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Abstract 
As college campuses reopen, we are in the midst of a large-scale experiment on the 

efficacy of various strategies to contain the SARS-CoV-2 virus. Traditional individual 
surveillance testing via nasal swabs and/or saliva is among the measures that colleges are 
pursuing to reduce the spread of the virus on campus. Additionally, some colleges are testing 
wastewater on their campuses for signs of infection, which can provide an early warning signal 
for campuses to locate COVID-positive individuals. However, a representation of wastewater 
surveillance has not yet been incorporated into epidemiological models for college campuses, 
nor has the efficacy of wastewater screening been evaluated relative to traditional individual 
surveillance testing, within the structure of these models. Here, we implement a new model 
component for wastewater surveillance within an established epidemiological model for college 
campuses. We use a hypothetical residential university to evaluate the efficacy of wastewater 
surveillance to maintain low infection rates. We find that wastewater sampling with a 1-day lag 
to initiate individual screening tests, plus completing the subsequent tests within a 4-day period 
can keep overall infections within 5% of the infection rates seen with traditional individual 
surveillance testing. Our results also indicate that wastewater surveillance can be an effective 
way to dramatically reduce the number of false positive cases by identifying subpopulations for 
surveillance testing where infectious individuals are more likely to be found. Through a Monte 
Carlo risk analysis, we find that surveillance testing that relies solely on wastewater sampling 
can be fragile against scenarios with high viral reproductive numbers and high rates of infection 
of campus community members by outside sources. These results point to the practical 
importance of additional surveillance measures to limit the spread of the virus on campus and 
the necessity of a proactive response to the initial signs of outbreak. 
 

Author Summary 
College campuses have employed a variety of measures to keep their communities safe 

amid the SARS-CoV-2 pandemic. Many colleges are implementing surveillance testing 
programs wherein students are randomly selected to be tested for SARS-CoV-2. These 
strategies aim to manage the number of infections among the student population by isolating 
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infected individuals. Some colleges are monitoring wastewater on their campuses for signs of 
the virus, which has been found to be capable of detecting viral RNA. If a wastewater sample 
shows signs of viral RNA, then screening tests are administered to the individuals who live or 
work in the buildings that contribute to the sewer in question. We present a model for such 
wastewater surveillance within a larger model for the spread of SARS-CoV-2 on a college 
campus. We show that wastewater surveillance can reduce the number of false positive cases 
and the associated disruptions to student life, while maintaining similar overall numbers of 
infections. However, we find that surveillance testing strategies that rely solely on wastewater 
sampling may be less effective if the local transmission rate of the virus is high, or if the rate of 
infection of members of the campus community by outside sources is high. 

 

1 Introduction 
As colleges put into action their reopening plans for Fall 2020, a natural experiment in 

epidemic management is unfolding. This experiment is stress-testing colleges’ strategies for 
reducing the spread of SARS-CoV-2 on their campuses. These strategies include reducing the 
capacities of classrooms and residence halls, mandating the use of face masks, implementing 
extensive sanitization and cleaning protocols between classes, putting in place social distancing 
requirements, and banning large gatherings. Additionally, many colleges are using traditional 
individual screenings to test students for the virus [1–3] at periodic intervals or by random 
sampling throughout the fall term. Previous work has found that this type of surveillance testing 
is critical for controlling the spread of virus on campus [4–6], and that surveillance testing the 
campus population every 2-10 days is a minimum requirement to keep the overall number of 
infections manageable. 

 
Such frequent screenings of all of a university’s students places a high financial and 

logistical burden on universities, as well as an intrusion on the lives and comfort of students. As 
an alternative or supplementary form of viral surveillance, many municipalities and universities 
are turning to collecting and testing wastewater from their campuses for signs of viral ribonucleic 
acid (RNA) [7]. Viral presence in wastewater can be a leading indicator for positive cases in 
traditional individual screening tests [8–10]. In this approach, wastewater is collected at sewer 
locations around campus and tested in a laboratory, typically by a testing method that 
incorporates a polymerase-chain reaction (PCR) assay [11]. If the wastewater sample from a 
particular sewer shows signs of viral presence, then the individuals in the building(s) that the 
wastewater sampling location serves can be given traditional individual screening tests for 
SARS-CoV-2. In this way, wastewater surveillance can be an effective tool to reduce the overall 
number of randomized screening tests required in order to maintain low infection rates. 
However, the epidemiological models used to inform college campus reopening strategies do 
not yet include a representation of wastewater surveillance. In this work, we present a 
wastewater module for the susceptible-exposed-infected-recovered (SEIR) model of Paltiel et 
al. [4]. 

 
The SEIR modeling approach [12] employs a type of compartment model, wherein all 

individuals are assumed to be in one of four general categories: susceptible to infection, 
exposed (but not yet infectious or symptomatic), infected (either symptomatic or asymptomatic), 
and removed/recovered (recovered from the infection or deceased) [13]. These models do not 
track individual persons (i.e., are not agent-based), and as such SEIR models are simple and 
stylized in their representation of persons and processes. However, this simplicity leads to high 
computational efficiency, making SEIR models ideal for the large numbers of model simulations 
required for uncertainty and sensitivity analyses, and for informing decision-making to manage 
campus community health under uncertain conditions. Such decision support is critical when 
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campus officials must manipulate decision levers including the rate at which to administer 
screening tests to the campus population and what share of courses should be held on-campus 
versus online. Previous efforts to account for the sensitivity of projected infection rates have 
focused on simple Monte Carlo sensitivity analyses, wherein each parameter is sampled from a 
probability distribution and the effects of these changes on the infection rates is compared (e.g., 
5). These foundational approaches assess the sensitivity of infection counts to uncertainties in 
model parameters, which represent real, on-the-ground uncertainties. However, previous work 
provides a largely qualitative view of these sensitivities; a formal global sensitivity analysis is still 
needed. Such a global analysis would quantify how the variation in infection rates is attributable 
to each uncertain model parameter and potential decision lever, including, for example, the viral 
reproduction rate and the rate at which screening tests are administered to the campus 
population. 

 
Here, we address these issues by assigning marginal prior probability distributions to 

each uncertain model input parameter. We sample from these prior distributions to examine the 
sensitivity of infection rate to uncertainty in the model parameters. By considering changes in 
these parameters in combination, we conduct a formal global sensitivity analysis to attribute the 
variance in the total number of infections to variation in each of the input parameters (including 
decision levers) and interactions among the parameters. We use a previously published SEIR 
model to incorporate a model component to represent wastewater surveillance testing. We use 
our new model to assess the ability of a wastewater surveillance system to prevent numbers of 
infections from exceeding a desired maximum. We examine the vulnerability of a wastewater 
surveillance system to failures in underlying assumptions, including increases in the viral 
reproductive rate, larger numbers of new infections of campus members from outside sources, 
and higher rates of noncompliance with quarantine procedures. 

