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 Abstract 

The rapid development of vaccines against the SARS-CoV-2 virus is an unprecedented 
achievement. Once vaccines become mass produced, they will have to be distributed to almost 
the entire population to prevent deaths and permit prompt economic recovery. The necessity to 
vaccinate a large number of people in a short period of time, and possibly with insufficient 
vaccine doses to cover most, creates in itself a new challenge for governments and health 
authorities: which population groups (by age or other criteria) should be targeted first and what 
sequence must be followed, if any at all, to achieve the minimum number of fatalities? In this 
work, we demonstrate the importance and impact of optimally planning the priorities for vaccine 
deployment by population groups using a modified SEIR-type model for the COVID-19 outbreak 
considering age-related groups. Finding the absolute guaranteed best solution of the 
mathematical optimisation problem may be hard, if even possible, and would likely require 
intense computational resources for every possible case study scenario. In this work, several 
strategies are evaluated and compared, in an attempt to approach the most effective possible 
vaccination priority sequence in an example case study using demographic and epidemiological 
data from Spain. The minimum total fatalities at the end of the vaccination campaign is the 
objective pursued. The population groups classifications are established based on relevant 
differences in mortality (due to their age) and risk-related behaviour such as their number of 
daily person-to-person interactions. Assuming a capacity limited constant vaccination rate, 
vaccination distribution strategies were evaluated for different vaccine effectiveness levels and 
different percentages of final vaccine population coverage. Our results unambiguously show how 
planning vaccination by priority groups can achieve dramatic reductions in total fatalities (more 
than 70% in some cases) compared to no prioritisation. The results also indicate in all cases, for 
all vaccine effectiveness and coverage values evaluated, that the criteria for groups vaccination 
priority should not be those with the highest mortality but rather those the highest number of 
daily person-to-person interactions. Strikingly, our results show in all cases, that prioritisation of 
groups with the highest mortality but less social interactions, may lead to significantly larger 
numbers of final total fatalities, even higher as if no group priorities were established at all. The 
explanation, clearly displayed by the mechanistic model, is that vaccination avoids infections that 
reduce mortality not only from the vaccinated group itself but also from the projected secondary 
and subsequent infections inflicted on the rest of the population by those vaccinated in that 
group. Precisely this amplification effect (exponential nature of the curve) appears to cause the 
larger reduction in total fatalities if the groups with the most interactions are vaccinated first. 
The possible contradiction of these results with some published recommendations highlight the 
importance of conducting an open comprehensive and rigorous analysis of this problem leaving 
behind any subjective preconceptions. 
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Introduction  

COVID-19 has inflicted great stress worldwide with more than 37 million cases and 920 thousand 
deaths globally as of October 12, 2020. (JHCRC 2020). Despite a tendency to a decrease in the 
number of cases per day in many countries, and even regions in the world, the pandemic is not near 
its end and the disease will probably not go away, becoming endemic in many regions throughout 
the world. In this scenario, the development of adequate vaccines is an alternative for primary 
prevention of the disease, so far implemented through hygiene, social isolation, social distancing, 
and quarantine. Vaccines then are the next best hope for the world in the COVID-19 pandemic.  

 Vaccines, of different types, are products of biotechnological processes and their development 
and approval is long, taking on average several years. This was the rule until now: in an 
unprecedented global effort from pharma and academia, supported by government and private 
organizations, streamlined regulation and financial investment have made possible that one or 
more COVID-19 vaccines may become available during early 2021. Although the tremendous speed 
with which COVID-19 vaccines are being approved and trials implemented, and the scientific world 
concerns about the science, the politics, and the economics of such speedy processes, it is probably 
unavoidable that one or more vaccines will become available soon.  

 With more than 320 candidates and 76 trials now underway (15 in phase I; 25 in phase I/II; 4 in 
phase II; 2 in phase II/III; and 13 in phase III), registered at ClinicalTrials.gov, the next problems to 
sort out will probably be mass production of the vaccine and how to determine the vaccine 
availability for potential users. (Krammer 2020; Parker et al., 2020). 

 The WHO issued a draft statement on September 9, 2020, addressing issues related to the fair 
allocation of vaccines for countries around the world. Available doses of COVID-19 vaccines 
worldwide are proposed to be managed centrally and equitably by the COVAX Access Mechanism, 
a coalition of member countries together with the ACT-Accelerator Collaboration (WHO; the Bill & 
Melinda Gates Foundation; Gavi, the Vaccine Alliance; the Global Fund; the Coalition for Epidemic 
Preparedness Innovations -CEPI; and Welcome Trust) (WHO, 2020a) to allow fair allocation of 
available vaccines. However, in the same statement, the country allocation of vaccines provided to 
each one of the countries will be driven by each country itself. 

 Despite the estimated and unprecedented fast production of vaccines, and mostly due to the 
immense need for potential users (the vast majority of the population worldwide is still susceptible 
to the infection), vaccines provided will be insufficient. The COVAX initiative (WHO 2020a) proposes 
vaccine doses for each country to cover 3% to 20% of the population proportionally to each country, 
in two phases. However, it specifically does not address intra-country distributions for each 
country’s population. And despite adequate world-wide equitable distribution, the final impact of 
the vaccine administration to populations will be dependent then, only on the internal country 
distribution specifically. With the limited availability forecasted (having the capacity of progressively 
covering 3 to 20% of the population for most countries) the internal distribution within each country 
becomes paramount in the final effect of the vaccination campaign for COVID-19 and the impact it 
will have in each country population. There is no doubt that vaccine uptake will be an important 
driver (Mello et al., 2020) however, intra-country capacity for adequate vaccine distribution will be 
essential and will most likely impact the final amount of deaths related to COVID-19 (Schwartz 2020).  

