
SUPPLEMENT TO “OPTIMIZING COVID-19 TESTING STRATEGIES FOR

SCHOOLS AND BUSINESSES: BALANCING TESTING FREQUENCY,

INDIVIDUAL TEST ATTRIBUTES, AND COST”

1. Overview

We give a detailed description of the model underpinning the analysis for testing schools and
businesses. The modeling framework describes a scenario in which there is monitoring/testing for
a common group of people who mix continuously (as in a school or office setting), and are subject
to the introduction of infection from the surrounding (unmonitored) community. All together, the
model links a testing strategy, described by a number of tunable parameters, to a disease model for
COVID-19. The disease model is dynamic in time as infections spread both from internal mixing
and from the surrounding community. The tunable testing parameters correspond to attributes of
the tests themselves (like sensitivity and specificity) and also to the elements of the strategy (like
how many days between tests). By running all combinations of these parameters and counting the
expected number of tests required, we may estimate the costs of each distinct surveillance strategy.
We may also compare the strategy to the disease model running without implementing any testing
at all to measure the effectiveness of the strategy. We begin by describing the testing strategies
considered, and then describe the disease model in detail.

2. Testing strategies

2.1. Test attributes and tunable parameters. Our first assumption is that testing will happen
on a regular cadence. Every day. Every 2 days. Weekly. Moreover, we assume that every individual
in the organization is tested during each round of testing. Each test is characterized by four
numbers:

• Sensitivity (Se) and Specificity (Sp),
• Cost (C) in dollars/test, and
• results lag d in days.

Point-of-care tests feature d = 0, while, in the manuscript, traditional lab-based tests are assumed
to have d = 2. Other values of d may be appropriate to local circumstances. The two main choices
of the organization are the frequency of testing (how many days between tests, τ − 1) and the
number of samples to pool (m, if pooling is an option for that particular test). Finally, the model
allows less than 100% of individuals with positive tests to comply with isolation protocols. While
this number (b) is not determined by organizational leaders, they will be in the best position to
estimate realistic values for compliance in their organization. Another decision to be made at an
organizational level concerns confirmatory testing. In low prevalence scenarios, especially with a
non-specific test, the number of false positives will be large. An organizational commitment to fund
confirmatory testing may involve substantial expense.

Tunable testing parameters for the model are listed in Table 1.

2.2. Pooling. Our quantitative approach to pooling directly follows the work of Smith et al. [3]. In
that work (and in ours), we imagine samples (swabs) from multiple people being pooled and tested
all at once. In low prevalence settings, this kind of group testing is widely used in human infectious
disease applications, and the simple version we propose here was used by the US military to screen
new inductees for syphilis during WWII [1]. In many circumstances, it is possible to greatly reduce
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Table 1. Tunable testing parameters

Parameter Label Description
Test frequency τ τ − 1 days between tests
Results delay d no. of days to wait for results
Samples pooled m no. of samples in a pool
Compliance b fraction of individuals who isolate after a positive test
Sensitivity Se individual-level sensitivity of the test
Specificity Sp individual-level sensitivity of the test
Cost C cost of single test (in US dollars)

the number of tests required to screen a population. However, there is a cost; pooled testing will
result in decreased sensitivity.

Yelin et al. [4], using standard RT-PCR, estimated a sensitivity of

Se = 0.9

after pooling a single positive SARS-CoV-2-positive sample together with 31 negative samples. We
assume that there are no false negatives in the collection of un-pooled samples. We further assume
a linear decrease in sensitivity with respect to negative samples added to the pool. Then, it is a
simple matter to calculate the discount rate in sensitivity per each additional negative sample:

r =
s0 − s31

31
. (2.1)

In equation (2.1) s0 is the test sensitivity when no true negative samples were pooled with the
original true positive sample, s31 is the sensitivity when 31 true negative samples were pooled with
the positive sample. Arithmetic yields r = .00323. Finally, for a pooled test with s samples and p
true positive samples, the sensitivity can be calculated as

Segp = Seind − r(s− p) . (2.2)

Here, Segp represents the sensitivity of the pooled test and Seind is the sensitivity of the individual-
level test. In practice, of course, we don’t know the number of true positives in the pool, so we
assume the same prevalence of infection as in the monitored population. Individual RT-PCR testing
for SARS-CoV-2 is highly specific, so a specificity of Sp = 0.995 was assumed for all PCR-type
tests regardless of the number of samples pooled.

