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The following will demonstrate the statistical basis by which we determine the proba-
bility that a patient has either failed or responded to an anti-seizure medication (ASM)
based on real-time reporting of their seizures during a clinical trial. This is organized
in the following sections:

1. Stating the problem based on statistical assumptions and distributions

2. Illustrating the framework of the solution using conventional hypothesis testing

3. Incorporating uncertainty of estimation into the solution using a Bayesian ap-
proach

4. Empiric estimation of the duration of treatment exposure

We first address the question of how to determine the likelihood that the patient has
failed a medication. Subsequently, we address the probability of falsely identifying a
patient as a non-responder if the threshold of experiencing more than half the baseline
seizures is used.

1 Statistical Problem Statement and Assumptions

First, we model the statistical process that generates seizure counts, N, over a cer-
tain period of time, t, as Poisson processes in which the following assumptions are
made:

1. The probability of a seizure during a given period of time, t, is proportional to
the length of that interval.

P [N(t)> 0] ∝ t

2. Two seizures cannot occur simultaneously.

3. The probability of a seizure does not change unless medication changes are
made.

4. The probability that a seizure occurs during one time interval is independent of
if a seizure occurred during a non-overlapping time interval.

While most of those assumptions likely are true for seizures, there are some key sit-
uations where they are violated. Our approximation of seizure counts as a Poisson
process is only as good as those assumptions hold true. For more detailed discussion
of the benefits and risks of these assumptions, please refer to the main text.
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Based on those properties of a Poisson process, we then determine that the probability
that patient has n seizures during time interval t is given by:

P [N(t) = n|λ ] = (λ t)n

n!
e−λ t .

In a clinical trial with a baseline period, we can find the maximum likelihood estimate
of the baseline λ , denoted as λ0, for each patient with the following formula:

λ0 =
nbaseline

tbaseline
.

In a clinical trial where we are assessing if a patient responds to an ASM, we define
a response to an ASM as a 50% reduction in seizure frequency. In our notation, that
would be equivalent to halving λ0. Therefore, in the treatment phase, we would like
to evaluate, given our reported seizure count, nt , the probability that λt is less than or
equal to half of λ0.

Alternatively, this approach of looking for non-response can be modified seamlessly
to looking if the patient hasn’t worsened or have experienced an at least doubling of
seizure frequency. To evaluate if the patient hasn’t worsened, the threshold of λt is less
than or equal to half of λ0 should be changed to testing if λt is less than or equal to λ0
itself. To test for doubling, we first calculate the probability that λt is less than or equal
to two times λ0 then subtract that probability from 1 to estimate the probability that λt
is greater than two times λ0.

2 Framework of the Solution

Therefore, for a given seizure count during the treatment period, nt , we would like
to determine the probability that seizure count, or higher, would occur if the rate of
seizures had at least halved. This corresponds to a null hypothesis that the seizure
rate is λt ≤ λ0/2 and a one-tailed alternative hypothesis that λt > λ0/2. We write the
probabilistic expression as:

P
[

N(t)≥ nt

∣∣∣∣λt ≤
λ0

2

]
.

If we take the worst case scenario that the seizure rate had just halved, we recognize this
as the right sided cumulative distribution function of the Poisson distribution, which
is the upper incomplete gamma function, Γ

(
nt ,

λ0t
2

)
. This logic is illustrated in the

following expression:

P
[

N(t)≥ nt

∣∣∣∣λt ≤
λ0

2

]
≤ Γ

(
nt ,

λ0t
2

)
.

Therefore, based on the reported seizure frequency during the baseline period, we can
create a table of situations where this probability is less than 5%, suggesting that the
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null hypothesis that seizure frequency has been halved is violated with a false positive
rate, α , of 5%. This table is illustrated in the main text as Table 1.

As a point of discussion, if the actual new seizure rate, λt , was less than half of λ0/2
then the actual seizure rate would be lower, but the number of seizures that needed to be
observed prior to determining that the patient had not responded to the new treatment
would not change. In this situation, the probability of enough seizures occurred to
reject the null hypothesis would be lower than 5% but, because we did not know that
the actual λt , we would have to consider the worst cast scenario that λt = λ0/2.

Secondly, this same framework can be used to address how often patients with seizure
frequencies less than half the baseline seizure frequency report seizure counts higher
than half the baseline rate during the treatment period. This expression is as fol-
lows:

P
[

N(t)>
n0

2

∣∣∣∣λt ≤
λ0

2

]
= Γ

(
dn0

2
e, λ0

2

)
.

Where d and e are the ceiling operators and the left side of the equation models N(t)>
n0/2 instead of N(t)≥ nt .

3 Incorporating statistical uncertainty

One complication behind the simple solution described above is that in the above so-
lution, we utilized the maximum likelihood estimate of λ0 and λt . Next, we consider
the possibility that the actual estimated baseline seizure rate, λ̂ , is different from this
maximum likelihood estimate, and then repeat the process illustrated above. We in-
corporate this uncertainty by utilizing a weighted contribution of the possible options
for λ0 where the weights are based upon the probability of that λ0 given the observed
number of seizures in the baseline period, n0.