 Some of the important drivers for vaccine allocation seem to rise from ethical principles. (Field 
et al., 2012; Liu et al., 2020). For instance, as stated by Emmanuel et al.(2020), these ethical 
principles point towards first, reducing premature deaths; then, reducing economic and social 
serious deprivations and last, focus on return to functional populations and societies. However, as 
disputed the order and scope of these principles may be, we do agree that the immediate need of 
decreasing COVID-19 deaths (direct and indirect) that may be avoidable, is the first priority.  
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 The empiric decisions in a pandemic are a luxury not always possible. In these cases, 
mathematical modelling might guide immediate decisions, such as the impact of non-
pharmaceutical interventions (Rodríguez et al. 2020) or in this case vaccine prioritization, 
fundamentally based on trying to avoid premature, preventable deaths. Under stable conditions of 
capacity and resources, and the capacity of public health systems to adapt to COVID-19 (WHO 
2020b), these deaths (in number) are linked to the number of cases and the severity of disease: the 
more cases and the more severe they are, the higher the number of deaths. The number of cases, 
in turn, is related to the serial interval (usually stable throughout the infection) (Nishiura et al., 2020) 
and the Reproductive Number (R0) of the disease, or better, the effective Reproductive Number (Rt) 
if we consider this indicator an active one as opposed to a passive one) (Cori et al., 2020). Most 
countries have managed statistics for COVID-19, the number of factors involved in the calculation 
of Rt and of the number of deaths is complex due to multifactorial associations of factors causing 
deaths. Also vaccination will change in real-time the characteristics of the population, changing the 
Rt and the probability of death as time elapses in the vaccination campaigns. It is easy to conclude 
then that in view of this, a fixed approach during a prolonged amount of time during for vaccine 
distribution within countries, will not produce the best possible results in averting the highest 
potential number of preventable deaths by vaccination. 

 The COVID-19 outbreak has brought unprecedented attention to mathematical modelling, with 
the development of several epidemic models trying to forecast the extent of the pandemic (Gatto 
et al., 2020; Giordano et al., 2020; Hellewell et al., 2020; Kissler et al., 2020; Kucharski et al., 2020; 
Roosa et al., 2020; Wilder et al., 2020). Some previous SEIR models already evaluated vaccination 
strategies for infectious diseases (Wang et al., 2019; Yu et al., 2016). Due to the attention drawn 
from the COVID-19 outbreak, additional models have been developed to evaluate vaccination 
strategies against SASRS-CoV-2.  The goal of these models is to elucidate which strategy might be 
best for vaccinating the population with the objective of reducing the number of fatalities and/or 
hospitalized people (Bubar et al., 2020; Matrajt et al., 2020).  Mathematical models of the COVID-
19 vaccination that allow for the input of real-time information can be important to minimise the 
number of fatalities. By using such models, the vaccination campaigns may change directionality in 
allocation as needed and as indicated by the changing characteristics of the population due to the 
vaccination itself. 

 In this work, a new COVID-19 SEIR-type model, based on that by Rodríguez et al. (2020) 
segregated by population groups, is applied to solve the problem of determining the best sequence 
of priority population groups that should be followed for vaccination. Although slightly different 
optimisation goals are possible, in this work the minimum total fatalities at the end of the 
vaccination campaign is the pursued goal. Model-based optimisation is applied to an example with 
demographic and epidemiological data from Spain. 

Dynamic model of the COVID-19 outbreak including vaccination 

In our previous work (Rodríguez et al., 2020) a model was developed to describe the impact of 
interventions with population groups segregated by age. The model, originally designed to evaluate 
the impact of a number of interventions on the outbreak dynamics and outcome, captures the 
differences in severity, mortality and infection risk-related behaviour of different population groups 
by age. Based on that work a new model is presented suitable for its application to the problem of 
optimum vaccine allocation optimisation at hand. In the new model, the individuals are segregated 
by population groups, still related to their age, however other arbitrary classifications based on their 
activity and epidemiological differences are also possible. This could include groups such as front 
line workers, individuals with a very high risk of mortality etc. Individuals in the population belong 
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to only one single group that they never abandon and transition through infection severity stages 
eventually joining the immune recovered pool.  

 Figure 1 provides a graphical representation of the different stages and transitions among them 
for the individuals in the different (age-related) population groups. The incorporation of vaccination 
causes individuals to transition to vaccinated immune or to ineffectively vaccinated not-immune 
stages. A complete comprehensive description of the model is presented in the Appendix including 
complete detailed reproducible descriptions of all equations, variables and parameters. 

 The model classifies individuals in the population in compartments by infection stage and (age-
related) population group. In order to ensure maximum utilisation of information, either available 
or measurable and to minimise uncertainty, the population grouping should be defined, and it is in 
this case, based on meaningful epidemiological differences between individuals in severity and 
mortality as well as in behaviour or activity traits affecting risk of infection. These later could include 
traits such as the number and types (with which other groups) of daily contacts, their differences in 
awareness and protection attitudes, etc. The rates of infection and vaccination, together with the 
available recent clinical and epidemiological information, govern the transitions of individuals 
between disease stages and allow for the evaluation of the objective function of total fatalities at 
the end of the vaccination campaign. The model implementation can be fully customised with the 
specific population characteristics and parameters of any community, region or country for its 
application to determine their optimum vaccination plan.  

 
Figure 1. Representation of the model transitions of individuals through the infection stages. Only 
contacts of healthy susceptible individuals with infectious either pre-symptomatic or symptomatic 
individuals can lead to infection. Vaccination, if effective, avoids infection and places individuals at 
immune vaccinated stage. Ineffective vaccination maintains individuals in their current stage (they are 
however accounted separately as already vaccinated). 

 In the example to be presented for Spain, population groups were defined by (age-related) 
activity as namely: preschool children (ages 0-4); school children (ages 5-14); higher school and 
university young (ages 15-24), young workers (ages 25-49); mature workers (ages 50-59); senior 
workers (ages 60-64); early retired (ages 65-69); retired (ages 70-79); elderly (ages 80+). This groups’ 
definition is arbitrary but it takes into account the above mentioned criteria for group definitions 
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for impact on the final objective. The group definitions can be changed to best suit any country or 
region specifics, as long and good quality data are available for their characterisation. 

 Individuals never leave the (age-related) population group to which they belong and, at a given 
time, they sit on one of the possible infection stages. These stages are defined in terms of 
infectiousness and severity of symptoms analogously as in Rodríguez et al. (2020), namely: healthy 
susceptible (H); infected non-symptomatic non-infectious  (NI); pre-symptomatic infectious  (PS); 
symptomatic infectious (S); in need of hospitalisation (SH); in need of critical care (SC); recovered 
immune (IR) and deceased (D), in addition those effectively vaccinated become vaccinated immune 
(V). Individuals ineffectively vaccinated (i.e. the vaccine does not immunise them) maintain their 
current stage and they are simply accounted as is that stage but already vaccinated (see Figure 1). 

 The transitions between stages are determined by rates of infection, disease progression and 
vaccination. Figure 2 provides an overview representation of the stage transitions as modelled. 
Complete details are included in the Appendix model description 

 
Figure 2. Schematic representation of the transition rates between stages. Individuals spend in each stage 
an average amount of time depending on their transition path towards recovery or increased severity. 

