
1 
 

 

Main Manuscript for 

Prediction of immunotherapy response using deep learning of PET/CT images 

Wei Mua#, Lei Jiangb#, Yu Shia,f, Ilke Tunalia, Jhanelle E. Grayg, Evangelia Katsoulakish,  

Jie Tian*d,e, Robert J. Gillies*a, Matthew B. Schabath*c,g 

a Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A 

b Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 

Shanghai, China  

c Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A  

d Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang 

University, Beijing, China  

e CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 

China 

f   Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China 

g Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, U.S.A 

h James A. Haley Veterans’ Hospital, Tampa, Florida, USA 

# These authors contributed equally to this work. 

* Corresponding author: Matthew B. Schabath,  

Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute,  

12902 Magnolia Drive Tampa, FL, USA 33612 

Fax: 813-745-6525 | Email:  matthew.schabath@moffitt.org 

Keywords: Non-small cell lung cancer (NSCLC); PD-L1 prediction; Immunotherapy Response; PET/CT 

imaging; Artificial intelligence 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.09.20209445doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:matthew.schabath@moffitt.org
https://doi.org/10.1101/2020.10.09.20209445
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Currently only a fraction of patients with non-small cell lung cancer (NSCLC) experience durable 

clinical benefit (DCB) from immunotherapy, robust biomarkers to predict response prior to initiation 

of therapy are an emerging clinical need. PD-L1 expression status from immunohistochemistry is the 

only clinically approved biomarker, but a non-invasive complimentary approach that could be used 

when tissues are not available or when the IHC fails and can be assessed longitudinally would have 

important implications for clinical decision support. In this study, 18F-FDG-PET/CT images and clinical 

data were curated from 697 NSCLC patients from three institutions. Utilizing PET/CT images, a deeply-

learned-score (DLS) was developed by training a small-residual-convolutional-network model to 

predict the PD-L1 expression status, which was further used to predict DCB, progression-free survival 

(PFS), and overall survival (OS) in both retrospective and prospective test cohorts of immunotherapy-

treated patients with advanced stage NSCLC. This PD-L1 DLS significantly discriminated PD-L1 positive 

and negative patients (AUC≥0.82 in all cohorts). Further, higher PD-L1 DLS was significantly associated 

with higher probability of DCB, longer PFS, and longer OS. The DLS combined with clinical 

characteristics achieved C-indices of 0.86, 0.83 and 0.81 for DCB prediction, 0.73, 0.72 and 0.70 for 

PFS prediction, and 0.78, 0.72 and 0.75 for OS prediction in the retrospective, prospective and 

external cohorts, respectively.  The DLS provides a non-invasive and promising approach to predict 

PD-L1 expression and to infer clinical outcomes for immunotherapy-treated NSCLC patients. 

Additionally, the multivariable models have the potential to guide individual pre-therapy decisions 

pending in larger prospective trials.   
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Statement of Significance 

PD-L1 expression status by immunohistochemistry (IHC) is the only clinically-approved biomarker to 

trigger immunotherapy treatment decisions, but a non-invasive complimentary approach that could 

be used when tissues are not available or when the IHC fails and can be assessed longitudinally would 

have important implications for clinical decision support. Utilizing PET/CT images, we developed and 

tested a convolutional neural network model to predict PD-L1 expression status with high accuracy in 

cohorts from different institutions. And the generated signature may serve as a prognostic biomarker 

for immunotherapy response in patients with NSCLC, and outperforms the clinical characteristics. 
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Main Text 

Introduction 

The emergence of immune checkpoint inhibitors has revolutionized cancer treatment and 

improved long-term survival among some patients with advanced stage non-small cell lung cancer 

(NSCLC), but durable clinical benefit (DCB) has only been observed in 20-50% patients(1-4). Because 

of the complexity and heterogeneity in immunotherapy response and progression, robust and 

predictive biomarkers are urgently needed to identify patients who are unlikely to respond, and this is 

especially true for those patients that may experience rapid and lethal hyperprogressive disease(5).   

At present, PD-L1 expression status by immunohistochemistry (IHC) is the only clinically-

approved biomarker to trigger treatment decisions(3, 6), and early studies showed that PD-L1 

positivity is associated with significantly higher objective response rate (ORR), longer progression-free 

survival (PFS) and longer overall survival (OS)(2, 7). However, measuring PD-L1 by IHC requires 

surgical or biopsied tumor specimens, which are collected through invasive procedures and 

associated with risk of morbidities. Additionally, IHC may not be possible due to poor quality tissue 

specimens or if tissues are unavailable. Additionally, the PD-L1 expression may change over the 

course of therapy and progression, which would require additional invasive sampling(8). Therefore, 

an alternative and complimentary non-invasive approach that could be used when tissues are not 

available or when the IHC fails and can be assessed longitudinally would have important implications 

for clinical decision support (9). 