To determine these probability-based weights, we use Bayes formula as below:

P
(

λ0 = λ̂ |N(t) = n0

)
=

P
(

N(t) = n0

∣∣∣λ̂ = λ0

)
P
(

λ0 = λ̂

)
∑∀λ P(N(t) = n0 |λ )

. (1)

We estimate the prior distribution of λ , P
(

λ0 = λ̂

)
, using a uniform distribution across

all possible values for λ0 ranging from one seizure every 28 days to 24 seizures per
day for 28 days in a row in steps of one seizure every 28 days. The shape of this
probability-based weighting for example values of n0 is illustrated in the main text as
Figure 1.

We also can use this structure to determine the likelihood of each seizure rate, λt , during
the treatment phase based on the reported seizures during the treatment phase, nt . In
this way, we can assess the likelihood that 2λt ≤ λ0 if the patient reports nt seizures
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using the following formula:

P
(

2λt ≤ λ0

∣∣∣∣ N(t) = nt
N(0) = n0

)
=∑
∀λ0

P(λ0 |N(0) = n0 )P
(

2λt ≤ λ0

∣∣∣∣ N(t) = nt
λ0

)
=∑
∀λ0

P(λ0 |N(0) = n0 ) ∑
∀2λt≤λ0

P(λt |N(t) = nt ) .

We highlight that instead of calculating the probability of N(t) ≥ nt) as we did with
conventional hypothesis testing, we are instead calculating P(2λt ≤ λ0|N(t)= nt ,N(0)=
n0). Because the Bayesian methodology, it is not necessary to consider P(2λt ≤
λ0)|N(t) ≥ nt ,N(0) = n). This is because the integral necessary to calculate a cu-
mulative distribution function for a p-value are calculated in reference to 2λt ≤ λ0 as
compared to in reference to N(t)≥ E(n0/2).

For the first term of that expression, we use the Bayesian solution in equation (1) above.
Similarly, for the second term of the expression, we also use a Bayesian solution as
follows:

P
(

2λt ≤ λ0

∣∣∣∣ N(t) = nt
N(0) = n0

)
= ∑
∀λ0

P(λ0 |N(0) = n0 ) ∑
∀2λt≤λ0

P(N(t) = nt |tλt )P(λt = λ )

∑∀λ P(N(t) = nt |tλ )
.

We include t in this expression because we are considering the number of seizures,
nt , that occur in a certain number of days during the treatment period, which may be
different from 28 days.

For the prior distribution of λt , we again use the uniform distribution across the same
range as prior. If we had assumed that λt was unchanged by treatment, this would bias
our analysis towards concluding that the seizure rate during the treatment period, λt ,
was unchanged from the baseline period, λ0.

We can determine the minimum nt for which this probability is less than 0.05 to deter-
mine the number of seizures needed to be observed in a specified treatment period to
determine that the patient has not responded to the treatment. A table of these minimum
seizure counts, nt , is displayed in the main text as Table 2.

Secondly, to use this similar Bayesian framework for the question of falsely identifying
patients as non-responders when they report more than half as many seizures as they
did during the baseline period. This corresponds to the following statistical expres-
sion:

P
[

N(t)>
n0

2

∣∣∣∣λt ≤
λ0

2

]
= ∑
∀λ0

P(λ0 |N(0) = n0 )Γ

(
dn0

2
e, λ0

2

)
.

4 Estimating the Duration of Observation to Determine
Non-Response

To determine how long patients’ would be exposed to treatment using our approach,
we simulate patients’ seizures with Poisson random walks. We presume that patients
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will update seizure count daily, therefore, we create the Poisson random walk by de-
composing the up-to-90-day into a sum of 90 independent Poisson random variables.
We remind the reader that due to the first and fourth properties of a Poisson process
(listed above), a 90-day Poisson process is statistically identical to the sum of 90 in-
dependent 1-day Poisson proccesses with λ1 day =

λ90 day
90 . In these random walks, after

each day we ask if the number of seizures observed is higher than the minimum num-
ber of seizures to determine non-response for that patient’s baseline seizure frequency,
λ0.

For each possible λ0 from 1 to 100 seizures in the baseline 28-days and for a range
of fractional change in seizure frequency from an 80% reduction to a 100% increase
(doubling) in steps of 10%, we simulated 10,000 independent patients using both the
maximum likelihood estimate and the Bayesian posterior probability estimate. From
these simulated patients we built an empiric probability distribution of the number
of observation days to determine non-response. The number of simulated patients,
10,000, was chosen based on the canonical rule of thumb for permutation tests that to
determine cutoffs for α = 5% ordinal statistics, roughly that number of simulations
is needed for stability of cutoff. For illustration, we chose λ0 corresponding to the
minimum number of seizures in the 28-day baseline, 4, the rough median of previous
trials for antiseizure medication, 10, and a high but reasonable rate of one seizure per
day.
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