 

2 Methods 

2.1 SEIR model 

 Our model is a modified version of the SEIR model of Paltiel et al. [4]. The interested 
reader is referred to that work for a more detailed description of their original model, but we 
provide an overview here for convenience.  The original model code is based on the source 
code provided accompanying the online dashboard for running simulations using the model of 
Paltiel et al. ([14]; https://data-viz.it.wisc.edu/covid-19-screening/). The model parameters 
discussed below are summarized in Table 1. 
 
 The overall campus population is divided into three groups. The first group contains 
individuals who are circulating on campus and are capable of becoming infected by others, or 
capable of infecting others. This includes individuals who are uninfected and susceptible (U), 
those who have been exposed to an infectious individual but are not symptomatic and not 
infectious (E), and those who have been infected and are asymptomatic but infectious (A). The 
second group contains individuals who are in quarantine/isolation, including those who have 
been tested and received either a false or true positive result (FP and TP, respectively) and 
those who are symptomatic (S). The third group contains individuals who have been removed 
from the pool of potentially infected/infectious persons, including those who have been infected 
but have since recovered (R) and those who were infected and later died (D). The model tracks 
the total number of individuals in each of these model compartments, but not the individuals 
themselves. Fig 1 provides a schematic of these model components and the exchanges of 
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individuals between them. We assume that the overall size of the campus population is 12,500 
individuals, and that initially A(0)=10 of them are asymptomatic and infectious. 
 
 Susceptible individuals (U) become exposed (E) at a rate determined by the effective 
viral reproduction rate (Rt) and the overall prevalence of asymptomatic infectious individuals (A) 
in the circulating group. We take Rt as an uncertain input parameter, with a default value of 1.1, 
which (as of this writing) is appropriate for Upstate New York where our home institution is 
located [15,16]. We consider uncertainty in Rt and the impacts of incorrect assumptions about 
the value of this key parameter in the sensitivity and risk analyses described in Sections 2.3 and 
2.4. Susceptible individuals (U) also become exposed due to exogenous shocks, such as 
infections of campus community members by outside individuals or “superspreader” events. The 
time between exogenous shocks (Texo) and number of new exposures from each shock (Nexo) 
are both taken as uncertain input parameters (see Table 1). Exposed individuals (E) become 
infectious and transition into the asymptomatic and infectious (but still circulating on campus) 
group (A) at a rate governed by the incubation period, Tinc. We take Tinc=5 days as a default 
value [4,17], but also consider uncertainty in this parameter in our subsequent analyses. 
 
 We assume that asymptomatic infectious individuals (A) develop symptoms at rate σ 
(transition to S), and individuals who are infectious recover at a rate ρ (transition to R), 
regardless of whether or not they exhibit symptoms. Following Paltiel et al. [4], we assume that 
the percentage of infected individuals that eventually develop symptoms (psymptoms) is 30%. 
Thus, psymptoms=0.3=σ/(σ+ρ). Letting Trec be the recovery time from the infection, then ρ=1/Trec. 
We take Trec=14 days as a default parameter value, which leads to σ=3/98 days-1 as a default. 
Individuals who are symptomatic perish at rate δ, which depends on the recovery rate (ρ) and 
the symptomatic case fatality ratio, ffatal. We take ffatal=0.05% as a default value. We note that 
values for this parameter are likely to be higher for certain subpopulations of the campus 
population (for example, groups designated as high-risk by the United States Centers for 
Disease Control and Prevention (CDC) [18,19]. We assume that recovered individuals (R) are 
no longer susceptible to infection. As our model simulations are for a single semester (about 14 
weeks), this is in line with the current thinking on the length of protection offered by SARS-CoV-
2 antibodies [20,21]. 
 
 Traditional individual surveillance testing is carried out with period Ts so that the entire 
circulating campus population is screening once every Ts days. Note that the Ts parameter 
represents how long it would take to test the entire campus population, but this testing is divided 
up so that some portion occurs in each model time step. The screening test sensitivity (Se, true 
positive rate) and specificity (Sp, true negative rate) are taken as uncertain input parameters. 
We take Se=70% and Sp=98% (false negative and false positive rates of 30% and 2%, 
respectively) as default values, together with the prior distributions described below. Following 
the original work of Paltiel et al. [4], we assume that false positives are detected via a 
confirmatory test afterward with 100% specificity. The time to return a false positive to the 
susceptible circulating group is an input parameter that we take to be 1 day as a default. Also 
following Paltiel et al. [4], testing of exposed, but not infectious or symptomatic, individuals (E) is 
assumed to always lead to a negative screening result. This assumption is made in light of the 
practical difficulty involved in tracking how long each member of the exposed group has spent in 
that model compartment, as the proportions of false positives and false negatives are affected 
by the prevalence of viral RNA in the affected individuals. Additionally, as screening tests are 
carried out, some of the exposed individuals will transition into the asymptomatic (infectious) 
compartment, where they will potentially be screened as true positives.  
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 In the original formulation of Paltiel et al. [4], it is assumed that individuals who develop 
symptoms or receive a positive screening test result immediately are moved into 
isolation/quarantine. We have added a parameter to represent noncompliance with 
isolation/quarantine procedures. This parameter, fnc, is a fraction between 0 and 1 that 
represents the proportion of the asymptomatic and circulating population that does not go into 
quarantine even after either developing symptoms or testing positive for SARS-CoV-2. fnc can 
also represent the event that an individual develops symptoms but those symptoms are so mild 
that they do not realize they are infected. We take this parameter to be equal to 0 by default. 
However, in light of recent news of student noncompliance with quarantine/isolation procedures 
[22–24], it is important to evaluate the impacts of student noncompliance on the efficacy of 
campus strategies to manage the spread of SARS-CoV-2. We note that fnc only represents 
noncompliance with quarantine/isolation rules, and does not represent noncompliance with 
limitations on large gatherings or mask-wearing, for example. Restrictions on gathering sizes 
and mask mandates are represented in the effective reproductive rate, Rt.  
 

 
Figure 1.  Model schematic with “fluxes” of individuals between model compartments. This 
includes potential noncompliance with quarantine/isolation procedures and the new wastewater 
fluxes based on screenings triggered by wastewater-positive results. Noncompliance reduces 
the flow of Asymptomatic individuals into the True Positive or Symptomatic compartments. Note 
that Recovered individuals are still circulating on campus, but are assumed to have been 
removed from the set of individuals who can become infected or transmit the virus. 
 