Model limitations and assumptions 

The model presented above and fully described in the Appendix was specifically developed for the 
optimum vaccination problem at hand. The model shares many of the fundamental characteristics 
of compartment SEIR-type models and its limitations remain similar as for earlier models (Rodríguez 
et al., 2020). It is based on dynamic balances of individuals in compartments classified by their stage 
of infection and segregated by age-related groups. In this type of models all individuals are 
considered located in a common single domain or closed community (e.g. a well-mixed city or town). 

 The model is completely deterministic, has a moderate complexity and is computationally 
inexpensive to solve and requires only parameters that are mechanistic and carry meaning and 
interpretation. Most of these parameters can be directly estimated from epidemiological and 
clinical data and their calibration is not recommended. Analogous to similar compartmental SEIR-
type models, variables and parameters refer to representative averages for each compartment 
stage and population group. These characteristics may limit the model representation of non-linear 
relevant phenomena that may occur in the real-world reality. Examples of these include phenomena 
like the so-called super spread events or other location specific phenomena and cannot be captured 
by these types of models. Any quantitative application of the model for prediction purposes in public 
health should be accompanied by a critical discussion against these limitations (Wearing et al., 2005).  
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 No geographical clustering or separation, neither any form of migration in or out of the 
community are captured by this type of models. Large cities with ample use of public transportation 
remain the best described by this and other SEIR-type disease propagation models. The model, as 
described above and in full in the Appendix, is applied under specific assumptions, relevant to the 
vaccination problem at hand, including: 

✓All ever-infected individuals that recover become fully immune, irrespective of their severity path, 
and cannot be infected or infectious again. 

✓ No differences in immunity or any other epidemiological aspect are considered between 
individuals never vaccinated and those ineffectively vaccinated. 

✓ Recovered individuals (aware or not) are equally eligible for vaccination as healthy susceptible. 

✓ The rates of vaccination of the groups activated (i.e. called for vaccination) are proportional to 
their relative sizes in terms of eligible individuals pending vaccination. The total vaccination rate 
must match the given rate limited by the capacity of the health system. 

Optimisation of the vaccine deployment by population groups 

In order to find the optimum sequence of vaccination in terms of which population groups should be 
targeted at each specific moment, it is necessary to solve an optimisation problem. All optimisation 
problems consist of a target objective to make minimum (e.g. number of total fatalities at the end of 
the campaign) and a set of decision variables that can be manipulated to achieve that, in this case the 
populations groups called for vaccination at any given time. Once the problem is defined, the optimum 
set of decision variables is computationally sought following a suitable existing optimisation method 
from literature or developed ad hoc. The nature of the optimisation problem at hand falls within an 
type of problems called dynamic programming problems. In this type of problems as it is the case 
here, the decision variables (in our case the active groups called for vaccination as defined in the  fv 
vector of ones and zeros) are not constant but change over time. This adds additional potential 
complexity as not only an optimum group or set of groups needs to be found but this needs to be 
done at each moment and changes in time. For a specific period one group(s) may the optimum target 
but, after some time, another group(s) may become the most useful to target for vaccination. 

Objective function – Optimisation goal 

Several different objective functions can be defined for minimisation depending on the priorities 
followed. In the example case study presented, the objective will be to minimise the total number 
of fatalities at one month after the vaccination campaign is completed (tf). The definition of the 
optimisation problem will therefore consist of 

    Minimise i Nd
i(tf) as a function of the dynamic values of fv

i(t) 

    such that t [0,tf] ,  fv
i  {0,1} 

 Alternative formulations of the objective function are possible, for example, the total number of 
years of healthy life lost at (tf) could be the target to minimise or even factoring economic losses or 
other terms of relevance to public health could be included. There is ample flexibility to define the 
problem as convenient using this framework and model. 

 The model itself allows for the simultaneous dynamic optimisation of vaccination together with 
the application of interventions over time (such as e.g. isolation of specific groups) and therefore 
can applied to evaluate specific scenarios combining interventions and vaccination strategies. 

 A plethora of optimisation approaches can be proposed and attempted to achieve the best 
possible results given this and any optimisation problem. These methods can be completely 
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algorithmic, both deterministic or with randomness and also incorporate heuristic elements. All 
these possible methods differ in their computational requirements and their performance can 
always be compared in terms of the final value for the objective function they manage to reach. 
Computationally intensive methods, however, rapidly bring in limitations to conduct e.g. sensitivity 
analysis or Monte Carlo simulations of the model parameters for increased confidence as they 
require long computing times per single parameter set evaluation. Taking this into consideration, a 
computationally inexpensive heuristic optimisation method, based on the R number and groups 
mortalities, was devised in view of the simulation results obtained by other more computational 
intense methods. 

Heuristic R-based optimum path (HRBOP) strategy for vaccination 

A heuristic R-based optimum path (HRBOP) strategy was developed that establishes the vaccination 
priority at any given time on the group with the highest projected mortality per infection avoided 
via vaccination. That mortality is however accounted from two sources and not only from the 
group’s itself, the projected secondary and subsequent infections inflicted on the entire population 
by the avoided infection in the group, are also estimated and accounted for.  

 Under the HRBOP strategy, priority is directed at any given moment to the vaccination of the 
group i with the highest number of projected avoidable deaths per vaccination (see Eq. 1). This is 
calculated as a function of three elements, namely (i) the risk of infection in that group (as the ratio 
of the rate of infections and the number of individuals in the group); (ii) the mortality per infection 
in the group (fd_ni

i) and (iii) the projected secondary and subsequent infections an infected group 
member would inflict on the entire population.  

 If the R number is accepted as a good estimator of infection propagation at a given moment, the 
last term (the projected secondary infections) can be estimated if group-specific detailed 
information about the ongoing R number is available such that a matrix of R numbers between 
groups (RM) can be built. This matrix can then be projected to any number of infection cycles (n) by 
powering the matrix to n.  

 All these three terms could therefore in principle be measured or estimated from actual data 
directly collected by the health systems in a community, making no model required to apply the 
HRBOP strategy. 

 The calculation of the projected avoidable deaths for all population groups (PADv), in terms of 
the model variables, is presented in Eq. 1 (see also Appendix). Eq. 1 was used to evaluate the HRBOP 
method against the alternatives for the case study example for Spain. A value of three infection 
cycles (n=3) was used. 

     PADv = (ri_h
 ./ Nsv) .* [RM(9x9)

n+I(9x9)]* fd_ni   (Eq. 1) 

where I(9x9) is the identity matrix of the indicated size. 