Quantitative image-based biomarkers (Radiomics) have many advantages over tissue-based 

biomarkers, like PD-L1, as they reflect underlying pathophysiology and tumor heterogeneity of the 

entire tumor and not just the portion of the tumor that is biopsied.  Further, they can be rapidly 

calculated from standard-of-care medical images, such as 18F-FDG PET/CT, and can be captured 
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longitudinally throughout the course of therapy to characterize response dynamics. Prior studies have 

shown that radiomic signatures based on shape, size, voxel intensity, and texture typically extracted 

from the intratumoral region are statistically associated with gene expression, tumor 

microenvironment, and treatment response in NSCLC(10-12). Additionally, it is becoming increasingly 

appreciated that the peritumoral region(13), encompassing the tumor-stroma interface, is important 

to capture and quantify, since this region contains immune infiltration and stromal inflammation. 

Intratumoral and peritumoral immune-cell infiltration is necessary for inducing an immunotherapy 

response. Immune infiltration is associated with expression of cell checkpoint markers including PD-

L1(14), which is significantly correlated with metabolic rate, GLUT-1(15), pAKT(16), hypoxia, and 

acidosis(17). In light of the consolidated mutual interaction of metabolic and immune pathways, 

metabolic parameters SUVmax on FDG-PET was found statistically significantly associated with intra-

tumor expression of immune-related markers (18). Recent studies have demonstrated several 

textural features from 18F-FDG PET/CT images can provide supplemental information to determine 

tumor PD-L1 expression (19, 20). Thus, 18F-FDG PET/CT radiomics could be particularly sensitive in 

predicting PD-L1 status due to its metabolic sensitivity in both intratumoral and peritumoral regions, 

which may identify patients who are most likely to benefit from immune checkpoint inhibitors. 

To achieve this, we utilized artificial intelligence (AI) methods to develop and validate a deeply 

learned score (DLS) to predict PD-L1 expression status using pre-treatment 18F-FDG PET/CT images of 

a retrospective cohort accrued from Shanghai Pulmonary Hospital (SPH). To evaluate the 

performance of the PD-L1 status prediction model, two external test cohorts from H. Lee Moffitt 

Cancer Center & Research Institute (HLM) and James A. Haley Veterans’ Hospital (VA) are used. To 

determine its potential clinical utility for identifying patients most like to benefit from 

immunotherapy (IO), we tested the DLS to predict DCB, PFS and OS in two retrospective cohorts from 

HLM and VA and one prospective cohort from HLM (Details shown in Fig. 1). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.09.20209445doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.09.20209445
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Results  

Patients characteristics 

The clinical characteristics of the patients used to train and test the predictor for PD-L1 status are 

presented in Table 1 (Supplemental Table S1 for external VA patients). The SPH-training, SPH-

validation, and external HLM-PD-L1 test cohorts used to train, validate and test the SResCNN model 

had a prevalence of PD-L1 positivity by IHC of 29.93%, 30.17% and 54.12%, respectively. The external 

VA patients had a significant higher PD-L1 positivity of 82.76% (within the 29 patients who had IHC 

PD-L1 expression). 

The clinical characteristics of the patients used to test the clinical utility of DLS are presented in 

Table 2. The retrospective HLM IO-treated cohort included 128 patients with a median PFS and OS of 

7.43 and 21.77 months, respectively, and 53.91% of the patients had DCB. The prospective HLM IO-

treated patients included 49 patients with a DCB rate of 65.31%, median PFS and OS of 7.93 and 17.00 

months, respectively. For the external VA patients with a median PFS and OS of 8.13 and 13.10 

months, 68.57% of the patients showed PD-L1 positive, and 54.29% of patients obtained DCB. 