2.2 Wastewater sampling 

2.2.1 Overview 
 We begin with a brief overview of the wastewater module that we have added to the 
SEIR model of Paltiel et al. [4]. Then, in Section 2.2.2, we provide specific details regarding the 
implementation in the model structure. 
 
 Wastewater from a handful of different sewer sites around campus is tested for signs of 
SARS-CoV-2 every few days. In the real world, if there are signs that the virus is present in one 
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or more of these wastewater sampling locations, then the relevant wastewater sample is 
considered to be “positive” and screening tests will be administered to the subpopulations on 
campus that would have contributed to those wastewater samples. The limit of detection will 
vary between campuses and the specific wastewater collection and testing systems employed 
[25]. In our model, a positive wastewater sample is triggered when the number of asymptomatic 
or exposed (but not yet infectious) individuals who contribute to the wastewater samples 
exceeds a threshold parameter.  

2.2.2 Specific implementation 
 We assume that a set of wastewater samples is drawn from sewer systems around 
campus and sent to a laboratory for testing every at regular intervals, Tww. We assume that 
wastewater sample results return from the laboratory every Tww days as well. Thus, at time 
t=n⨉Tww, the wastewater results from time t=(n-1)⨉Tww return from the laboratory, where n is a 
positive integer. As a default parameter value, we take Tww=3 days. We assume that a 
proportion, fww, of the overall population is contributing to wastewater samples, and that the 
population is well-mixed. This subpopulation consists of students who live on campus, and 
students, faculty, and staff who work or study on campus. A positive wastewater sample result 
is returned in the model if the number of asymptomatic and exposed individuals contributing to 
the wastewater samples at the time that the wastewater sample is drawn exceeds a threshold 
parameter, W (i.e., wastewater sample is found to indicate the presence of viral RNA). Based on 
results from University of Arizona [26] and preliminary analyses at our home institution, we take 
W=2 as a default value. We include uncertainty in W in the sensitivity and risk analyses 
described in Sections 2.3 and 2.4. 

 
For every college campus that is implementing a wastewater surveillance system, the 

building(s) that each sewage sample represents will be different. Thus, if there is evidence of 
viral RNA found in the wastewater sample from a particular sewer draw, it is unknown exactly 
how many individuals contributed to that particular sample. In light of this uncertainty, we use a 
parameter, Nbuilding, as a representative number of individuals that would contribute to an 
arbitrary wastewater sample. This can represent a single large residence hall or a collection of 
several smaller buildings. Uncertainty in Nbuilding also arises from the fact that different sewers 
from which a campus might sample will represent (collections of) buildings of different 
capacities, and multiple sewers can yield positive results simultaneously. We use a default 
value of Nbuilding=750 persons. 750 is toward the upper end of the range of building capacities for 
our home institution. If a positive wastewater signal leads to the testing of, on average, fewer 
than Nbuilding individuals, then choosing higher values for Nbuilding reflects the belief that 
sometimes multiple sewer systems will give positive wastewater results simultaneously.  

 
 We assume that the wastewater-triggered individual screening tests begin some time, 
Tlag, after receiving the positive wastewater result. By default, we take Tlag=1 day. There are 
practical reasons to potentially delay initiating screening tests after a positive wastewater result. 
For example, a large portion of the exposed individuals who are not yet infectious might go 
undetected if screening tests are administered before they have transitioned into the 
asymptomatic (and infectious) model compartment. 
 
 Each time that a wastewater sample is returned from testing (i.e., at intervals of Tww), the 
model checks if the wastewater result is positive. If a positive wastewater result occurs and 
screening tests begin, then we assume that all fww⨉(E(t)+A(t)) exposed and asymptomatic 
individuals contributing to wastewater sampling reside within the same representative building 
(or set of buildings) of size Nbuilding. It is important to note that this might represent a collection of 
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actual buildings; hence, our choice to use a value for Nbuilding that is toward the upper end of the 
set of values for our campus. Here, t represents the current day in the simulated semester 
(Tww+Tlag days since the wastewater sample in question was drawn), E(t) represents the number 
of exposed individuals at time t, and A(t) represents the number of asymptomatic individuals at 
time t. We assume that the remaining Nbuilding - fww⨉(E(t)+A(t)) individuals are divided between 
the susceptible (U(t)) and recovered (R(t)) groups. The relative proportions of this remaining 
building subpopulation that are susceptible and recovered are the same as those proportions in 
the general campus population. Following the original implementation of Paltiel et al. [4], we 
assume that the exposed group (E(t)) will always yield a true negative result when tested for 
SARS-CoV-2, but they can contribute to a positive wastewater signal [9,25]. 
 

The time required to administer tests and receive results for the size Nbuilding 
subpopulation that contributes to the wastewater samples is Ts,ww. As a default, we assume that 
all individuals contributing to a positive wastewater result will be screened within Ts,ww=4 days. 
Similarly to our modification of the traditional individual surveillance testing, the false and true 
positive results from the wastewater-based screenings are modulated by a noncompliant 
proportion parameter, fnc. After wastewater-triggered individual screening tests remove detected 
infections from the wastewater-contributing subpopulation, the relative proportions of 
asymptomatic individuals in the wastewater-contributing subpopulation can be lower than the 
proportion among the general campus population. Our assumption of a well-mixed general 
population means that asymptomatic cases from outside the wastewater-contributing population 
will redistribute into the wastewater-contributing population. This may be viewed as the advent 
of a new outbreak in a different set of buildings than the set that was just administered the 
screening tests. An agent-based model would offer an opportunity to investigate these dynamics 
further, but is beyond the scope of the present work. 
 

2.3 Sensitivity analysis 

 We use the Sobol’ method for global sensitivity analysis [27] to evaluate the sensitivity of 
our model to each of its input parameters and their interactions with one another. Global 
sensitivity analyses are preferable to one-at-a-time sensitivity analyses in the sense that a one-
at-a-time analysis risks missing important interactions among uncertain parameters. However, 
global analyses are more computationally expensive due to the larger number of effects to 
explore. Here, our simple SEIR model is sufficiently inexpensive that running hundreds of 
thousands of simulations is possible on a time-scale of hours, so a global sensitivity analysis is 
feasible. 
 
