,  segmentation  using  k-means  algorithm(21), and

morphometric analysis are executed in Stage 2 (please, see Supplementary Digital

Content 1 (SDC1) for a detailed description). Stage 3, NumPy and Seaborn Python

libraries  are  used  for  statistical  analysis,  and  data  generation  for  calculation  of

differential Shannon entropy and Hellinger distance.

Morphometric parameters

A geometric interpretation of our results was facilitated by converting pixel values on

the  mosaic  to  micrometers.  The  crypts  were  approximated  as  elliptical  contours

(here on denoted simply as contours) drawn using OpenCV. The ratio of the major to

the minor edges of a rectangle parallel to the Cartesian axis surrounding the elliptical

crypt is the axis ratio (α). The elongation factor (ε), is that ratio in a rotated rectangle

with edges parallel to the major  (2a) and minor (2b) axis of the contour, with the
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former,  called  maximal  Feret  diameter,  being  estimated  by  both  an  exhaustive

search and  a  heuristic algorithm.  The  perimeter  (ρ)  of  the  contour  is  estimated

using(22):

 ρ=π (a+b )∑
n=0

∞

(0.5n )
2

(
(a−b )

2

(a+b )
2 )
n

.

 The area of a contour (A) is estimated in  μm² using  ,  A=π ab with  roundness (Σ)

being:

Σ=
4 A

π b2

 and sphericity (σ ) being: 

σ=
4 π A

ρ2
. 

The mucosa state is further characterized by the crypts' distribution. We estimate the

mean (Δ) and minimal (δ) intercrypt distances; the minimal distance separating two

nearest  neighbor  contours,  called  wall  thickness  (ω), and  the  tissue  density  (θ).

Please, see  SDC2 for further details on the methods of analysis of the morphometric

parameters. 

Statistical analysis

The images were classified as pre (R) and post  (T)  neoadjuvant  for  a statistical

evaluation  of  the  morphometric  parameters.  We  quantify  the  degree  of

disorganization of R and T images applying the differential Shannon entropy(23) on

the histogram of each morphometric parameter:

S=−∑ f i log2(
f i
Li )

where  f i is  the  relative  frequency  of  observing  the  i-th  range  of  values  of  a
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morphometric parameter and  Li is the  i-th bin width (please, see SDC3 for further

details). The differential Shannon entropy for a uniform distribution of a continuous

random  variable  within  an  interval  of  width L is  S0=log2 (L ) can  be  used  as  a

reference  value  determining  the  maximal  degree  of  disorder  of  a  distribution  or

histogram. Then we define the quantity 2
S

L
 to evaluate the disorder of a distribution or

histogram relative to its uniform counterpart: the distribution or histogram reflects a

higher degree of disorder for 2
S

L
 and better organization otherwise.

The use of histograms for characterizing the morphometric parameters requires the

use of a statistical distance for differentiating two sets of images. Here we choose

the  Hellinger  distance(16,24,25)  between  two distributions  P and  Q,  denoted  by

H (P ,Q ), to compute the overlay between two probability densities:

H (P ,Q )=√1−BC ( p ( x ) , q ( x ) )

where p ( x ) and q ( x ) are probability densities evaluated in x and

BC (p (x ) , q ( x ) )=∫√ p (x )q ( x )dx 

is the Bhattacharyya coefficient. Relative frequencies are used to approximate the

probability densities when we compare the histograms of a morphometric parameter

from two images, R and T (please, see SDC3 for further details).

RESULTS

Figure 2: Crypts estimation process. (A) Mosaic image built from by pCLE video.

(B) Mosaic after noise removal and enhanced contrast processes. (C) Binary image

after application of threshold of pixels clustered in the darkest groups. (D) Result of
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morphological and convex hull (green boundary) operations applied on segmented

image. (E) Estimated ellipses after application of convex hull. (F) Overlay of rough

mosaic  image,  estimated elliptic  contour  obtained using  Motiro  (green),  and Icy-

based algorithm(red).