When pooling (m > 1) and considering confirmatory testing, we assumed a simple 2-stage
Dorfman testing process in which each individual in a positive pool is retested individually using
a high-sensitivity diagnostic test. We then calculated the expected number of tests required to
complete each round of testing. That is, suppose X is the random variable counting the number
of tests required to complete 2-stage pooling. Then, evidently, the quantity of interest is E[X], the
expected number of tests need to complete one round of Dorfman 2-stage pooled testing. This will
depend on the prevalence p and on the sensitivity Se and specificity Sp.

For an individual test, the probability of returning a positive result is

q = Sep+ (1− Sp)(1− p) ,

and the probability of returning a negative result is

1− q = (1− Se)p+ Sp(1− p) .

We treat each test in the pool as an independent Bernoulli trial with probability of success q, and
we denote by Y the random variable counting the number of successful trials in a pool of m samples.
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By elementary probability,

P(Y = k) =

(
m

k

)
qk(1− q)m−k , (2.3)

whence πm, the probability of having at least one positive test in the pool, is given by

πm = P(Y ≥ 1) = 1− P(Y = 0) = 1− [Sp + p(1− Se− Sp)]m . (2.4)

Finally, if a pool tests positive, then m additional confirmatory tests are required. Otherwise, only
the single pool-level test is needed. Therefore,

E[X] =
P

m

[
mπm + 1

]
. (2.5)

3. Disease Model

3.1. Population characteristics and disease. We assume a monitored population of P indi-
viduals. To characterize the disease, we use a classical continuous-time SIR model from classical
epidemiology. That is, the monitored population is divided into compartments

• S — susceptible,
• I — infectious,
• R — removed.

The disease model is characterized by two parameters: R0 and γ. The basic reproduction number
is well known, and we assume R0 = 2.5 in agreement with early estimates of the reproduction
number for COVID-19. The second parameter, γ, defines the removal rate for the disease, and γ−1

is the average period of infectiousness. We assume γ−1 = 9 days.
Because the disease model is formulated as a system of differential equations, we must supply

initial conditions, namely the values of S, I, and R at the initial time t0. In the manuscript, the
initial conditions are chosen from the average of population scaled new confirmed cases reported
by the New York Times for September 23, 2020 in a sample of counties scaled by 1/γ. That is, we
begin with 1.35 infections on day 0. We take the conservative approach of assuming no one in the
population has immunity to the virus based on previous infection or otherwise. Thus R(t0) = 0.

3.2. Equations. The core of the model is formed by the simple nonlinear, nonautonomous system
of ordinary differential equations. (Note β/γ = R0.)

d

dt
S = −βSI − ε(t) , (3.1a)

d

dt
I = βSI − γI + ε(t) , (3.1b)

d

dt
R = γI . (3.1c)

In (3.1), the forcing term ε accounts for the introduction of infections from outside the organization;
see §3.5 for and explanation and derivation.

3.3. Implementation. To model pooled testing we solved the SIR model over τ days, with the
initial test on day zero. To account for possible delays in receiving test results, we allow for a delay
parameter, d. On day τ + d we stopped the model and restarted with new “initial conditions”
which account for the transfer of the number of people who tested positive from the infectious to
the removed compartment. This process is repeated according to the testing strategy defined by
τ , m, d, Sp, Se, and the total number of tests administered and infections caught are recorded.
Rounding happens at each stoppage to estimate the number of positive pools and tests taken and,
at the end of the simulation, to return whole number values for the number of infections caught.
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3.4. The cost of doing nothing. To measure the effectiveness of the various strategies, we can
compare them to the strategy of doing no testing. This gives one easily quantified measure, in terms
of the reduction in cumulative infections over the time period, for evaluating the performance of a
strategy. Figure 1 illustrates the dynamics of the model in the absence of testing. Likewise, Figure
2 reproduces Figure 2 from the main manuscript without any cropping; it illustrates the magnitude
of the difference between an outbreak mitigated by testing and removal versus one checked by any
kind of testing and isolation regime.

Figure 1. The cost of doing nothing. Running the forced model without testing, in
this case with the flat profile, illustrates SIR-type dynamics with infections touching
virtually the entire population.

3.5. Community prevalence & time-dependent forcing. To account for the introduction of
infections from the surrounding community, we add a time-dependent forcing term which represents
the rate of people becoming infected from an external source continuously in time. With frequent
testing, this external forcing drives the behavior of the model. In general, the forcing takes the
form of function

ε : [0,∞)→ R , (3.2)

where ε(t), measured in people/time, represents the rate of importation of infections into the orga-
nization. A key challenge is that this function is not known in general. We assume proportionality
to local case counts, and note that county-level casec counts are reported daily. Thus, be observable
to decision makes and policy deciders. The continuous dependence on time means that we can test
various scenarios (which gives more realism and flexibility) than the periodic forcing induced by
the “exogenous shocks” considered by Paltiel et al. [2].