 The Sobol’ method examines how the variance in a model output of interest changes 
when the model input parameters are all varied simultaneously. Via our Sobol’ analysis, we 
decompose the variance in the total cumulative number of infections over a 100-day semester 
into portions attributable to each input parameter, and to each parameter interaction. The 
portion of variance in the model output that is directly attributable to changes to an individual 
parameter is that parameter’s first-order sensitivity index. The second-order Sobol’ sensitivity 
indices are the proportions of variance in the model output that are attributable to pairs of model 
input parameters that are varied together. Higher-order indices may be computed as well, but 
are typically not presented due to challenges of visualization and the large number of possible 
three-parameter combinations (for our model, there are over 800 such triplets). However, we 
also compute the total sensitivity index for each parameter, which is the proportion of variance 
attributable to that parameter and all of its interactions with other parameters, including these 
higher-order interactions.  
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Parameter name and symbol Default 
value Prior distribution Units 

population_size 12,500 Fixed; 12,500 persons 

initial_infected 10 Bin(n=12,500, 
p=10/12,500) persons 

Effective reproductive rate, Rt 1.1 Tri(a=3, b=12, c=5) - 
Fraction of population noncompliant with 
quarantine procedures, fnc 0.01 Tri(a=0, b=0.1, c=0.01) - 

New exposures per shock, Nexo 15 NBin(r=5, p=0.25) persons 
Time between exogenous shocks, Texo 7 Bin(n=14, p=0.5) days 
Incubation period (days to infectious), Tinc 5 Tri(a=3, b=12, c=5) days 
Time to recovery, Trec 14 Tri(a=10, b=21, c=14) days 
% advancing to symptoms, psymptoms 30 Tri(a=5, b=50, c=30) % 

Symptomatic case fatality ratio, ffatal 0.0005 Tri(a=0, b=0.01, 
c=0.0005) - 

Time for traditional individual screening tests, 
Ts - NBin(r=42, p=0.125) days 

Time for wastewater sample result, Tww 3 DUnif(min=1, max=8) days 
Fraction of population contributing to 
wastewater, fww 0.55 Tri(a=0.2, b=0.8, c=0.55) - 

Lag time to initiate wastewater-triggered 
individual screenings, Tlag 

1 DUnif(min=1, max=5) days 

Time for wastewater-triggered individual 
screening tests, Ts,ww 4 DUnif(min=1, max=7) days 

Wastewater positive detection threshold, W 2 Tri(a=1, b=5, c=2) persons 
Building size for wastewater screenings, 
Nbuilding 750 NBin(r=5, p=0.01) persons 

Screening test sensitivity, Se 0.7 Tri(a=0.7, b=0.9, c=0.8) - 
Screening test specificity, Sp 0.98 Tri(a=0.95, b=1, c=0.98) - 
Time to return false positive 1 Fixed; 1 day days 
Table 1.  Parameter names, symbols, units, default values for risk analysis, and prior 
distributions. “Tri” denotes a triangular distribution, which is defined by its range parameters (a 
and b) and their mode parameter (c). “Bin” denotes a binomial distribution, which is defined by a 
number of Bernoulli trials (n) and the probability of “success” of one of those trials (p). “NBin” 
denotes a negative binomial distribution, which is defined by a number of Bernoulli successes 
(r) and the probability of success (p). “DUnif” and “Unif” denote discrete uniform and continuous 
uniform distributions, respectively. 
 
 

We assign each model input parameter a marginal prior probability distribution (Table 1 
and Supplementary Material). We sample from these prior distributions to create two 
independent ensembles of 10,000 simulations using a Latin hypercube sampling approach [28]. 
The Sobol’ method computes the parameters’ sensitivity indices by constructing new 
simulations by swapping values for each parameter, and combinations of parameters, from one 
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ensemble to the other. For example, the second-order sensitivity to Rt and Nexo would be 
computed by swapping all of the values for Rt and Nexo from the second ensemble into the first, 
and observing the change in model output variance from when all parameters were from the first 
ensemble. To estimate all of the first-order, second-order, and total sensitivity indices, a grand 
total of 380,000 model simulations are required. We use bootstrap resampling with 1,000 
replicates to compute 95% confidence intervals for each sensitivity index. We diagnose 
convergence when the widest confidence interval has a width that is less than 10% of the 
highest total sensitivity index (e.g., 29). We report only sensitivities that constitute at least 1% of 
the total variance in the modeled total cumulative number of infections, and whose 95% 
confidence interval excludes 0. 
 

In the sensitivity analysis, we assume our hypothetical campus pursues a testing 
strategy that relies primarily on wastewater surveillance, but is complemented with a small 
amount of traditional individual surveillance testing.  

 

2.4 Risk analysis 

 Campus decision-makers would seek to optimize obvious objectives such as minimizing 
the total number of infections or minimizing the total number of screening tests needed. Public 
health mandates may also provide additional objectives that decision-makers aim to satisfy. 
Here, we consider the ability of our university to maintain fewer than 100 new infections across 
any 14-day period. This is the threshold beyond which universities in New York State would 
need to switch to all-online classes for at least two weeks [30]. We note that there are specific 
14-day periods in which infection counts are tabulated, but examine the objective of maintaining 
fewer than 100 new infections across any such period, as this will ensure that the state 
requirement is met. Additionally, we note that smaller institutions would need to close upon 
reaching a new infection count equal to 5% of their population, and that local health 
departments may elect to keep the institution closed for in-person classes longer as the 
situation demands. For brevity’s sake, for a given model simulation, we denote the maximum 
number of new infections across any 14-day window as Imax,14. While a testing strategy 
(wastewater and/or traditional individual surveillance) might satisfy the Imax,14<100 objective 
under nominal conditions (default parameter values), incorporating uncertainty in the model 
parameters by sampling from their prior distributions will lead to a corresponding distribution of 
Imax,14 values for the given testing strategy. We define the reliability of maintaining Imax,14<100 as 
the probability Pr(Imax,14<100). This probability, of course, is conditioned on the testing strategy 
as well as the underlying parameter prior distributions and other model structural assumptions. 
With these caveats in mind, we examine which wastewater testing strategies provide the 
highest reliability of maintaining Imax,14<100 infections. 
 

Guided by our hypothesis that uncertainty in model input parameters will diminish the 
ability of our hypothetical university to satisfy its objectives for containment of the SARS-CoV-2 
virus on campus, we conduct a Monte Carlo risk analysis. We consider surveillance testing 
strategies that involve only wastewater surveillance, as traditional surveillance testing (e.g., 
nasal swabs and/or saliva tests) has been considered extensively elsewhere in the literature 
[4,5]. We consider testing strategies with a time lag to begin wastewater screenings after finding 
a positive result in the wastewater samples of Tlag=1 day. We consider times to complete all 
wastewater-triggered screening tests, which begin after the 1-day lag, of Ts,ww=1, 2, …, 7, or 8 
days. Preliminary experiments (see Supplemental Material) suggest that the lag time to initiate 
wastewater screenings did not substantially (>1%) affect the resulting infection rates. This is 
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because eventually, infections are so prevalent on campus that the wastewater-triggered 
screenings become a nearly continuous process.  
 