Endomicroscopy image segmentation

Figure  2 shows an  example  of  the  Motiro  estimation  of  the  crypts'  contours  as

obtained from the pCLE videos.  Fig 2A shows a mosaic which irregular geometry

results  from  the  imaging  acquisition  process:  the  sensibility  of  the  probe  and

absence of reference points causes a maneuvering variability. The field of view of

the probe is wider than the diameter of a crypt in a normal mucosa which leads to a

mosaic  composed  by  multiple  crypts  prone  to  statistical  analysis.  Application  of

contrast enhancement and noise removal highlights the crypts from background as

shown in  Fig.  2B. Fig  2C shows a  segmentation  of  the  crypts  and  surrounding

stroma. Application of morphological  operations and application of convex hull  to

smooth  the  crypts'  peripheries  is  shown  in  Fig  2D. Fig.  2E shows  the  elliptical

contours estimation of the crypts' surrounding after the convex hull.  Inspection of

Figs 2E and 2C indicates the similarity of the elliptical estimates to the segmented

crypts  after  removal  of  noise  of  the  stroma  and  irregularities  of  the  crypts'

boundaries.  Fig.  2F shows Motiro's  (Icy's(26))  contours estimation in  green (red)

overlaid  to  the  original  mosaic.  The  contours  of  some  crypts  are  less  accurate

because of inaccuracy of segmentation process caused by the brightness of some

crypts border being similar to that of the background.

Figure  3: Morphometry parameters evaluation.  The blue and beige histograms

represent  the  statistics  of  the  mucosa's  morphometric  parameters  in  R  and  T
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neoadjuvant treatment, respectively. 

Statistical analysis of the crypts morphometry

Fig.  3  shows our  statistical  analysis,  the  superposed blue  and beige histograms

summarize data for R and T images, respectively, after outliers' removal (please, see

SDC4 for complete data analysis). The prevalence of single mode histograms and

similarity  between  R  and  T  images  indicate  the  regular  structure  of  the  normal

mucosa. Most of the axis ratio (and elongation factor) of the crypts lie within the

range [1, 1.37] (and [1,1.4]) embracing  84% (and 78%) of the crypts in the R and

75% (and 69%) in the T images. The R and T images concentrate 74% and 78%,

respectively, of the crypts' roundness (and 84% and 81% for sphericity) within the

range  of  [66%,90%]  (and [94.6%,99.9%]).  The  maximal  Feret  diameter  (and the

perimeter)  of  the  crypts  are  lying  within  the  ranges  of  [81,146]  (and  [229,461])

embracing  98% (and 98%) in  the  R and 92% (and 89%) in  the  T images.  The

minimal  intercrypt  distance  (and  the  wall  thickness)  are  lying  within  the  range

[104,155] (and [4,48]) that encompass 84% (and 71%) in the R images and 81%

(and  93%)  in  the  T  ones.  The  mean  intercrypt  distance  values  are  distributed

accordingly with histograms having a mode within the range [118, 180] and another

within [211, 273] which, respectively, in the R (and T) images concentrate 56% (and

33%) and another 30,3% (37,5%) of the data.

TABLE 1: Statistical analysis of R and T images.

Table 1 gives additional statistical information, after outliers' removal, with columns 3

to 9 labeled as morphometric parameters as in Figs. 3A to 3I. The first two rows

account  for  analysis of  images R and T,  with their  first  sub-row indicating mean

values and standard deviations and the degree of disorder given in the second sub-
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row. The third row shows the Hellinger distance between histograms from R and T

images. The Hellinger distance ranges from 0.230 to 0.407 and it is fair to conclude

that there is a good similarity on the morphometry of the normal mucosa in both R

and  T  images.  Such  a  conclusion  is  reinforced  by  noticing  that,  for  almost  all

morphometric parameters, the absolute value of the difference between the means

of R and T images lay within the standard deviation of one or another, the exception

being  δ ,  which  standard  deviation  in  the  R images  is  smaller.  We compare  the

differential entropy of each histogram to their corresponding uniform and 2S /L<0.848.

That reinforces our conclusion that the evaluated mucosa has a high degree of order

despite their intrinsic variability.

DISCUSSION

The morphometry analysis presented here has been performed by Quénéhervé(7)

and collaborators(QA) using Icy and ImageJ softwares separately. Because in QA

approach the crypts are contoured manually, one may consider these contours as

the gold-standard.  In SDC5 we present a quantitative comparison between Motiro

and QA morphometric estimates and obtain a mean relative error of  0.167. That

demonstrates  the  viability  of  the  unified  non-supervised  segmentation  of  pCLE

videos of the colon's mucosa. 