In the manuscript, we examine two data-driven scenarios for this forcing, but many possibilities
can be incorporated into the model. The two extremes are meant to illustrate one of the key sources
of uncertainty in any organization-based testing strategy — the number of infections entering the
organization from outside.

• The first is a relatively flat profile which comes from the 7 day rolling average of the
case count in Fayette County, Pennsylvania for the 100 days beginning March 26, 2020 as
reported in the New York Times. We scale the case counts by population, which, in the
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Figure 2. Reproduction of figure 2 in the manuscript without cropping.
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manuscript we choose to be 1500. This low growth profile is reported as panel (a) in Figure
3.
• The second scenario used for high growth external community prevalence is the seven day

rolling average of daily case counts in Miami-Dade County, Florida for the 100 days begin-
ning June 16, 2020. This profile is shown in panel (b) of Figure 3.

(a) (b)

Figure 3. Two examples of community prevalence. (a) Fayette County, PA. (b)
Miami-Dade County, FL.

4. Core Julia code

The code representing heart of the dynamic model is reproduced below. Complete code, for
creating all of the figures and creating the full table of experiments is available from the authors.

using DifferentialEquations

using Plots

using Printf

using Plots.PlotMeasures

using Statistics

using DataFrames

using CSV

using Interpolations

#read in profiles

profiles = DataFrame!(CSV.File("flat_growth.csv", types = Dict("fips" => String,

"total_population"=>Float64)))

flat=Array(profiles[1,4:end])

growth=Array(profiles[2,4:end])

my_profile= "flat"#"growth"#

R0 = 0. # number of people recovered initially

R_0 = 2.5; #reproduction number

P = 1500;

gamma = 1/9.;

beta = R_0*gamma;

#1e-4 comes from the average number of new cases per person reported by NYT on
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#9/23 in a representative sample of 511 counties

# *1/gamma since it takes that long to get out of infectious

I0 = 1e-4*P/gamma # number of people infected initially

T = 100 #number of days covered

r = 3.23e-3#discount rate for pooling

#https://www.medrxiv.org/content/10.1101/2020.04.19.20071639v2.full.pdf

#r = .4757 #saliva https://www.medrxiv.org/content/10.1101/2020.09.02.20183830v1

flat_itp=interpolate(P*flat,BSpline(Linear()))

flat_itp=scale(flat_itp,0:1:99)

flat_itp=extrapolate(flat_itp,Flat())

plot(flat_itp,label="low growth",title="Community Prevalence",xlabel="days",

lw=5,ylims=(-.05,1.78),color=:black)

savefig("./figs/flat_profile.pdf")

g_itp=interpolate(P*growth,BSpline(Linear()))

g_itp=scale(g_itp,0:1:99)

growth_itp=extrapolate(g_itp,Flat())

plot(growth_itp,label="high growth",title="Community Prevalence",xlabel="days",

lw=5,ylims=(-.05,1.78),color=:black)

savefig("./figs/growth_profile.pdf")

plot(flat_itp,label="low growth",lw=5,color=:blue, linestyle=:dash)

plot!(growth_itp,label="high growth",lw=5,color=:green, linestyle=:dashdot)

savefig("./figs/flat_and_growth_profile.pdf")

function sird(dq, q, alpha, t)

gamma, beta, P, profile = alpha

S = q[1]

I = q[2]

R = q[3]

if profile=="flat"

e_interp=interpolate(P*flat,BSpline(Linear()))

e=scale(e_interp,0:1:99)

epsilon=extrapolate(e,Flat())

elseif profile=="growth"

e_interp=interpolate(P*growth,BSpline(Linear()))

e=scale(e_interp,0:1:99)

epsilon=extrapolate(e,Flat())

else

println("ERROR: possible profiles are flat or growth")

end

dq[1] = -(beta * S) * I / P - epsilon(t)#S'

dq[2] = (beta * S) * I / P - gamma * I + epsilon(t) #i'

dq[3] = gamma * I #r'

end

function SolveSIRD(
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gamma::Float64,

beta::Float64,

I0::Float64,

R0::Float64,

P,

tf::Int64,

epsilon,

)

S0 = P - I0 - R0

ICS=[S0; I0; R0]

prob = ODEProblem(sird, ICS, (0.0, tf),[gamma, beta, P, epsilon])

sol = solve(prob, isoutofdomain=(u,p,t)->any(x->x<0,u))

return sol

end

function find_SIR(I0,R0,r,m,epsilon,alpha_p0,tau::Int64, d::Int64, b::Float64,

sp::Float64)