 We evaluate the sensitivity of these eight testing strategies, corresponding to the eight 
values of Ts,ww above, to our assumptions about three critical parameters: the effective 
reproductive rate, Rt, the number of new infections from exogenous sources each week, Nexo, 
and the fraction of individuals who are not compliant with quarantine/isolation procedures, fnc. 
Specifically, we consider a control scenario in which we assume that Rt=1.1, Nexo=15 on a 
weekly time-scale (Texo=7 days), and fnc=0.01 (1%). In the risk analysis, we suppose that the 
hypothetical campus uses only wastewater-triggered individual testing and does not conduct 
any additional traditional individual testing (e.g., nasal swab or saliva). We let Ts,ww vary at its 
values stated above, we keep the parameters Tlag, Rt, Nexo, Texo, and fnc fixed, and we sample all 
of the other model parameters from their prior distributions (Table 1). We assume that the total 
campus population is fixed (12,500 individuals), and do not consider uncertainty in the time to 
return false positive results (1 day). We estimate the reliability of maintaining Imax,14<100, 
Pr(Imax,14<100), as the proportion of simulations in which the maximum number of new infections 
across any 14-day window does not exceed 100. For each testing strategy and combination of 
Rt, Nexo, and fnc, we generate 3,000 sets of the other parameters from their marginal prior 
distributions using a Latin Hypercube sampling approach [28]. We find that at least about 2,000 
samples are required in order to stabilize our estimates of Pr(Imax,14<100), subject to the 
uncertainties in the other model parameters (see Supplemental Material). 
 

We then consider how “breaking” our assumptions about the parameters Rt, Nexo, and fnc 
affects the reliability Pr(Imax,14<100). We construct seven additional ensembles by increasing Rt 
to 1.5, increasing the number of new exposures for each weekly shock to 30, and increasing the 
fraction of noncompliant individuals to fnc=0.1, as well as all combinations of these increases. By 
observing the decrease in Pr(Imax,14<100), we quantify the fragility of each testing time-scale to 
broken assumptions about the rate of viral transmission on campus, the influence of infections 
of campus community members by outside sources, and noncompliance by students. 
 

Importantly, in the simulations that we present here, there are two total infection counts. 
First, there is the number of true infections, including asymptomatic cases (A(t)), symptomatic 
(S(t)), and true positive cases (TP(t)). The number of true infections is generally unknown in real 
life. By contrast, our model also computes the number of perceived - or detected - infections. 
The number of perceived infections includes symptomatic cases (S(t)), true positives (TP(t)) and 
false positives (FP(t)), but misses asymptomatic cases. We thus present two sets of reliabilities: 
one using the true number of infections and one using the perceived infections only. This 
distinction, and the fact that in the “model world” the true number of infections is known, enables 
us to characterize how a lack of timely testing can obscure the true infection count. So, we 
hypothesize that as the testing time Ts,ww increases, the perceived reliability will increase, while 
the true reliability will decrease. However, we hypothesize that beyond a certain length of time 
for testing, the perceived reliability will begin to decrease because the number of symptomatic 
cases becomes overwhelming. 

 

3 Results 

3.1 Comparison with traditional individual surveillance testing 

 Before embarking on our Monte Carlo sensitivity and risk analysis, we first examine 
individual simulations under the control scenario as described in Sec. 2.4. We use the default 
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parameter values from Table 1, including weekly 15-infection shocks (Texo=7 days, Nexo=15), 
Rt=1.1, and fnc=0.01 noncompliance. Using wastewater surveillance with Tlag=1 day and Ts,ww=4 
days leads to true numbers of infections that are quite similar to the infection count under a 
traditional surveillance testing regimen with Ts=7 days (Fig 2A, solid lines). The total cumulative 
numbers of infections under the wastewater and traditional surveillance approaches were 410 
and 399 infections, respectively, at the end of the 100-day model simulations. This difference 
constitutes an increase of 2.8% of the number of true infections under the traditional screening 
approach. Under the control scenario, the projected numbers of deaths for the semester are 
0.043 and 0.042 for the wastewater and traditional screening cases, respectively. These 
differences increase slightly in the moderate (Rt=1.5, Nexo=20, and fnc=0.05; Fig 2C) and severe 
(Rt=2, Nexo=30, and fnc=0.1; Fig 2E) scenarios. In the moderate scenario, there are 860 total 
infections (0.082 deaths) projected under the wastewater surveillance program and 828 
infections (0.079 deaths) under the traditional surveillance testing program. In the severe 
scenario, there are 3,825 infections (0.30 deaths) and 3,655 infections (0.29 deaths) using the 
wastewater and traditional surveillance approaches, respectively. The numbers of true 
infections when using wastewater surveillance constitute increases of 3.9% and 4.7% over the 
1-week traditional surveillance plan in the moderate and severe risk cases, respectively. 
 

While the numbers of true infections are similar, the numbers of perceived infections are 
quite different. Under the control scenario, our model predicts that using wastewater 
surveillance leads to a dramatic underestimation of the number of true infections: at the end of 
the semester, there are about 45 perceived infections and 66 true infections. This is the result of 
wastewater surveillance testing a sicker subpopulation resulting in many fewer false positive 
individuals than traditional surveillance testing (Fig 2B). Traditional surveillance overestimates 
the number of true infections under the control scenario (Fig 2A, green lines), but this 
overestimation is the result of a larger portion of false positive individuals and not from detecting 
more asymptomatic cases (Fig 2B). The sizable number of false positive cases ensnared by the 
traditional individual surveillance testing strategy can be understood by a quick heuristic 
calculation: out of a campus population of 12,500 individuals, 12,500/7≅1,786 of them are 
administered a test on the first day of the simulated semester. With a nominal false positive rate 
of 2% (1-specificity), we expect to see about 1,786⨉0.02≅36 false positive cases. This roughly 
matches the false positive census by day 20 seen in Fig 2B. However, using traditional 
surveillance in the moderate scenario initially overestimates the number of true infections, then 
at day 37, the number of true infections becomes larger than the number of perceived infections 
(Fig 2C, green lines), which thus underestimate the number of true infections after day 37. For 
the severe risk scenario, this switch occurs after only 15 days (Fig 2E). One of the reasons a 
campus might pursue a traditional surveillance testing approach is to err on the side of a Type 1 
error (false positive), when the potential drawbacks to missing positive COVID-19 cases are 
high (e.g., an outbreak). These results suggest that the utility of this traditional approach relies 
on the testing strategy being sufficiently aggressive as to match the local viral prevalence and 
spread.  
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Figure 2.  Wastewater surveillance (black lines) underestimates the true number of infections 
(solid lines), while traditional individual surveillance (green lines) tends to overestimate it for low-
risk scenarios, then underestimate it for high-risk scenarios. Shown are the numbers of current 
infections at each time throughout the semester (A, C, and E) and the breakdown of those 
infections among the asymptomatic, symptomatic, true positive, and false positive model 
compartments (B, D, and F) at 20-day intervals. In the right column, the middle bars in each 
group represent the actual numbers of infections and the outside bars represent the perceived 
infections. The first two bars in each group represent traditional individual surveillance and the 
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last two bars represent wastewater surveillance. The nominal scenario (first row) uses the 
parameter values from Table 1, including Rt=1.1, Nexo=15, Texo=7 days, and fnc=0.01. The 
moderate risk scenario (second row) increases Rt to 1.5, increases Nexo to 20, and fnc=0.05, 
while all other parameters are the same as in the control scenario. The severe risk scenario 
(bottom row) uses Rt=2, Nexo=30, Texo=5 days, and fnc=0.1. The occurrences of exogenous 
infections (of size Nexo) are denoted with orange triangles in the first column. All of the 
wastewater screening cases use Tlag=1 day and Ts,ww=4 days, and all of the traditional individual 
screening cases use Ts=7 days (weekly screenings). 
 