 Although the HRBOP strategy is demonstrated here on the dynamic model, its practical 
implementation does not require or rely on any model, partly decoupling the outcome sequence of 
priority groups from possible model shortcomings and uncertainties.  

 Used in conjunction with a dynamic model, the HRBOP method is computationally inexpensive 
as it runs in one single model simulation through its so-called optimum path. There is no 
requirement for repeated model simulations to evaluate the objective function for changes in 
vaccination sequence. The computational low cost allows for its use in conjunction with sensitivity 
and Monte Carlo simulations of the vaccination sequence outcome against uncertain model 
parameters. 
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 A final advantage of the low computational requirement of the HRBOP method is that it allows 
for its deployment together with the model on low cost web-based platforms, making a vaccination 
optimisation method available globally at no cost. 

Comparison of vaccine distribution strategies (case study for Spain) 

Five different strategies for vaccination of the population are evaluated for comparison for a case 
example using the population demographics and epidemiological data from Spain, namely: 

i) No group prioritisation: all population in all groups is called for vaccination in equal terms. 

ii) Priority to the groups with the highest mortality per infection (from highest to lowest). Groups 
are called one by one and only once until coverage for each group is reached (single call) 

iii) Priority to the groups with the highest number of interactions (daily contacts) (from highest to 
lowest). Groups are called one by one and only once until coverage is reached (single call). 

iv) HRBOP strategy (heuristic R-based optimum vaccination path). Groups can be called for a period 
and be recalled at later stages more than one time with flexibility partial group vaccination. 

v) The best of all the possible sequences of groups priority. Groups are called one by one and only 
once until coverage is reached. This apporach requires intensive computation  as all the possible 
combinations between all groups need to be evaluated (9! = 362,880 simulations) 

 The parameters as shown in Table S1 and Tables S3.a-b were used with the following initial 
conditions and assumptions: 

▪ No pre-existing immunity, (i.e. Nir
ini = 0). 

▪ No initial vaccinated individuals and fatalities. 
▪ Initial case incidence of 0.1% for NI and S and 0.3% for PS respect to the entire population. 
▪ All remaining population initially considered as healthy susceptible (H). 
▪ A total population of 47,026,208 as for Spain in 2019 is considered. 
▪ Constant rate of vaccination of 1% of the population per day until campaign ends. 
▪ Different vaccine effectiveness and maximum population coverage are evaluated. 

 Figure 3 shows the results for the five strategies, in terms of proposed sequence of priority 
groups for vaccination as well as the progression in total fatalities and R number with time, for a 
vaccine effectiveness of 75% and a maximum population coverage of 80%. A summary of all results 
obtained for nine combinations of these two parameters is presented in Table 1. 

Table 1. Performance results of different strategies for vaccine distribution at different vaccine 
effectiveness and coverage of the population. 

 

Vaccine

Effectiveness

Maximum 

Population 

Coverage

No 

Prioritisation 

by Groups

Highest-to-

Lowest 

Mortality

Most-to-

Least 

Interactions

Heuristic

R-based

Path

Best of 

All Possible 

Sequences

Lowest 

fatalities 

achieved

(Final fatalities) (Final fatalities)

100% 95% 42,494 15.8% -61.9% -65.2% -72.0% 11,915

100% 80% 42,692 16.5% -63.1% -64.6% -71.6% 12,142

100% 50% 45,254 36.2% -55.3% -55.9% -59.7% 18,244

75% 95% 70,998 12.1% -65.4% -65.6% -73.8% 18,582

75% 80% 71,265 11.6% -63.5% -64.0% -71.7% 20,150

75% 50% 74,942 19.2% -45.2% -45.7% -50.3% 37,215

50% 95% 109,867 6.0% -40.6% -41.0% -52.7% 51,954

50% 80% 110,138 5.4% -36.6% -37.2% -46.8% 58,607

50% 50% 113,998 8.5% -21.6% -21.9% -26.0% 84,342

(Percentage change in fatalities)
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Figure 3. Compared vaccination strategies showing active groups called for vaccination, fatalities and R value 
over time for the case study with data and demographics from Spain. Constant vaccination rate is set at 1% 
of the total population per day, vaccine effectiveness is 75% and population coverage is 80%. The best result 
was obtained after (computationally intensive) evaluation of all possible group sequences (assuming only 
one single call per group). The computationally inexpensive heuristic R-based optimum path is evaluated for 
weekly cycles and allows for multiple partial calls to any specific group. 

The different strategies proposed lead to very different and significant impacts respect to the 
baseline number of predicted fatalities if no group prioritisation is implemented. If a strategy based 
on priority to the groups with the highest mortality is followed, the predicted total number of 
fatalities actually increases significantly (~12% higher). On the contrary, if priority is established to 
those groups with the most interactions (from highest to lowest), dramatic reductions in fatalities 
(~63% lower) are predicted (Table 1). If the optimum strategy is further refined using the HRBOP 
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method, additional smaller improvements can be achieved. Finally if intensive computational 
resources are available the best of all possible (single group call) sequences among all possible ones 
can be sought using a model. In this case, the best result was obtained in this manner (~72% lower 
number of fatalities). The HRBOP and the best of all sequences found differ very little from the one 
of groups from highest to lowest number of interactions. This trend of reductions and differences 
between the strategies remains consistent for different vaccine effectiveness and population 
coverage values (Table 1). The detailed simulation results analogous to those in Figure 3 for all 
combinations are presented in Figures S1-9 in the Supplementary Information. 

It is important to note that the above results strongly indicate that in principle, and 
independently from the availability of a calibrated model and computational resources, following a 
strategy of priority to population groups with the most interactions or a similar more refined 
sequence obtained by the HRBOP method, can achieve enormous reductions in total fatalities at 
the end of the vaccination campaign. 

Conclusions 

The dynamic deterministic model developed, describing individuals in (age-segregated) population 
groups and disease stages, can be applied to the evaluation of vaccination strategies. The model 
results appear to describe expected trends and allow for deep mechanistic analyses to draw 
hypotheses and conclusions that can inform public health policy. 

