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Abstract 

Osteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal cancer (OPC) 

patients. In this study, we demonstrate that early prediction of ORN is possible by analyzing the temporal 

evolution of mandibular subvolumes receiving radiation. For our analysis, we use computed tomography 

(CT) scans from 21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with 

subsequent radiographically-proven ≥ grade II ORN, at three different time points: pre-IMRT, 2-months, 

and 6-months post-IMRT. For each patient, radiomic features were extracted from a mandibular 

subvolume that developed ORN and a control subvolume that received the same dose but did not develop 

ORN. We used a Multivariate Functional Principal Component Analysis (MFPCA) approach to 

characterize the temporal trajectories of these features. The proposed MFPCA model performs the best at 

classifying ORN vs Control subvolumes with an area under curve (AUC) = 0.74 (95% confidence interval 

(C.I.): 0.61-0.90), significantly outperforming existing approaches such as a pre-IMRT features model or 

a delta model based on changes at intermediate time points, i.e. at 2- and 6-month follow-up. This 

suggests that temporal trajectories of radiomics features derived from sequential pre- and post-RT CT 

scans can provide markers that are correlates of RT-induced mandibular injury, and consequently aid in 

earlier management of ORN. 
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Introduction 

Radiotherapy (RT) is a highly utilized modality in the treatment of head and neck (H&N) cancers with 

well-established local control and survival benefits [1]. Advances in radiation delivery techniques from 2-

dimensional (2D) and 3-dimensional (3D) techniques to intensity modulated radiotherapy (IMRT) with 

ability to manipulate the beam path to spare normal tissues has significantly improved cure rates and 

toxicity profile [2]. Despite that, osteoradionecrosis is a late complication from radiation to the 

mandibular bone with a serious impact on quality of life for a growing population of younger surviving 

head and neck cancer patients [3]. The incidence of ORN varied between different modalities ranging 

from 2-40% in the conventional era to 0-6% in the IMRT era. Different risk factors were identified to 

play a role in the development of ORN following radiotherapy treatments [4, 5]. Osteoradionecrosis has 

great impact on the patients’ life quality if not detected and managed properly [6, 7]. Diagnosis of ORN 

mainly relies on clinical and radiological tools such as computed tomography (CT) and magnetic 

resonance imaging (MRI) with their limited capacity for early detection [8].  

Fortunately, the recent advances in biomedical imaging were coupled with the rise of radiomics in terms 

of extracting quantifiable imaging features, possibly of high information yield and subsequent 

computation of these features kinetics (e.g. delta-radiomics) derived from sequential images [9]. Paired 

with machine learning techniques, we hypothesize that radiomic feature kinetics can characterize and 

distinguish mandibular bone subvolumes at higher risk of developing future ORN. These “temporal 

virtual digital biopsies” might have the potential to empower earlier intervention and hence improve 

patients’ quality of life. 

Consequently, the aims of this study are to: 

1. Determine bone radiomic features derived from contrast-enhanced CT (CECT) images that are 

significantly different between ORN and non-ORN mandibular subvolumes.  
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2. Develop a composite radiomics-based signature integrating inputs from multiple pre- and post-

treatment time points; with potential predictive utility of ORN incidence in high-risk mandibular 

subvolumes. 

3. Hypothesis generation for future prospective studies. 
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Materials and Methods 

Study Population 

Following an approval from an institutional review board (IRB) at our institution, data for biopsy-proven 

OPC patients treated between 2002 and 2013 who underwent radiation therapy as a single or 

multimodality definitive therapy were considered for the current investigation (n=83). This investigation 

and relevant methodology were performed in compliance with the Health Insurance Portability and 

Accountability Act (HIPAA) as a retrospective study where need for informed consent was waived [10]. 

Electronic medical records were scanned for documented diagnosis of mandibular ORN following IMRT 

in the absence of any prior head and neck re-irradiation along the same lines as a previous ORN study by 

our team [11]. The aspects of our institutional IMRT approach for oropharyngeal cancer patients were 

previously reported in detail [12]. All patients received pre-radiotherapy Dental Oncology service 

clearance, and, if indicated, prophylactic dental extraction and fluoride trays, were prescribed as per 

standard Head and Neck Service operating procedure [13]. Inclusion and exclusion criteria for patients’ 

selection are illustrated in Fig 1. 