 

The model prediction that wastewater surveillance does not result in a high portion of 
false positives is not surprising. The structure of our model assumes only a certain fraction of 
the campus population contributes to the wastewater samples (fww=0.55 is the nominal 
parameter value). Indeed, not all members of the campus community will be equally 
represented in wastewater samples. Wastewater surveillance enables the model to identify a 
subpopulation of sicker individuals and focus screening tests on this subpopulation. Of course, 
this also means that many individuals will not be within the group that is administered 
wastewater-triggered screening tests. In practice, wastewater sampling should be used in 
tandem with some traditional individual surveillance testing to address this issue. However, 
even in the moderate and severe scenarios, the number of overall infections is never more than 
5% higher when using wastewater-based surveillance testing as opposed to traditional 
individual surveillance testing (Fig 2C and 2E). Thus, it appears that for the scenarios 
considered here, the infections that wastewater sampling misses do not lead to large outbreaks 
of infections.  
 

3.2 Sensitivity analysis 

For the set of model input parameters and prior distributions chosen to reflect conditions 
with low rates of viral transmission and exogenous exposures, we find that nine parameters, out 
of 18 total, contribute significantly to variance in the overall number of infections (Fig 3). The 
criteria for “significance” is for the sensitivity index to be at least 1% of the total variance in 
estimated cumulative infections, and for the 95% confidence interval to exclude 0. The nine 
sensitive parameters, in order of their first-order sensitivity indices, are: the effective 
reproductive rate (Rt, 35%), the number of new exposures per exogenous shock (Nexo, 12%), 
the frequency of exogenous shocks (Texo, 6%), the fraction of the population contributing to 
wastewater samples (fww, 4%), the amount of time between wastewater sample results return 
(Tww, 4%), the amount of time for an infected individual to recover (Trec, 4%), the fraction of 
infected individuals who exhibit symptoms (psymptoms, 3%), the amount of time for an exposed 
individual to become infectious (Tinc, 3%), and the amount of time required to complete 
screening tests after a positive wastewater result (Ts,ww, 2%). We find a total sensitivity to Rt and 
its interactions with other parameters of 63%. This highlights the importance of practical 
measures to reduce Rt, including reduced classroom and residence hall capacities, limits on 
large gatherings, and mask mandates, for example. 
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Figure 3.  To what degree do the individual and combined parameter uncertainties and decision 
levers influence the overall cumulative number of infections over the course of the simulated 
semester? This Sobol’ radial convergence diagram depicts the decomposition of variance in the 
total number of infections among the uncertain input parameters. Input parameter prior 
distributions have been chosen to represent the conditions and characteristics of the authors’ 
home institution, which corresponds to a relatively low value of Rt, about 10-20 exogenous 
infections per week, and low rates of noncompliance. Filled orange nodes represent first-order 
sensitivity indices (direct parameter influences); the concentric gray nodes represent total 
sensitivity indices (the given parameter’s influence in combination with all other parameters); 
and filled gray bars represent second-order sensitivity indices for the interaction between the 
given pair of parameters. Parameters whose names or symbols are orange are the parameters 
to which the model is sensitive (in the upper hemisphere of the diagram); parameters in black 
(lower hemisphere) are those to which the model does not display a significant sensitivity. 
 
 

The fact that two out of the top three parameters to which the total infection count is 
most sensitive are related to infections of campus community members through interactions 
with external individuals (e.g., social events and interactions off-campus) highlights the 
importance of campus and municipal public health measures to limit the spread of the virus. 
This result also illustrates the practical impacts of members of the campus community making 
(or not making) safe and responsible choices. We emphasize that these results employ prior 
distributions for the model input parameters that have been chosen to reflect the conditions and 
characteristics of our home institution in Upstate New York. We include analogous sensitivity 
analyses for hypothetical scenarios at a larger university situated within a community with higher 
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rates of transmission and a smaller college with a much lower student population and less 
active interactions with its surrounding community (see Supplemental Material). 
 

3.3 Risk analysis 

 We now turn to the question: How well can different wastewater surveillance strategies 
be expected to help maintain low rates of infection on campus? In light of the model’s 
sensitivities to Rt and Nexo, we examine the fragility of different wastewater surveillance 
strategies using hypothetical scenarios in which the values for those parameters, and the 
noncompliance parameter, fnc, are more severe than the default values from Table 1. We use a 
set of eight ensembles to examine the reliability of maintaining fewer than 100 infections during 
any 14-day period (Imax,14<100) under different policies for wastewater-triggered surveillance 
testing (Fig 4). All scenarios use a lag time to initiate screenings of Tlag=1 day. Rt, Nexo, and fnc 
are held fixed at either their nominal values (Rt=1.1, Nexo=15 new infections per week, and 
fnc=0.01 (1%) noncompliance) or their high-risk values (moderate/severe cases: Rt=1.5, Nexo=30, 
and fnc=0.1). We assume that no additional traditional individual screening tests beyond those 
triggered by wastewater sampling are performed, and all other model parameters are sampled 
from their prior distributions.  
 