 Our results strongly suggest that a planned vaccine distribution following prioritised sequences 
of population groups can achieve enormous reductions is the final number of fatalities at the end 
of the vaccination campaign. Based on the results we strongly advice against a group prioritisation 
criterion based on mortality only that ignores the group’s level of interaction with others. The 
criteria of priority to those groups with the highest number of interactions (daily person to person 
contacts) appears as the one with the highest immediate payoff in terms of reduction of the final 
number of fatalities. The computationally-inexpensive model-independent heuristic R-based 
optimum path method proposed achieved moderate improvements on the final number of fatalities 
respect to the prioritisation strategy of highest to lowest interactions. Both these strategies do not 
differ by much from the model-based computationally-intensive evaluation of the best group 
priority sequence among all possible ones. 
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Appendix - Dynamic COVID-19 model description 

The definition of the model dynamic (state) variables is shown in Table A1. Each variable 
corresponds to the number of individuals in that stage in a vector per (age-related) population group 
(9 activity groups as defined above). Under this structure, each dynamic variable is a vector of 
dimension 1x9, and the total number of states is a matrix of dimensions 15x9 (15 stages and 9 
population groups). Vector variables and parameters are represented in bold font and scalar ones 
in regular font across all the manuscript.  

Table A1. Model dynamic variables accounting for the number of individuals in each infection 
stage and group. 

Definition “Number of individuals…” Vector per group 
(1x15 vector) 

Total from all groups 

Healthy susceptible to infection Nh NhT 

Non-infectious pre-symptomatic  Nni NniT 

Infectious pre-symptomatic  Nps NpsT 

Infectious symptomatic  Ns NsT 

Requiring hospitalisation Nsh NshT 

Requiring critical care Nsc NscT 

Recovered & immune Nir NirT 

Vaccinated still susceptible to infection Nh
v NhvT 

Vaccinated Non-infectious pre-symptomatic  Nni
v NnivT 

Vaccinated Infectious pre-symptomatic  Nps
v NpsvT 

Vaccinated Infectious symptomatic  Ns
v NsvT 

Vaccinated Requiring hospitalisation Nsh
v NshvT 

Vaccinated Requiring critical care Nsc
v NscvT 

Vaccinated immune Ni
v NivT 

Deceased Nd NdT 

 

Rates of transition between infection stages 

The progression of individuals across stages, as illustrated in Figure 1, includes the impact of 
vaccination bringing individuals directly into an immune stage or, if ineffectively vaccinated, 
remaining in their current stage. The transitions between stages are governed by the rates of infection, 
disease transition and vaccination shown in Table A2. All the rates are in vectors with each element 
corresponding to the rate for each age-related population group. 

 The average rates of transition between stages are defined as per the latest epidemiological and 
clinical data and they can be updated as knowledge of the disease increases and treatments 
improve. These parameters include the proportion of individuals that transition to a more severe 
stage or recover (Table A3) and the average times reported at each stage before transition or 
recovery (Table A4).  
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Table A2. Rates of infection and transition between states in vectors per population group. 

Definition “Rate of …” Variable Units 

Infection by interaction with infectious pre-symptomatic  ri_ps # H infected/day 

Infection by interaction with infectious symptomatic ri_s # H infected/day 

Transition from non-infectious to infectious pre-symptomatic rps_ni # NI to PS / day 

Transition from pre-symptomatic to symptomatic  rs_ps # PS to S / day 

Transition from symptomatic to hospitalised rsh_s # S to SH / day 

Transition from hospitalised to critical  rsc_sh # SH to SC / day 

Transition from critical to deceased  rd_sc # SC to D / day 

Recovery from pre-symptomatic non-infectious rr_ni # NI to R / day 

Recovery from pre-symptomatic infectious rr_ps # PS to R / day 

Recovery from symptomatic  rr_s # S to R / day 

Recovery from hospitalised rr_sh # SH to R / day 

Recovery from critical rr_sc # SC to R / day 

Vaccination of healthy susceptible  rv_h # H to HV / day 

Vaccination of infected non-infectious  rv_ni # NI to NIV / day 

Vaccination of infected pre-symptomatic  rv_ps # PS to PSV / day 

Vaccination of recovered & already immune rv_ir # IR to IV / day 

 

 

Table A3. Fractions of individuals progressing through each severity stage per population group. 

Definition Parameter Units 

Fraction of NI that will become PS    fps_ni #PS/#NI 

Fraction of PS that will become S fs_ps #S/#PS 

Fraction of S that will become SH fsh_s #SH/#S 

Fraction of SH that will become SC fsc_sh #SC/#SH 

Fraction of cared SC that will die into D fd_sc #D/#SCIC 

Fraction of NI that will recover into R1   (1- fps_ni) fr_ni #IR/#NI 

Fraction of PS that will recover into R1   (1- fs_ps) fr_ps #IR/#PS 

Fraction of S that will recover into R1  (1- fsh_s) fr_s #IR/#S 

Fraction of SH that will recover into R1  (1- fsc_sh) fr_sh #IR/#SH 

Fraction of cared SC that will recover into R1 (1- fd_sc) fr_sc #IR/#SCIC 
     1Calculated by difference with the complementary, not an input parameter 
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Table A4. Clinical average times in each infection stage in vectors per population group. 

Definition Parameter Units 

Time to become infectious after infection tps_ni days 

Time to develop symptoms from becoming infectious ts_ps days 

Time to require hospitalisation from symptoms onset tsh_s days 

Time to require critical care from hospitalisation tsc_sh days 

Time to death from critical condition td_sc days 

Time to death from critical if no care is available td_nc days 

Time to fully recover from presymptomatic non-infectious tr_ni days 

Time to fully recover from presymptomatic infectious tr_ps days 

Time to fully recover from (non-severe) symptoms tr_s days 

Time to fully recover from hospitalisation tr_sh days 

Time to fully recover from critical condition tr_sc days 

 The rates of transition between stages (in number of individuals per day) are described in Eqs. 
A1.a-e. All rates are vectors per age group of dimensions (1x9). Note that the point operators 
between vectors indicate an element-by-element vector operation. 

   rni_h  = ri_ps .+ ri_s       (Eq. A1.a) 

rps_ni  = (fps_ni./ tps_ni).* Nni      (Eq. A1.b) 

rs_ps  = (fs_ps ./ ts_ps)  .* Nps        (Eq. A1.c) 

rsh_s  = (fsh_s ./ tsh_s)  .* Ns         (Eq. A1.d) 

rsc_sh = (fsc_sh./ tsc_sh).* Nsh      (Eq. A1.e) 

 
 The rates of individuals fully recovering and becoming immune from the different infected 
stages (in number of individuals per day) are described in Eqs A2.a-e. (all rates in vectors per age 
group). 