#I0 number of initial infections

#R0 number of initial removed

#r discount rate for pooling samples

#m number of samples pooled

#epsilon people/day infected from the outside

#alpha_p0 sensitivity of the test on 1 sample

#d is the number of days delay between a test and results

#b is the proportion of people who isolate upon positive results

#sp is the specificity of the test

S=Array{Float64}(undef, T+d+1)

I=similar(S)

R=similar(S)

I_c = 0 #number of infections caught by testing

fp = 0 #number of false positive tests

PP = 0 #number of positive pools

#first time step

sol_n=SolveSIRD(gamma, beta, I0 ,R0, P, 1+d, epsilon)

S[1:1+d] = sol_n(0:1:d)[1,:];

I[1:1+d] = sol_n(0:1:d)[2,:];

R[1:1+d] = sol_n(0:1:d)[3,:];

#assumes prevalence in the pooled population = prevalence in the whole

#population

alpha_p=alpha_p0-r*(m-1)*(1-I[1]/P)

#note that testing is done on day 1

I0 = maximum([I[1+d]-b*alpha_p*I[1],0]);

R0 = R[1+d]+b*alpha_p*I[1];

I_c+=alpha_p*I[1] #number of infections caught
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fp +=(1-sp)*(P-I[1])

prev=I[1]/P #prevalence

pi_m=1-(sp+prev*(1-alpha_p-sp))^m

PP+=ceil(P/m)*pi_m#+(1-pi_m))

for n in 1:Int64(floor(T/tau))

sol_n=SolveSIRD(gamma, beta, I0 ,R0, P, tau, epsilon)

S[(n-1)*tau+d+1:n*tau+d+1] = sol_n(0:1:tau)[1,:];

I[(n-1)*tau+d+1:n*tau+d+1] = sol_n(0:1:tau)[2,:];

R[(n-1)*tau+d+1:n*tau+d+1] = sol_n(0:1:tau)[3,:];

#assumes prevalence in the pooled population = prevalence in the whole

#population

alpha_p=alpha_p0-r*(m-1)*(1-I[n*tau+1]/P)

I0 = maximum([I[n*tau+d+1]-b*alpha_p*I[n*tau+1],0]);

R0 = R[n*tau+d+1]+b*alpha_p*I[n*tau+1];

I_c+=alpha_p*I[n*tau+1] #number of infections caught

fp +=(1-sp)*(P-I[n*tau+1])

prev=I[n*tau+1]/P #prevalence

pi_m=1-(sp+prev*(1-alpha_p-sp))^m

PP+=ceil(P/m)*pi_m

end

if Int64(floor(T/tau)*tau) < T

n=Int64(floor(T/tau)*tau)#last test day

final_t_length = T-n

alpha_p=alpha_p0-r*(m-1)*(1-I[n+1]/P)

I0 = maximum([I[n+d+1]-b*alpha_p*I[n+1],0]);

R0 = R[n+d+1]+b*alpha_p*I[n+1];

I_c+=alpha_p*I[n+1] #number of infections caught

#println(I_c)

fp +=(1-sp)*(P-I[n+1])

prev=I[n+1]/P #prevalence

pi_m=1-(sp+prev*(1-alpha_p-sp))^m

PP+=ceil(P/m)*pi_m

sol_n=SolveSIRD(gamma, beta, I0 ,R0, P, final_t_length, epsilon)

S[n+d+1:n+d+final_t_length] = sol_n(0:1:final_t_length-1)[1,:];

I[n+d+1:n+d+final_t_length] = sol_n(0:1:final_t_length-1)[2,:];

R[n+d+1:n+d+final_t_length] = sol_n(0:1:final_t_length-1)[3,:];

end

return S[1:T], I[1:T], R[1:T], I_c, fp, PP

end

#find_SIR(I0,R0,r,m,epsilon,alpha_p0,tau::Int64, d::Int64, b::Float64,sp)

S_t,I_t,R_t,I_c,fp,PP=find_SIR(I0,R0,r, 10, my_profile, .98,3, 0,1., .95)

C=125*ceil(P/10)*floor(T/3)+100*PP*10

#cost of doing nothing

@time sol_nt=SolveSIRD(gamma, beta, I0, R0, P, T,my_profile)
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S_nt = sol_nt(0:1:T-1)[1,:];

I_nt = sol_nt(0:1:T-1)[2,:];

R_nt = sol_nt(0:1:T-1)[3,:];
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