Under nominal conditions, the reliability is about 89% when screenings are completed 
within 1 day (Ts,ww =1), excluding the 1-day lag time to initiate the screenings (Fig 4A). As the 
time to complete the screening tests increases, the perceived reliability increases to 100% (Fig 
4A, gray shading) while the actual reliability decreases to about 65% with a screening time of 8 
days (orange shading). That this discrepancy between the perceived and actual reliability as 
screening time increases can be seen in all of the higher-risk scenarios as well (Fig 4B-H). This 
demonstrates how failing to react in a timely fashion to signs of viral RNA can lead to the 
perception of safety, while in reality the infection count is growing. Additionally, even though 
both the control scenario and the high-noncompliance scenario yield perceived reliabilities of 
100% for screening times longer than 3 days (Fig 4A, C), higher rates of noncompliance lead to 
about 20-30 additional infections beyond the control scenario (see Supplemental Material).  

 
When Rt or Nexo are increased to their high-risk values, the actual reliability of 

maintaining Imax,14<100 is never greater than 50% (Fig 4B, D-H); the perceived reliability can be 
up to 76%, with a screening time of 5 days. This reveals the fragility of a surveillance testing 
strategy that relies on wastewater sampling. Scenarios in which both Rt=1.5 and Nexo=30 lead to 
outcomes in which even the perceived reliabilities do not exceed 20% (Fig 4F, H). For these 
scenarios, the actual reliability is 0% if the time to receive screening results is longer than 2 
days. This highlights the compound hazard associated with multiple drivers of risk on college 
campuses. Holiday parties, reuniting with friends after winter break, spending more time indoors 
during winter, and (at some universities) spring break can all serve to increase both Rt and Nexo. 
This means that these high-risk scenarios must be considered as possible, if not probable, real-
world cases as colleges plan for their spring semesters. 
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Figure 4.  Slower response times to complete screening tests based on wastewater sampling 
can lead to the perception of safety based on a high reliability of maintaining Imax,14<100 (gray 
bars) in contrast to a lower true reliability based on the actual numbers of infections (orange 
bars). Shown on the vertical axis is the reliability, Pr(Imax,14<100) and on the horizontal axis are 
the times required to complete subpopulation screening results after a one-day lag to initiate 
screening tests. The left bars give the reliability using the actual infection counts and the right 
bars give the reliability using only the perceived infections, which would hypothetically be 
known. The panel titles give the values for the reproductive rate (Rt), the noncompliant fraction 
(fnc), and the number of new exogenous infections each week (Nexo). Bold-face parameters in 
the panel titles denote parameters that have taken on values corresponding to higher-risk 
scenarios. All other parameters are sampled from their prior distributions given in Table 1.  
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We find that across all scenarios, completing the wastewater-triggered screening tests 

within 1 day of initiating the tests maximizes the actual reliability of maintaining Imax,14<100. 
However, in addition to improving student health conditions by maximizing the actual reliability 
for Imax,14<100, campus decision-makers in our hypothetical situation would want to also 
maximize the perceived reliability (based on the perceived number of infections). We emphasize 
that in practice, the perceived number of infections is the only information known to decision-
makers; the actual number of infections is information only known to us here in our model 
experimental setting. In all scenarios except those with higher Rt combined with higher Nexo, the 
perceived reliability is maximized by using a screening time of 4-5 days (Fig 4A-E, G). In the two 
scenarios with both higher Rt and higher Nexo, the perceived reliability is maximized by using a 
screening time of 2 days (Fig 4F, H). A time to receive screening results of 2 days appears to be 
a suitable compromise between (i) guarding against high-risk scenarios (i.e., higher Rt and Nexo 
simultaneously) and (ii) balancing minimizing true infections against the practical concern of 
minimizing the number of perceived (detected) infections. 
 

4 Discussion 
We have tuned a SEIR compartment model to represent scenarios of wastewater 

screening for SARS-CoV-2 at a hypothetical university of 12,500 students during a time period 
in which the area is experiencing relatively low viral presence and transmission, as well as low 
exposure of campus community members from the surrounding community. By developing and 
implementing a model component for wastewater surveillance, we find that wastewater 
surveillance testing can be an effective strategy to maintain a similar number of overall 
infections on campus to traditional individual surveillance testing (Fig 2). This result is 
conditioned on the assumed values and prior distributions for our parameters, which have been 
selected to represent situations that might plausibly face our home institution, and is conditioned 
on the campus health decision-makers responding to signs of infection in a timely manner.  

 
The discrepancy between the true infection count and the number of infections that 

campus health officials would know about (the perceived number of infections) is striking (Figs 2 
and 4). Guarding against the worst-case scenarios that include higher reproductive rate, Rt, 
simultaneous with higher exogenous infections, Nexo, suggests that a time to screening results 
of Ts,ww=2 days (plus a 1-day lag to initiate the screenings) is optimal for maximizing the 
perceived reliability of maintaining Imax,14<100 (Fig 4F, H). However, in the other higher-risk 
scenarios, the perceived reliability is maximized by taking Ts,ww=4 or 5 days (Fig 4A-E, G). 
Across all scenarios, the actual reliability is maximized by taking Ts,ww=1 day, the fastest time-to-
results considered here. Thus, we suggest that a time of Ts,ww=2 days to complete wastewater-
triggered screening tests balances decision-makers’ desire to avoid a strategy that is fragile 
against higher-than-nominal risk factors, to minimize the overall number of infections, and the 
practical importance of maintaining fewer than 100 perceived infections across any 14-day 
period (Fig 4).  

 
Exogenous infections and Rt are the parameters with the highest direct influence on 

overall number of infections (Fig 3). These results reflect the importance of taking practical 
steps to mitigate viral spread on campus and within the local community. Additionally, the fact 
that Rt and the frequency and rate of exogenous infections have a stronger influence on overall 
infection count than the characteristics of the surveillance testing protocol (wastewater or 
traditional) is likely attributable to the relatively low prevalence and spread of virus in our main 
test case. In a supplementary experiment, we change the parameters’ prior distributions to 
represent the case of a large university (20,000 individuals) in an area with higher rates of 
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transmission and exogenous shocks and a small college (3,000 individuals) in an area with low 
transmission and exogenous shocks (see Supplementary Material). In the large university case, 
we find that the characteristics of the surveillance testing protocol become more important than 
the frequency and rate of exogenous infections. The results for the small college case more 
closely resemble our results for the hypothetical campus of Sec 3.2, with the exception that 
exogenous infections contribute a relatively smaller portion to the variability in overall numbers 
of infections. 