 

Fig 1. Patient selection. Flowchart of selection process of patients for this study 

 

ORN staging 

The severity of ORN was graded I through IV as follows: grade I, i.e. minimal bone exposure requiring 

conservative management; grade II: minor debridement required; grade III: hyperbaric oxygen therapy 
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(HBOT) received; grade IV: major surgery mandated. This staging system is very comprehensively given 

its emphasis on response to treatment as a standard to categorize ORN[13]. Patients who subsequently 

suffered from radiographically &/or pathologically-proven grade II or worse ORN were included in this 

study. 

CT Acquisition Protocol & eligibility criteria 

According to our institutional protocol, CECT images were obtained as a prerequisite for pre-treatment 

diagnostic work-up. Subsequent post-IMRT CECT scans for response evaluation and further surveillance 

were routinely performed at 2-month and 6-month time points and then at regular preset intervals 

thereafter. Our study revolved about extracting quantitative imaging biomarkers from CECT at pre-IMRT 

(i.e. baseline), 2-month (post-RT2), and 6-month (post-RT6) post-IMRT, as well as time instance 

corresponding to development of ORN. To that end, CECT scans with available non-reconstructed axial 

cuts at the aforementioned 4 time points were retrieved. CT slices with evident ORN lesions that were 

obscured or otherwise affected by visible metal artefacts were not contoured and were not included in 

analysis.  

All CT scans were attained with a multi-detector row CT scanner. Scan parameters are as follows: slice 

thickness reconstruction (STR) ranges between 1 and 3 mm, with median STR of 1 mm, X-ray tube 

current of 99-584 mA (median: 220 mA) at 120-140 kVp. All images acquired at our institution were 

composed of 512 x 512 pixels and were acquired following a 90 second delay after intravenous contrast 

administration. One-hundred and twenty milliliters of contrast were injected at a rate of 3 ml/sec. To 

standardize the image voxel sizes for use in texture feature calculations, all the CT scans were resampled, 

via a trilinear interpolation voxel resampling filter [14]. 

Image Segmentation & Registration 
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We specifically selected CECT scans demonstrating the earliest radiographically evident ORN 

characteristic lesion(s) as reported by radiologists and further confirmed by physical examination by 

physicians in Head & Neck Surgery as well as in Dental Oncology [ORN CECT].  

The original delivered DICOM-RT clinical treatment plans were restored from Pinnacle treatment 

planning system (Pinnacle, Phillips Medical Systems, Andover, MA) into commercially available image 

registration software (VelocityAI™ 3.0.1). Diagnostic CECT scans at baseline, post-RT2, post-RT6, and 

ORN were also imported. Radiographically evident bony lesions were delineated manually by a radiation 

oncologist (HE) to constitute the ORN volumes of interest (VOIs). Physical exam and other available 

imaging modalities such as dental-dedicated panoramic X-rays were utilized to guide the segmentation of 

VOIs.  

Planning CT was co-registered with ORN CECT using deformable image registration algorithm of 

VelocityAI™ 3.0.1. The 3D reconstructed dose grid of RT plan was then overlaid to the ORN CECT. A 

neighboring radiographically intact mandibular subvolume within the same isodose distribution volume 

was manually segmented and designated as ‘Control VOI’ at the ORN CECT. Subsequently, baseline, 

post-RT2, post-RT6 CECT scans were co-registered with ORN CECT using rigid registration algorithms 

of VelocityAI™ 3.0.1. Both ‘ORN’ & ‘Control’ VOIs were propagated from ORN CECT to other CECT 

scans at all three prior time points. (Fig 2) 

 

Fig 2. Imaging workflow. Registration of CECT scan at time of diagnosis of ORN to radiation dose grid 

as well as previous CECT scans at: baseline, 2-month and 6-month post-RT for each patient with 

subsequent propagation of ORN & ‘Control’ VOIs. 