   rr_ni = (fr_ni./ tr_ni) .* Nni        (Eq. A2.a) 

   rr_ps = (fr_ps./ tr_ps).* Nps        (Eq. A2.b) 

   rr_s  = (fr_s  ./ tr_s)  .* Ns          (Eq. A2.c) 

   rr_sh = (fr_sh./ tr_sh).* Nsh        (Eq. A2.d) 

   rr_sc = (fr_sc./ tr_sc) .* Nsc_ic       (Eq. A2.e) 

 The rate of transition from critical to deceased is the sum of that of those in critical condition 
receiving intensive care (rd_scic) plus that of those without available care (rd_scnc) as per Eqs. A3.a-c. 
All critical individuals not receiving intensive care (Nsc_ncc) are assumed to become fatalities after a 
time (td_nc). A description of the critical care model allocation (in case the ICU capacity limits is 
reached) is provided below. 

   rd_sc  = rd_scic  + rd_scnc         (Eq. A3.a) 

where   rd_scic  = (fd_sc./ td_sc) .* Nsc_ic      (Eq. A3.b) 

  rd_scnc = ( 1   ./ td_nc) .* Nsc_ncc      (Eq. A3.c) 
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Allocation of critical care capacity if exceeded 

The impact of available critical care capacity is modelled by a specific function to allocate critically 
ill individuals as per the available ICU. The function allocates critically ill individuals in two possible 
groups, namely those admitted to ICU (Nsc_ic) and those not admitted to ICU due to lack of capacity 
or for medical or humanitarian reasons (Nsc_ncc). At each simulation time point the allocation 
function is computed for the total Nsc per age group. 

 The function allocates ICU resources with priority to populations groups with higher ICU survival 
rate (fr_sc) until the maximum number of intensive care units is reached leaving any remaining 
individuals without care, in this way Nsc_ic and Nsc_ncc are computed. 

 As the COVID-19 outbreak has progressed, data indicate that not all patients in critical condition 
have been admitted into intensive care units (ICU). Data show that many individuals with very poor 
prognosis, particularly those of oldest age may have never been referred to ICU due to capacity 
limitations or other medical humanitarian reasons. Data from Spain (Ministerio Sanidad España: Act. 
107 COVID-19) show that for individuals over 70, only a fraction of the reported fatalities previously 
hospitalised was ever admitted to ICU and this may not be only due to ICU lack of capacity. In order 
to maintain consistency with the reported data (Ministerio Sanidad España: Act. 107 COVID-19) the 
parameters of fd_sc and fsc_sh have been estimated such that the product of fd_sc * fsc_sh (fatality ratios 
over hospitalised individuals) is consistent with reported numbers for all ages irrespective of 
reported ICU admissions. 

Rates of infection 

The infection of healthy susceptible individuals (H and HV) is modelled as occurring only via their 
interaction with infectious either pre-symptomatic (PS) or symptomatic (S) individuals. Hospitalised 
(SH) and critical (SC) individuals are assumed not available for contacts neither are those deceased 
(D). Immune individuals after recovery (IR) or effective vaccination (IV) are also not infectious but 
contribute to the interactive pool of individuals towards herd immunity. 

 Two rates of infection of healthy susceptible individuals (in number of infections per day) are 
defined, one from each one of the two possible infecting groups (PS and S). However,  in order to 
serve the goal of determining the optimal sequence of vaccination through population groups, the 
rates of infection have been expanded into terms for each population group.  

 The rate of infection of each (age-related) population group i results from the product of the 
number of healthy susceptible (H) individuals in the group (Nh

i) times the sum of the rates of 
infection from contacts with each one of all the groups. This, for each group, is the product of the 
average number of daily contacts with individuals of that group (nihi,j) times the fraction of those in 
that group which are infectious (PS or S) times the likelihood of contagion to occur (modelled as 
function of the use of protection measures e.g. PPE by individuals in i and j groups)  (see Eqs A4.a-b 
and Figure A1).  

    ri_ps
i = Nh

i * j(nihi,j.* fips
j.*pips

i,j)     (Eq. A4.a) 

    ri_s
i = Nh

i * j(nihi,j.* fis
j.*pis

i,j)      (Eq. A4.b) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211094doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211094
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure A1. Visualisation of the rate of infection of individuals from a group i as per Eq. A4 

 For each (age-related) group, the average number of daily contacts an individual in a group i has 
with individuals from each one of the groups j (nii,j) are the most important parameters required as 
an input as they describe the level of social interactivity. These inputs allow for the description of 
specific key activities in a given group as well as for a complete customisation to the specifics of any 
community or country. Recent data from contact tracing applications and modelling makes the use 
of these information possible and reliable for these parameters (Prem et al., 2020). Examples on 
how these parameters reflect interventions is the opening of schools, which would involve high 
numbers of daily contacts between children in schools age groups, similarly for secondary school or 
universities but not necessarily with the other groups. This mapping of contacts is provided via a 
contacts matrix, in which only the part above the diagonal can be provided as direct input while the 
part below the diagonal is automatically calculated for consistency between groups based on their 
relative population sizes. Table S3b shows an example of values arbitrarily assigned and using the 
demographics of Spain 2019 (INE Spain, 2020). Interventions such as the degree of social isolation 
as described by Rodríguez et al.(2020) remain possible to simulate by modification of these matrix 
of average daily contacts even at a more detailed level since specific values for group-to-group 
number of daily contacts can be defined. 

 The second term impacting the rate of infection of a group i is, for each j group with which 
contacts exist, the proportion of individuals that are infectious (i.e. PS and S) and still interacting (fips

j 
and fis

j). This can be directly computed at every time step from the dynamic variables (Eq. A5). This 
computation incorporates the impact of the awareness of infection after positive testing (Rodríguez 
et al., 2020) via a reduction factor of social interaction for those infected-aware (due to positive 
testing) or of infected-suspicious individuals. For untested individuals in a group j showing 
symptoms (S), a precautionary self or imposed partial quarantine is captured by the parameter (rfisj). 
For tested individuals, the awareness of infection after a positive result is assumed to lead to a full 
quarantine and removes those individuals from regular interaction with others. The fractions of 
infectious PS and S individuals that remain in interaction with others (fips and fis) are calculated as 
per Eqs A5.a-b. Hospitalised, critical and deceased are considered excluded from the pool of 
interacting individuals. 