 
While our sensitivity analysis and preliminary risk analysis (see Supplementary Material) 

may appear to indicate that the lag time to initiate screening tests based on a positive 
wastewater return is inconsequential for improving the reliability, the total number of infections 
suffers with greater lag times. Furthermore, in many simulations, the prevalence of the virus is 
high enough that once wastewater-based screening tests are initiated, they continue until the 
end of the semester (Fig 1). Thus, initiating screening tests within one day, in response to a 
positive wastewater signal, appears to be the best option to mitigate higher numbers of 
subsequent infections. 

 
We find that wastewater sampling leads to 410 infections over the course of the entire 

100-day semester in the control (low) forcing scenario, in which Rt=1.1, Nexo=15 new exogenous 
exposures each week, and fnc=0.01. In the control scenario, the traditional individual 
surveillance testing approach leads to 399 total infections. Thus, the 11 additional infections 
under the wastewater surveillance plan represents an increase of about 2.8%. This difference is 
larger in the moderate (3.9%) and severe (4.7%) forcing scenarios, but remains within 5%. In 
practice, deploying a blend of wastewater and traditional individual screening approaches would 
mitigate the effects of this potential issue. Given these general similarities in outcomes, our 
results suggest that, under nominal or moderate risk conditions, wastewater surveillance is a 
viable and noninvasive option to monitor the campus population for signs of infection. 

 
Our risk analysis results (Sec 3.3) suggest that perceived reliability - which is the only 

reliability that will be known in practice - will generally be higher than the actual reliability of 
maintaining Imax,14<100. This is driven by the result that wastewater sampling is targeted to a 
portion of asymptomatic cases (Fig 2). Thus, in practice, we expect that a wastewater sampling 
plan may appear to keep the overall infection count low, but asymptomatic cases will go 
unnoticed. By contrast, traditional individual screening tests appear to overestimate the actual 
number of infections for low- or moderate-risk scenarios (Fig 2A, C). These results have 
profound practical implications. This result implies that universities that exceed the New York 
State 100-infection limit and were using a traditional individual surveillance testing approach 
may not have actually exceeded the 100-infection threshold due to a prevalence of false 
positive results. On the other hand, universities that employ a wastewater surveillance approach 
may exceed the 100-infection threshold even if they have an apparent 14-day running total 
infection count below 100 infections. 

 
Consistent with the results of Paltiel et al. [4], through our global sensitivity analysis, we 

find that the sensitivity and specificity of the screening tests do not play a central role in 
contributing to the uncertainty in the overall number of infections. This is, of course, conditioned 
on the prior distributions that we have chosen for the sensitivity and specificity parameters, 
which exclude sensitivities less than 70% and specificities less than 95%. As new testing 
methods become available, it may be necessary to update these prior distributions. 
Uncertainties in the testing sensitivity and specificity are dwarfed by the uncertainties in on-the-
ground conditions and campus health response, including the effective reproductive rate (Rt) 
and the frequency and rate of infections of campus community members from off-campus 
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interactions (Fig 3). Additionally, we have chosen the prior distributions for all of the model 
parameters in order to best represent the conditions facing our home institution in New York 
State. The choices for the specific forms and parameterizations of these distributions involves 
many subjective choices, which offer opportunities for further exploration. For example, the 
times required to carry out surveillance tests (Ts and Ts,ww) could be reparameterized as rate 
parameters and assigned gamma distributions as their conjugate priors. Here, we retain the 
time lengths as parameters to reflect the fact that these time-scales are the decision levers that 
would be directly manipulated by campus decision-makers by prescribing, for example, weekly 
surveillance testing. 

 
There are, of course, practical steps that a university may take to enhance the efficacy of 

a wastewater screening protocol beyond what we have illustrated here in our stylized model 
university. For example, after a wastewater sample result shows signs of infection, our model 
assumes that all asymptomatic and exposed individuals who triggered the positive result are 
within an identifiable group of size Nbuilding, but this group still interacts with other members of the 
campus community as wastewater-triggered screening tests are administered. Spread of virus 
may be further mitigated by quarantining the affected building(s). Additionally, our risk analysis 
focuses on examining how wastewater testing alone can be an effective tool to keep overall 
infection numbers low. Our results from Sec 3.1 indicate that the reliability of maintaining 
Imax,14<100 infections can likely be improved by complementing wastewater screening with 
traditional individual surveillance testing. 

 
As with any model, the coarse nature of our model and the original model of Paltiel et al. 

[4] means that the results should not be taken as a prediction of specific future behavior or 
infection rates. Rather, these models serve as a tool to evaluate the efficacy of various policy 
decisions to mitigate the spread of COVID-19 on college campuses, and the impacts of 
uncertainties on infection rates. Our model for wastewater surveillance assumes that some 
constant fraction, fww, of individuals in the exposed and asymptomatic compartments can 
contribute to a positive wastewater signal. However, this is an approximation of the reality that 
the levels of viral shedding in wastewater contributions varies with time during an infection. 
Additionally, time-variability in the reproductive rate, Rt, may become important as the Northern 
Hemisphere enters winter and, in cold and rainy areas, people will spend more time indoors. 
Specifically, previous work has estimated a winter Rt of about 2.2, in contrast to a summer Rt of 
1.3 [31]. Our risk analysis indicates that such an increase of Rt would dramatically diminish the 
ability of universities to maintain low infection rates (Fig 4B). Taken together, these findings 
underscore the importance of mask and physical distancing mandates, moratoriums on large 
gatherings, reduced classroom capacities, and striking a careful balance between in-person and 
online learning modalities, which can reduce the number of students and faculty circulating on 
campus at any given time. This balance will of course be different for different campuses, and 
should be driven by science and evidence that is specific to the unique conditions faced by each 
university. Decision-makers must carefully consider how the distribution of class modalities 
affects the numbers of contacts among students each day and how, in turn, this affects 
transmission rates on college campuses. 

 

5 Conclusions 
We have presented a model to represent wastewater screening and incorporated it into 

an existing SEIR compartment model [4] to track the spread of an infection within a college 
campus community. We find that wastewater surveillance is an effective approach to detect and 
remove infected individuals from circulating among the campus community. Under nominal or 
moderate-risk conditions, the model predicts that wastewater surveillance can maintain an 
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overall number of infections similar to the performance of weekly traditional surveillance testing, 
while also dramatically reducing the number of false positive cases (Fig 2). A period of one day 
to receive a positive wastewater result, interpret it, and initiate a plan for screening tests, 
combined with a period of 2 days to complete the screening tests, appears to form the most 
robust strategy to maintain low infection rates. However, complementing a wastewater 
surveillance program with conventional surveillance testing via nasal swabs would offer 
improvements. These results have practical importance for developing strategies to mitigate the 
spread of COVID-19 on college campuses. 
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