 

Radiomics features extraction 
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Computed tomography scans with corresponding contoured VOIs were then extracted in the Digital 

Imaging and Communications in Medicine format (DICOM), as DICOM-RT and RT-STRUCT files, 

respectively. These files were then imported into an in-house image biomarker explorer (IBEX) software, 

built on MATLAB for subsequent radiomics feature extraction [15] along the same lines as previous 

studies [16, 17]. 

Radiomic features were derived from two VOIs that correspond to ORN and Control in the 3 prior time 

points: pre-IMRT, post-RT2 and post-RT6 CECT scans. The number of radiomic features extracted for 

each VOI summed up to 1645 individual features. They included a myriad of first- and second-order 

radiomics features, the latter calculated in both full 3-dimensional images (3D) as well as 2.5D, i.e. 

features calculated for each 2-dimensional slice and results were then combined. Other than shape 

features, a trilinear interpolation voxel resampling filter to 3 mm slice thickness and 1 mm2 pixel spacing 

was applied prior to feature extraction to standardize voxel size. First-order feature categories include: 

shape, intensity direct and intensity histogram. Whereas second-order feature categories encompass: Grey 

level co-occurrence matrix (GLCM), gray level run length matrix (GLRL) as well as neighborhood 

intensity difference. For GLCM and GLRL features, calculations from multiple spatial directions were 

combined to produce one value. For NID, 3 different permutations of neighborhood, i.e. 3, 5 or 7 were 

employed as in previous projects [18, 19]. 

Radiomics features pre-selection and reduction 

Initially, we worked with radiomic features computed from VOIs corresponding to ORN and Control for 

24 patients. The number of radiomic features extracted for each patient is 1628. 3 patients did not have 

radiomic features computed for the post-RT6 time point and hence completely excluded from subsequent 

analysis. For these 21 patients, we only kept the radiomic features whose values are available for i) all 3 

time points, and ii) both in ‘ORN’ and ‘Control’ VOIs. One patient has 2 distinct ORN lesions; 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.09.20208827doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.09.20208827
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

accounting for a total number of 43 individual VOIs (22 ‘ORN’ and 21 ‘Control VOIs). Thus, we are then 

left with 1628 radiomic features from 43 VOIs, i.e. 22 ‘ORN’ and 21 ‘Control’. 

Feature reduction by correlation was critical to ensure that the performance of any machine learning 

algorithm is not degraded because of very high degree of correlation in the features, or multicollinearity 

[20]. We first compute the Spearman correlation matrix [21] of the 1628 radiomic features at the pre-

IMRT time point. We filter out the features whose average correlation level with all the remaining 

features is greater than a user-defined threshold. For our data, we used a threshold of 0.5. The threshold 

was chosen to reasonably balance the dual requirements of multicollinearity reduction and capturing data 

variation. Following correlation filtering, we reduced the number of features we analyze to 16 features. 

(S1 Table) 

First –as a proof of concept-, we sought to establish that radiomics can quantitatively discriminate 

between ORN and non-ORN mandibular subvolumes. Mann-Whitney test [22] was used to identify 

specific radiomic features that show statistically significant differences between ORN and non-ORN 

high-risk VOIs.  

Functional Principal Component Analysis (FPCA) 

Our hypothesis is that we can predict the risk of ORN by looking at the temporal evolution of radiomic 

features. A standard way of identifying temporal signatures in time series data is by using functional 

principal component analysis (FPCA) [23, 24]. FPCA takes multiple time series curves, as an input, and 

tries to find the underlying shape signatures that optimally can be used to represent all the curves. These 

shape signatures are called the functional Principal Components (PC). Each time series can now be 

represented by a weighted combination of each of the PCs. This technique has been used to predict 

outcomes from sequential data in a wide variety of fields such as remote sensing [25], stock markets [26], 

electroencephalogram (EEG) analysis [27], and cancer pathology [28]. Since our data is multivariate, in 

that we have a time series for multiple features for the same patient, we can compute the functional PCs 
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for each feature. One way of representation would be to assume each feature is independent, concatenate 

the PC weights for each feature, and use this concatenated representation as input to a machine learning 

model. However, since each pair of features is correlated to various degrees, we use a technique called 

multivariate FPCA (MFPCA), which explicitly accounts for the relationship between the features [29-32]. 