fips
j = (1–ptps

j *tsns_ps)    *N’ps
j / [N’h

j + N’ni
j + (1–ptps

j* tsns_ps)*N’ps
j + (1–pts

j*tsns_s)*rfisj * N’s
j) + N’ir

j+ N’iv
j] (Eq. A5.a) 

fis
j  = (1–pts

j*tsns_s)*rfisj*N’s
j) / [N’h

j + N’ni
j + (1–ptps

j* tsns_ps)*N’ps
j + (1–pts

j*tsns_s)*rfisj * N’s
j) + N’ir

j+ N’iv
j] (Eq. A5.b) 

where, N’x
j means the sum in stage x of both those not vaccinated and those ineffectively vaccinated 

(N’X
j = Nx

j + Nxv
j) in population group j; ptps

j is the proportion of randomly tested non-symptomatic 
individuals and pts

j is the proportion of symptomatic individuals tested. The parameters tsns_ps and 
tsns_s refer to the sensitivity of the tests for individuals in PS and S stages respectively. The differences 
are justified since e.g. for non-symptomatic individuals, only RT-qPCR tests are typically assumed 
adequate while, for symptomatic S individuals, both RT-qPCR and serological tests are used.  

 The third term impacting the rate of infection within group i, is the likelihood of infection per 
contact with an infectious (PS or S) individual of the group j. This is an element that could be directly 
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provided in the form of matrix of likelihood of infection between groups (pi_ps and pi_s) without 
further modelling. If the effect of specific interventions if of interest, the likelihood of infection can 
be further modelled in more detail as per below. 

 In this example likelihood of infection between groups is presented modelled as per Eq. A6a-b 
based on the level of PPE use and awareness displayed by the two interacting parties (Rodríguez et 
al., 2020) (see Eqs. A6) together with a newly proposed degree of infectiousness for PS and S. The 
parameters infps and infs reflect the degree of infectiousness between 0 and 1. This degree of 
infectiousness is considered potentially relevant in view not only on possible differences in viral load 
between PS and S individuals but also of ongoing research regarding specific population groups (e.g. 
children) which could display different levels of infectiousness to others. The level of protection and 
awareness of healthy susceptible individuals in the group i is described by the parameter lpah

i as 
they interact with infectious PS and S individuals of group j with lpaps

j and lpas
j respectively. The 

values of the parameters can vary between 0 and 1, with 1 corresponding to the use of 
comprehensive protective measures and zero to the most careless opposite situation. Different 
values are assigned for the different activity and age-related population groups. (e.g. for primary 
school children and elderly). In this way, for individuals in group i, the likelihood of infection per 
interaction with individuals of the group j (PS and S respectively) is calculated as per Eqs A6.a-b. 

    pi_ps
ij = (1 – lpah

i) * (1 – lpaps
j)* infps

j;     (Eq. A6.a) 

    pi_s
ij   = (1 – lpah

i) * (1 – lpas
j) * infs

j ;     (Eq. A6.b) 

 Table A5 shows the definitions and units of key variables and parameter used in the calculation 
of the rate of infection. 

Table A5. Behaviour-related variables and parameters affecting the rate of infection. 

Definition Parameter Units 

Average daily contacts per H group i individual with j nihij #contacts j/ H individual i∙day 

Personal protection and awareness by H in group i1 lpah
i ∅ 

Personal protection and awareness by PS in group j 1 lpaps
j ∅ 

Personal protection and awareness by S in group j 1 lpas
j ∅ 

Infectiousness level by PS in group j 1 infps
j ∅ 

Infectiousness level by S in group j 1 infs
j ∅ 

Likelihood of infection by H individual i with PS in j 2 pi_ps
ij infections / i contacting PS in j 

Likelihood of infection by H individual i with S in j 2 pi_s
ij infections / i contacting PS in j 

Percentage of tested individuals from PS in group j1 ptps
j #random (non S) tested/#(H+NI+PS) 

Percentage of tested individuals from S in group j 1 pts
j #random S tested/#S 

Sensitivity of tests used on PS individuals tsns_ps #PS detected / #PS tested 

Sensitivity of tests used on S individuals tsns_s #S detected / #S tested 

Reduction factor in contacts by S in group j1 rfisj ∅ 
1Values only within the interval [0,1]; 2Calculated if modelled or they can be directly provided as input parameters. 
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Rate of vaccination 

Once an effective vaccination against the SARS-CoV-2 virus becomes available, its mass deployment 
will take place, at any given moment, at a specific vaccination rate. This rate will be limited either 
by the availability of vaccine doses or by the system’s capacity to deliver them.  

 The recipients of the vaccine within the population groups will be all those individuals, either non 
tested or having tested (truly or falsely) negative or having recovered, that display no symptoms. 
This will include the vaccinations to the target healthy individuals (H) but also to untargeted individuals 
such as the non infectious (NI), those unaware (untested or with false negative test) that are pre-
symptomatic infectious (PS) and those that have recovered from the infection (aware or not) (R).  

 A total capacity vaccination rate is defined (rv
T), in number of individuals that can be vaccinated 

per day. The vaccination rates of individuals in each of the four possible stages suitable for 
vaccination, are defined as per Eqs A7.a-d in vectors for each (age-related) population group. The 
rate is proportional to the individuals in each stage and in each group among those suitable and 
called for vaccination. 

rv_h = rv
T * fv .* Nsv / i (fv .*Nsv)] .* Nh ./ Nsv    (Eq. A7.a)  

rv_ni = rv
T * fv .* Nsv / i (fv .*Nsv)] .* Nni ./ Nsv    (Eq. A7.b)  

rv_ps = rv
T * fv .* Nsv / i (fv .*Nsv)] .* N#

ps ./ Nsv   (Eq. A7.c)  

rv_ir = rv
T * fv .* Nsv / i (fv .*Nsv)] .* Nir ./ Nsv    (Eq. A7.d)  

where fv is a vector of zeros with one only on the groups currently called for vaccination in a specific 
moment. N#

ps refers to untested PS individuals therefore unaware of their infection and susceptible 
of receiving vaccination N#

ps = (1-ptps.* tsns_ps).*Nps. 

 In a given population group that no distinction is assumed possible between individuals in the 
vaccination suitable stages without symptoms. Therefore, in a population group i, the total number 
of undistinguishable individuals suitable for vaccination (NSV

i) is given by Eq. A7.d. 

NSV
i = Nh

i + Nni
i + (1–ptps

j *tsns_ps)*Nps
j + Nr

i    (Eq. A7.d) 

 With the above definition, the problem of determining the optimum plan for vaccine application 
is reduced to the determination, at any given moment in time, of the optimum values of fv

i for each 
population group, until the vaccination campaign is completed. 