Though  the  learning  curves  of  Motiro  and  QA  are  similar,  Motiro  unifies

functionalities,  adds new functionalities,  is non-supervised and is 5.7 times faster

than QA with heuristic algorithm to evaluate crypts(SD6).  Motiro runs on a Linux

Operational  System,  requires  installation  of  Python(3.6.9),  Seaborn(0.10.1),

Numpy(1.19),  and  OpenCV(4.3.0),  and  is  executed  in  a terminal  (instead  of  a

graphical interface). Images with aberrant crypts could not be properly segmented by
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Motiro and in future work we expect to work on those drawbacks.

The addition of the statistical analysis of the morphometric parameters enables the

quantification of the intrinsic small fluctuations of the mucosa's architecture. For such

study, we interpret the crypt-crypt interlinks as edges of a graph, which enables us to

establish an estimate of the topographical properties of the mucosa. Then, we can

use the differential  Shannon entropy for quantifying the degree of disorder of the

mucosa, and Hellinger distances for comparing the statistics of the architecture of

the multiple mucosas, or of different positions or instants of the same mucosa. The

statistical analysis based on removed outliers helps to reduce the bias caused by the

analysis of  partial  crypts appearing within the edges of the mosaics. The use of

histogram-based  statistical  analysis  (as  alternative  to  often  employed  average,

mode, and median) opens the way for a comprehensive approach based on machine

learning techniques for the classification of the normal mucosa in R and T images

and estimation of  neoadjuvance success chances. The analysis of a large data set

may indicate whether the histogram-level differences on morphometric parameters of

R and T images have a significance and set reference values for both the differential

Shannon entropy and the Hellinger distances.

Motiro  brings  significant  improvements  to  statistically  assess  and  analyze  colon

morphometry using pCLE videos, and is ready for approaching a large amount of

data  obtained  from  normal  and  quasi-normal  mucosa.  Motiro’s  image  analysis

approach has the benefit  of not needing a large amount of pre-classified data to

extract  features  and  the  morphometry  parameters  have  clear  geometrical  and

biological  interpretations. That contrasts with machine learning approaches which

demand large amounts of high-quality data to provide models which geometrical or
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biological  meaning  can  be  hard  to  determine(27).  Therefore,  machine  learning

approaches may benefit  from the construction of  a set  of  results  having a clear

interpretation. Indeed, Motiro is prompt to be employed for building a large database

of mucosa features to be used on artificial intelligence studies aiming to establish the

connection  among mucosa morphometry  and clinical  data.  The use of  statistical

analysis enables a refinement on the differentiation of normal and post-neoadjuvant

fully  recovered  mucosa.  That  may  help  on  elaborating  more  assertive  machine

learning-based models to assist physicians to decide about the necessity of surgical

interventions on post-neoadjuvant colorectal cancer patients. Additionally, the use of

a  unified  framework  for  a  quantitative  characterization  of  the  architecture  of  the

mucosa enables to set additional standards to aid human analysis by reducing the

role of subjectivity(28). Besides, the modular structure of Motiro can be used for its

adaptation for analyzing images obtained by advanced methods(29).
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TABLE 1: Statistical analysis of R and T images.

Axis
Ratio 

Elongation
Factor

Roundness(%) Sphericity(%)
Maximal

Feret
diameter(μm)m)

Perimeter(μm)m)
Minimal

intercrypt
distance(μm)m)

Wall
thickness(μm)m)

Mean
intercrypt

distance(μm)m)

R

mean (±std) 1.20
(±0.16)

1.29  (±.0.1)  77.4 (±9.8) 97.1 (±2.3) 108.3 (±12.3) 310.2 (±42.6) 137.9 (±15.1) 39.4 (±15.7) 185.2 (±47.5)

Degree of
disorder

 0.715 0.741 0.792 0.769 0.484 0.468 0.610 0.836 0.748

T

mean (±std)
1.28

(±0.14)
1.36 (±0.13) 72.2 (±9.1) 96.2 (±2.2) 111.0 (±19.7) 320.9 (±74.5) 120.5 (±18.8) 26.8 (±13.1) 189.6 (±52.1)

Degree of
disorder

0.738 0.766 0.725 0.848 0.649 0.537 0.671 0.728 0.840

Statistical
Distance 

0.318 0.330 0.292 0.222 0.367 0.367 0.407 0.367 0.230
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