We utilized the R package MFPCA for our temporal kinetics analysis [33]. 

The importance of FPCA is visually explained in Fig 3. We display 3 temporal trajectories from our data 

on the leftmost column. We observe that all 3 sequences ��, ��, and ��, have similar starting points. 

Further time series �� and �� have similar end points too. This mimics a significant scenario which we try 

to address, whereby neither the pre-radiotherapy features, nor the delta features can distinguish between 

the patients. However, FPCA is able to distinguish all 3, by accounting for both, the values taken by the 

time series, and the shape of the trajectory. The top 3 FPCs representing the dataset are shown visually in 

the top row. The relative contribution of each FPC to each of the time series is shown with arrows, the 

length of the arrows representing the magnitude, and green and red color indicating the sign (positive and 

negative, respectively) of the contributions. We can see that the magnitude and sign of the individual 

contributions from the PCs is quite different, and thus can help distinguish the three time series.  

 

Fig 3. Visual explanation of the FPCA algorithm and its advantages. The first row displays the 3 

functional principal components (FPCs). On the left column, the temporal evolution of a Gray Level Co-

occurrence Matrix (GLCM)-3D feature is shown for three mandibular regions (a), (b) and (c). (a) and (b) 

did not develop ORN, while (c) did. We note that (a), (b) and (c) all have similar baseline values, so 

cannot be distinguished by a model built solely on pre-radiotherapy features. Further, (b) and (c) also 

have similar change in their values, which a delta radiomics model would see as equivalent scenarios. On 

the other hand, the difference in the temporal kinetics is efficiently encoded in the 3 FPCs. The color and 

length of the arrows indicate the sign (+ve or -ve) and magnitude (large or low) of relative contribution 

made by each FPC in explaining the time series. So, for example, regions (b) and (c), which appear alike 
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to a pre-radiotherapy model and a delta radiomics model, can be readily distinguished because of the 

difference in relative contribution made by the 3rd FPC.   

Training the random forest  

Repeated random sampling to produce random forests [30] ensued where validation of each forest was 

performed using the left out observations, and the overall accuracy was calculated by averaging the class 

predictions of each of the forests. The random forest has been shown to be robust to overfitting and 

among the most effective of the commonly used classifiers. [34] Each forest used 500 trees, and each split 

was determined using �� features where � is the number of features. The random forest calculations were 

performed using the random Forest package for R software [35]. To further examine the performance of 

the model, the ROC curves were plotted and the area under the curve (AUC) was calculated using pROC 

package for R [36]. 

Results 

Patient information 

Twenty-one patients with oropharyngeal cancer (OPC) were identified to have developed ORN 

subsequent to their definitive radiotherapy +/- chemotherapy course, either in induction and/or concurrent 

settings as in Fig 1. Eight patients developed grade 2 ORN, whereas 2 patients and 11 patients developed 

grade 3 and 4 ORN, respectively. Median time to ORN diagnosis was 20.3 months. Table 1 represents 

patient demographics, tumor, radiation dose, and ORN disease characteristics. 
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Table 1. Patients, disease and treatment characteristics. 

Characteristics N (%) 

Sex  

Male 20 (95.2%) 

Female 1 (4.8%) 

Age at diagnosis, years: median (range) 61 (57-68) 

Ethnicity  

White or Caucasian 17 (81%) 

Hispanic or Latino 2 (9.5%) 

African American 2 (9.5%) 

Smoking status  

Current 10 (47.6%) 

Former 5 (23.8%) 

Never 6 (28.6%) 

Smoking pack-years (median; IQR) 10 (0-40.5) 

Tumor laterality  

Right 9 (42.9%) 

Left 11 (52.4%) 

Midline 1 (4.7%) 

Oropharynx subsites  

Base of tongue 12 (57.1%) 

Tonsil 7 (33.3%) 

NOS* 2 (9.6%) 

T category  
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T1 2 (9.5) 

T2 10 (47.6%) 

T3 5 (23.8%) 

T4 4 (19.1%) 

N category  

N0 2 (9.5%) 

N1 0  

N2 19 (90.5%) 