Dynamic transition equations 

The dynamic variation on the number of unvaccinated individuals in each stage over time in vectors 
of (age-related) population groups is governed by the population balance equations Eqs A8.a-g.  

dNh/dt  = – rni_h .*(1-pVh)     – rv_h  (Eq. A8.a) 

dNni/dt  = rni_h .*(1-pVh) – (rps_ni  + rr_ni) .*(1-pVni)  – rv_ni  (Eq. A8.b) 

dNps/dt  = rps_ni .*(1-pVni) – (rs_ps  + rr_ps) .*(1-pVps)  – rv_ps  (Eq. A8.c) 

dNs/dt  = rs_ps .*(1-pVps) – (rsh_s  + rr_s) .*(1-pVs)   (Eq. A8.d) 

dNsh/dt  = rsh_s .*(1-pVs) – (rsc_sh  + rr_sh) .*(1-pVsh)   (Eq. A8.e) 

dNsc/dt  = rsc_sh .*(1-pVsh) – (rd_sc  + rr_sc) .*(1-pVsc)   (Eq. A8.f) 

dNir/dt  = rr_ni .*(1-pVni) + rr_ps.*(1-pVps) + rr_s .*(1-pVs)  +… 
        rr_sh .*(1-pVsh)+ rr_sc .*(1-pVsc)   + rv_r  (Eq. A8.g) 
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 The vaccines once commercialised will likely display a given effectiveness (eV) per population 
group, which will lead to a proportion of ineffective vaccinations. Those ineffectively vaccinated 
individuals will not acquire immunity and therefore remain susceptible to infection and to all stages 
of severity. These must however be accounted for separately as they should not be vaccinated 
again. The population balances for all vaccinated individuals in their possible stages are presented 
in Eqs A8.h-n. 

dNh
v/dt  = – rni_h .* pVh     – rv_h.*(1-eV) (Eq. A8.h) 

dNni
v/dt  = rni_h    .* pVh  – (rps_ni  + rr_ni) .* pVni  – rv_ni  (Eq. A8.i) 

dNps
v/dt  = rps_ni .* pVni – (rs_ps  + rr_ps) .* pVps  – rv_ps  (Eq. A8.j) 

dNs
v/dt   = rs_ps   .* pVps – (rsh_s  + rr_s)    .* pVs    (Eq. A8.k) 

dNsh
v/dt  = rsh_s  .* pVs   – (rsc_sh  + rr_sh) .* pVsh   (Eq. A8.l) 

dNsc
v/dt  = rsc_sh .* pVsh – (rd_sc  + rr_sc) .* pVsc   (Eq. A8.m) 

dNi
v/dt  = rr_ni .*pVni + rr_ps.*pVps + rr_s .*pVs  +… 

        rr_sh .*pVsh+ rr_sc .*pVsc           + rv_r – rv_h.* eV  (Eq. A8.n) 

 Finally the balance of fatalities is shown in Eq. A8.o. 

 dNd/dt  = rd_sc        (Eq. A8.o) 

where pV# is the proportion of individuals in stage # (vector for each population group) that have 
received a vaccine dose (effective or not). 

Computation of the dynamic reproduction number (R)  

The reproduction number describes the potential infections of susceptible individuals from infected 
individuals (Delamater et al. 2019). Since the model generates a deterministic set of values for its 
outputs at any given time, an instantaneous deterministic computation of the reproduction number 
(R) is possible. Multiple parameters and variables influence the R such as the duration of the 
infectious stages; the likelihoods of infection per contact as well as the percentages of individuals 
transitioning between stages. 

 The dynamic reproduction number (R) is computed over time according to Eq. A9 from the 
current values of the model state variables. The computation of R assumes that infectious 
individuals can only infect others while they are in pre-symptomatic (PS) and symptomatic (S) 
stages. Although it has been speculated that post-symptomatic recovered individuals may be 
infectious for some period of time, this has not been considered at this time given the insufficient 
data. Hospitalised and critical individuals are assumed not able to infect others in the general 
population as they are in controlled settings. The provided dynamic output of the reproduction 
number R provides additional information that can be used for decision making. 

 The computation of the R number is conducted considering that infected individuals can take 
only three possible infectious paths, namely: (i) Recovery after a period as pre-symtomatic (PS → 
R); (ii) Recovery after periods as presymtomatic and symptomatic (PS → S → R) and (iii) 
Hospitalisation after periods as presymtomatic and symptomatic (PS → S → SH). These paths are 
made of combinations of four possible infectious stage intervals in which infected individuals spend 
time and can infect others at their corresponding infection rate (see Table A6). 
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Table A6. Possible infectious stages intervals for the R number computation. 

Infectious 
interval 

Fraction of infected 
passing the interval 

(indinterv/indinf) 

Interval 
duration 

(d) 

Total infections per stage interval per 
individual infected 

(infinterv/indinf) 

PS → R fr_ps tr_ps (ri_psT/ NpsT)* tr_ps .*  fr_ps 

PS → S (1 – fr_ps) ts_ps (ri_psT/ NpsT)* ts_ps .* (1 – fr_ps) 

S → R (1 – fr_ps)* fr_s tr_s (ri_sT / NsT)   * tr_s   .* (1 – fr_ps)  .* fr_s 

S → SH (1 – fr_ps)* (1 – fr_s) tsh_s (ri_sT / NsT)   * tsh_s .* (1 – fr_ps) .* (1 – fr_s) 

 The dynamic computation of R results from adding the total infection contributions of the four 
stage intervals as shown in Eq. A9. 

  Rt =  [(ri_psT / NpsT)* (tr_ps .* fr_ps  +  ts_ps .* (1 – fr_ps))  +  

   (ri_sT / NsT)   * (tr_s  .* (1 – fr_ps).* fr_s  +  tsh_s .* (1 – fr_ps).*(1 – fr_s)) ] (Eq. A9) 

in which, the population group weighted average rates of infection by PS and S are given as per Eqs. 
A10a-b. 

ri_psT =  (ri_ps .*N’ps)/N’psT)  [infPS/indPS∙d]    (Eq. A10.a) 

ri_sT  =  (ri_s  .* N’s)  /N’sT)  [infS/indS∙d]    (Eq. A10.b) 
where, N’x

j means the sum in stage x of both those unvaccinated and those ineffectively 
vaccinated (N’X = Nx + Nxv) for all population groups. 

Source code 

The Matlab® source code and the Excel files containing all inputs and parameters used are fully 
available on demand. 
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