N3 0 (0) 

Therapeutic combination  

Induction chemotherapy (IC) followed by 

concurrent chemoradiation  

10 (47.6%) 

IC followed by radiation alone 1 (4.8%) 

CC 10 (47.6%) 

Vital status  

Alive 14 (66.7%) 

Dead 7 (33.3%) 

Radiation dose (median; IQR) [Gy] 70 (66-70) 

Radiation fractions (median; IQR) 33 (30-33) 

Onset of post-RT ORN (median; IQR) 20.3 (7.5-95) 

ORN laterality (in relation to primary tumor)  

Ipsilateral  17 (81%) 

Contralateral 2 (9.5) 

Bilateral 2 (9.5%) 

Radiation dose at the ORN volume (median;  
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IQR) [Gy] 

Mean dose 67.9 (59.5-71.2) 

Minimum dose 51 (44-59.4) 

Maximum dose 68.9 (67.6-73.1) 

IQR: inter-quartile range; Gy: Gray; NOS: Not otherwise specified; ORN: osteoradionecrosis 

 

Radiomics can distinguish between ORN and non-ORN  

An initial set of 1628 radiomic features were computed for each ORN and Control volume of interest 

(VOI) obtained from the 21 eligible patients across 3 time points of interest representing baseline (pre-

IMRT), 2-month (post-RT2) post-IMRT, and 6-month (post-RT6) post-IMRT. Sixteen radiomics features 

were ultimately nominated as non-interrelated and consistently available for all three time points. As an 

initial exploratory step, we computed which of these 16 radiomic features were significantly different 

between the ORN and Control volumes of interest (VOIs) using a Mann-Whitney test. Furthermore, we 

also computed if each of these features is larger, or smaller, on average for the ORN VOI compared to the 

Control VOI. This demonstrates that certain radiomic features differ significantly between ORN and non-

ORN regions, motivating us to investigate if their evolution can foretell ORN incidence. The significantly 

different features and their associated p-values are reported in Table 2.  

 

Table 2. Significantly differing radiomics features between ORN and Control VOIs.  

Feature p-value Mean difference of feature value 

between ORN and Control feature 

values 
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Gray Level Co-occurrence Matrix 25-333-1 

InformationMeasureCorr1 

0.028 Negative 

Gray Level Co-occurrence Matrix 312-4 Cluster Shade 0.034 Positive 

Gray Level Co-occurrence Matrix 310-1 Dissimilarity 0.009 Positive 

Gray Level Co-occurrence Matrix 38-

1InverseDiffMomentNorm 

0.0002 Negative 

Intensity- Mean 2.43E-7 Negative 

Intensity- Local Entropy Median 4.65E-6 Negative 

The radiomics features which values are significantly different between the ‘ORN’ and ‘Control’ VOIs at 

the ORN time point identified using a Mann-Whitney test. The corresponding p-value is reported in the 

second column. We also report the direction of the difference of means between the ORN and Control 

VOI feature values in the third column. 

Model construction 

We trained random forest models using 500 trees for each of multiple approaches as outlined below: (Fig 

4) 

• Baseline: Radiomic features computed on the pre-IMRT CECT scans. 

• Delta (2-month follow-up): Relative change in the radiomic features from pre-IMRT to post-

RT2 

• Delta (6-month follow-up): Relative change in the radiomic features from pre-IMRT to post-

RT6.  

• Temporal Trajectory: The model built using the proposed multivariate functional principal 

component analysis (MFPCA) approach that models the temporal kinetics of the features. Since 

the time points are not uniformly spaced, we used cubic spline sequence completion to fill in 

radiomic features at intermediate monthly time points. 
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• Baseline + Temporal Trajectory: We combined the predictions from the baseline model and the 

temporal trajectory model to give a more robust ORN-risk predictor. 

 

Fig 4. Overview of radiomics features based approaches. Various approaches to integrate radiomics 

features obtained at multiple (�1) time points towards building predictive models. 

 

The corresponding areas under the curves (AUCs) and 95% confidence intervals (C.I.) for the prediction 

of occurrence of ORN ‘Yes vs No’, in both ‘ORN’ and ‘Control’ VOIs according to the 5 models are 

depicted in Table 3 and illustrated in Fig 5. We noticed that the baseline features model gives an AUC of 

0.59 (95% C.I: 0.41-0.76), while the temporal trajectory gives an AUC of 0.74 (95% C.I: 0.61-0.9). We 

further built an ensemble model that combines the predictions of the baseline model and the temporal 

trajectory model, to see if these two models have complementary information that improves performance. 

We achieved an AUC of 0.68 (95% C.I: 0.53-0.86), likely due to the poor performance of the baseline 

model which consequently was detrimental to the performance of the combined model. This suggests a 

more careful approach to choosing pre-IMRT features. Surprisingly, models constructed using percent 

changes ‘or delta changes’ of the radiomic feature values, performed poorly in predicting ORN incidence 

with AUCs of 0.64 (95% C.I: 0.46-0.81) and 0.56 (95% C.I: 0.39-0.74) for 2-month and 6-month delta 

changes, respectively. We further observe that the temporal trajectory and combined models have a 

consistent performance in both low-specificity and high-specificity regimes, in contrast to the delta 

models which performance is dependent on the regime of choice. This demonstrates that greater 

reliability is achieved by incorporating the temporal kinetics of the radiomic features. 

 

Table 3. A comparison of the Areas under the curves (AUCs) and the 95% confidence intervals for 

the various approaches. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.09.20208827doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.09.20208827
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

Method AUC (95% CI) 

Baseline 0.59 (0.41-0.76) 

Delta (2-month follow-up) 0.64 (0.46-0.81) 

Delta (6-month follow-up) 0.56 (0.39-0.74) 

Temporal trajectory 0.74 (0.61-0.90) 

Baseline + Temporal trajectory 0.68 (0.53-0.86) 

 

 

Fig 5. ROC curves computed for various radiomics feature based approaches. The temporal 

trajectory model using MFPCA (green) performs better than the other four models: i) baseline model 

(red), ii) delta model after 2-month follow-up (orange), iii) delta model after 6-month follow-up (purple), 

and iv) an ensemble of baseline and temporal trajectory models (blue). 

 

Discussion 

The incidence of head and neck cancer is on the rise, despite reductions in smoking, owing to the recent 

prevalence of the human papillomavirus (HPV)-associated OPC epidemic [37]. Forward, it’s projected 

that hundreds of thousands of locally advanced OPC patients worldwide will receive radiation to the head 

and neck as a definitive treatment modality [38]. This rise in RT recipients implies that mandibular bone, 

which comprises the borders of the oropharynx, will be necessarily irradiated to ensure adequate tumor 

coverage with subsequently growing incidence of crippling sequelae such as ORN [39].  

 

Osteoradionecrosis ranges from superficial, slowly progressive bone erosion/devitalization to pathological 

fracture in a previously irradiated field and may cause significant hardship in the afflicted individual [40, 

41]. This is particularly apparent when considering devastating lifelong issues with oral hygiene, 
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nutritional inadequacies, and difficulty with speech and resultant preclusion of social interaction [42]. 

Early diagnosis and intervention, whether conservative or surgical, are key for improving outcomes [43]. 

This essentially applies for grade II ORN, where no consensus has been reached regarding definitive 

treatment procedures [44, 45]. 

 

To date, no imaging modality/clinical nomogram have been shown to precisely foresee the potential risk 

of developing osteoradionecrosis following IMRT [2]. Being fully integrated throughout various phases 

of HNC management, sequential CECT scans via radiomics analytics can provide plethora of data that 

can serve as quantifiable surrogates of tissue vitality and vascularity, among others [46]. To our 

knowledge, this study is the first to characterize the kinetics of radiomics features of various mandibular 

subvolumes, before and after exposure to IMRT, to identify subvolumes at high risk ahead of developing 

ORN. Radiomics features were analyzed longitudinally for quantifying temporal changes in mandibular 

bone structure in a cohort of OPC patients.  

This has been subsequently integrated into a framework for early prediction of ORN solely based on 

sequential diagnostic CECT scans. We implemented a Functional Principal Component Analysis (FPCA)-

based approach that efficiently models the temporal evolution of radiomic features. The model built using 

a multivariate FPCA (MFPCA) representation of the entire temporal dataset, predicts the likelihood of 

ORN development with an AUC = 0.74 (95% C.I 0.61-0.9). We further built an ensemble model that 

combines the predictions of a baseline model built using pre-IMRT features, and the MFPCA-based 

model, in order to leverage information from both baseline feature values and temporal evolution of 

feature values, which achieved an AUC of 0.68 (0.53-0.86). This emulates the pathophysiology theories 

that combine pre-irradiation bone condition and RT-induced alterations on tissue, cellular and cytokine 

levels [47]. The latter involves: (1) endarteritis and vascular thrombosis with subsequent bone hypoxia 

and hypocellularity as well as atrophic fibrosis as a consequence of RT-induced activation and 

dysregulation of fibroblastic activity [44, 48]. The fact that the ensemble model does not perform better 
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than the MFPCA-only model suggests the need to choose the pre-IMRT features in a way that is more 

clinically meaningful than a purely data-driven correlation thresholding approach. 

Bone texture analysis has been investigated for years as a potential biomarker of a myriad of structural 

bone changes related to osteoporosis [49, 50]. Interestingly, first-order bone texture features derived 

from simulation CT scans were correlated to the risk of radiation-induced insufficiency fractures in 

patients undergoing pelvic radiation [51]. Along the same lines, for vascularization status, a previous 

study by Yin et al investigated the correlation between angiogenesis (or: new blood vessel formation) in 

primary renal cell carcinoma and radiomic imaging features from positron-emission tomography (PET) 

and/or MRI [52].  

Our study identifies the bone radiomics features which temporal evolution is critical in determining ORN 

risk. These represent quantifiable imaging biomarkers that capture various intensity and spatial texture 

dimensions of the aforementioned RT-related bone environment changes in the irradiated field. Most of 

the discriminating features belong to: ‘Neighborhood intensity difference’ (NID) and ‘Grey level co-

occurrence matrix’ (GLCM) categories. The GLCM is a matrix that expresses how combinations of 

discretized grey levels of neighboring pixels, or voxels in a 3D volume, are distributed along one of the 

image directions. Generally, the neighborhood for GLCM is a 26-connected neighborhood in 3D and an 

8-connected neighborhood in 2D [53]. The ‘NID 2.5D Texture strength’ quantifies how uniform a texture 

is, i.e. complex textures are non-uniform and rapid changes in grey levels are common [54]. GLCM3 

Cluster shade is a measure of the skewness or asymmetry of the matrix and is believed to be a more 

objective uniformity metric [55]. On the other hand, GLCM3 Contrast gauges grey level variations in the 

volume of interest, i.e. difference between the highest and the lowest values of a continuous set of pixels 

[56]. GLCM3 Correlation is a measure of texture smoothness, where higher values denote regions with 

similar gray-levels [57].   

We have seen that there is significant information regarding ORN progression in the first 6 months after 

radiotherapy that can be robustly correlated to risk of ORN. Functional principal component analysis is an 
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efficient statistical algorithm to capture the temporal evolution of the mandible landscape. Competing 

techniques such as pre-radiotherapy only models and delta radiomics models do not encapsulate how 

different features evolve with time. The FPCA efficiently encodes the temporal kinetics of the features 

into its functional principal components (FPCs). The radiomics data can now be compactly represented by 

only a small set of numbers, but can still capture its time-varying properties.  

Furthermore, we implement a multivariate FPCA (MFPCA) that accounts for the correlations that exist 

between various radiomics features. MFPCA distils a large set of features to a few specific ones that 

encompass most of the data variation. This makes our prediction model more likely to generalize to new, 

unseen data [58]. We observe from the receiver operating characteristic curves that the temporal 

trajectory model performs consistently better than the other models in both the high- and low-specificity 

or false positive regions. This demonstrates the reliability of using temporal kinetics, for example, 

compared to a delta model, which we observed to have very different performance depending on the 

specificity value. The combined prediction model does not improve over the temporal trajectory only 

model, possibly because of the extremely poor performance of the baseline model. However, the 

combined model also performs consistently in both the low- false positive or high false positive regimes. 

We envisage that with a more careful choice of features, the baseline model can be improved, which will 

significantly improve the performance of the combined model. 

The preliminary feature filtering step was performed by setting an upper limit of 0.5 on average 

correlation value for a given radiomic feature. Meaning, if a given radiomic feature correlated with all 

other features more than 0.5 on average, it was dropped from our feature set. The choice of value was 

made to whittle the number of features down from a mammoth 1628 to a more manageable 16. We also 

found that reducing the number of features further led to a drop in performance, which suggests loss of 

information crucial to prediction performance. 

Our study accounted for the fact that artifacts from metal dental fillings are known to encumber target 

delineation and subsequent radiomics analysis [59, 60]. For this purpose, the presence of visible dental 
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artifacts effect anywhere in the slices that encompassed ‘ORN’ or ‘Control’ VOIs at any time point 

precluded the integration of this scan and hence the patient’s data as an input to the model.  

The fact that we excluded these patients with metal dental fillings, combined with the low event rate of 

ORN in the IMRT era, as well as the fact that we excluded patients with grade I ORN with no 

radiographically-evident bone lesions to delineate, contributed to the low sample size; hence limiting the 

generalizability of the resulting model. The small sample size limited us to apply automatically generated 

radiomics features instead of engineering features that are explicit surrogates for early vascular injuries of 

the mandible. Another limitation of this study is the conceivable uncertainties introduced from varied 

acquisition parameters or incongruence among various scanners, or even between different models from 

the same vendor [61]. Most patients had their scan performed at our center along the same acquisition 

parameters. Moreover, we have applied a pre-processing trilinear interpolation aiming at standardizing 

voxel size to reduce or eliminate relevant variability in radiomics features [62]. The results also suggested 

that the performance changed rapidly when we changed the number of features, which suggests the need 

for a more careful feature-filtering algorithm. Designating a ‘Control’ VOI that share the same image, 

time point, and deposited radiation dose with the ‘ORN’ VOI is an approach we have used and would 

recommend for future multi-institutional radiomics studies.  

 

Future Directions 

Not far from longitudinal imaging studies, our team previously showed that Dynamic Contrast-Enhanced 

(DCE-MRI) can provide biomarkers that are physiological correlates of acute mandibular vascular injury 

and recovery temporal kinetics [63]. This has further motivated a National Institute of Dental and 

Craniofacial Research (NIDCR)-funded prospective trial that explores correlation between DCE-MRI 

derived spatiotemporal parameter maps following external beam radiation therapy (EBRT) and 

subsequent development of ORN [64]. Our results may prompt the investigation of DCE-MRI-derived 
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radiomics analytics and subsequent integration into the overall predictive model; thus, providing more 

data inputs for the machine learning techniques tested.   

Furthermore, the availability of larger cohorts will provide potential avenues for model validation and 

generalization over the whole mandible in patients with ORN versus healthy controls. A proposed 

application would be engineering radiomics features that are explicit surrogates for osteoclastic 

dysregulation and subsequent fibro-atrophic bone changes, and maybe monitoring the response to 

common therapeutic maneuvers, such as pentoxyfilline. 

 

Conclusion 

Radiomics analysis allows for quantification of changes in RT-related bone structure from diagnostic 

imaging modalities with subsequent integration of serially derived radiomics features into an ORN 

probability computational tool. Computationally, FPCA efficiently encodes the temporal kinetics of a 

given radiomic feature. The MFPCA then compactly combines the temporal information from FPCA 

from multiple radiomic features.  

 

In summary, we hope this study calls professionals’ attention to non-traditional inputs (radiomics), 

dimensions (temporal kinetics), and innovative statistical approaches (MFPCA) to improve interpretation 

and integration of imaging biomarkers into RT toxicities prediction and mitigation. In this work, we have 

thus provided an end-to-end framework for predicting the risk of RT-related ORN based entirely on 

radiomic features. 
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Supporting information 

S1 Table. Filtered radiomic feature set. The final set of 16 features chosen after correlation filtering, 

which are used for building baseline, delta, and FPCA models. 
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