 

Performance of DLS in predicting PD-L1 status 

The DLS exhibited statistically significant differences between the PD-L1-positive and PD-L1-

negative tumors in all three cohorts (p<0.001), and four examples are shown in Fig 2. To discriminate 

PD-L1 positive from negative expression, the DLS yielded AUCs of 0.89 (95%CI:0.84-0.94; p<0.001) and 

0.84 (95%CI:0.76-0.92; p<0.001), and 0.82 (95%CI:0.74-0.89; p<0.001) in the SPH training and 

validation, and HLM-PD-L1 test cohort, respectively (Fig 3 and Supplemental Table S2). For the 

external VA patients, the DLS also generated a high AUC of 0.84 (95%CI:0.69-0.99; p=0.018). 
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As another meaningful quantitative index associated with PD-L1 expression validated in other 

studies(21), SUVmax showed poorer performance to discriminate between PD-L1 positive and negative 

expression with AUCs of 0.69 (95%CI:0.62-0.75; p<0.001), 0.68 (95%CI:0.57-0.78; p<0.001), 0.69 

(95%CI:0.58-0.81; p<0.001), and 0.48 (95%CI:0.2-0.78; p=0.86) in the SPH-training, SPH-validation, 

external HLM-PD-L1-test and VA cohorts, respectively.  

Since histology was found to be significantly associated with PD-L1 expression (p<0.01), a 

stratified analysis was conducted to assess the SResCNN model in predicting PD-L1 status by histology 

(Supplemental Table S2). The results from these analyses indicated this model also performed well in 

both adenocarcinoma (ADC) and squamous cell carcinoma (SCC) lung cancers.  

Regarding the stability of the DLS, though accurate segmentations were not needed, radiologists 

had to delineate a rough ROI that contained the tumors and some surrounding tissue.  To investigate 

the effect of the minor differences between the different radiologists in selecting the rough ROIs, the 

ROIs of the SPH validation patients (n=116 cases) were generated by two radiologists, and two DLSs 

were obtained accordingly. The intraclass correlation coefficient (ICC) of these two DLSs was 0.85 

(95%CI:0.80-0.90, p<0.001), and showed no significant (p=0.85, Z-test) difference in the AUCs 

between different radiologists (0.84(95%CI:0.76-0.92) vs 0.83(95%CI:0.75-0.91)).  Besides, there were 

no significant differences in the distribution of the DLS among the five cohorts (p=0.25, Supplemental 

Fig S1).  

 

Correlation between DLS and metadata and molecular biology 

The DLS was also positively correlated with the original PD-L1 TPS in both SPH (Spearman’s 

rho=0.60, p<0.001) and HLM-PD-L1-test (Spearman’s rho = 0.59, p<0.001) cohorts, which was 

significantly higher compared to the correlation between the SUV max and the TPS with rho of 0.30 
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(p<0.001) and 0.33 (p=0.02), respectively. Using ANOVA, the DLS was significantly different between 

groups with PD-L1 TPS <1%, 1-49% and ≥50% (SPH cohort: P<0.001; HLM-PD-L1-test cohort: p<0.001). 

The least squares difference (LSD) post hoc analysis showed significantly higher values of DLS in the 

patients with PD-L1 TPS≥50% than TPS 1-49% group (LSD: SPH cohort: p<0.017; HLM-PD-L1-test 

cohort: p<0.026) and TPS<1% group (LSD: SPH cohort: p<0.001; HLM-PD-L1-test cohort: p<0.001) 

(Details shown in Supplemental Fig S2). As such the increased PD-L1 TPS scores correlated to the DLS. 

Additionally, the DLS was positively correlated with SUVmax (rho=0.36, p<0.001), squamous cell 

carcinoma (rho=0.23, p<0.001), male sex (rho=0.17, p<0.001), smoking status (rho=0.17, p<0.001), 

and negatively correlated with EGFR status (rho=-0.17, p<0.001) for the whole SPH cohort.  In the 

HLM-PD-L1 test cohort, the only positive correlation was with SUVmax (rho=0.35, p <0.001), and 

negative with EGFR status (rho=-0.24, p=0.49). Further, multivariable linear regression (adjusted 

r2=0.15, F=15.31, p<0.001) showed that only SUVmax (coefficient=0.32, p=0.005) was independently 

associated with DLS. Only 15% of DLS variability could be explained by this parameter indicating that 

DLS originated mainly from other image information. 

For all the SPH patients with necrosis regions, a significant correlation was observed between the 

necrosis-to-global volume ratio (NVR) of the PET images and DLS with Spearman’s rho of 0.61 

(p<0.001). Further, univariable linear regression (adjusted r2=0.22, F=8.93, p=0.005) showed that the 

necrosis (coefficient=0.47, p=0.005) was independently associated with DLS and could explain 22% of 

DLS variability. Therefore, the necrosis potentially played an important role in predicting PD-L1 status. 

Finally, the DLS was not correlated with tumor volume (p=0.10 for whole SPH cohort, p=0.66 for 

HLM-PD-L1-test cohort), which shows that the DLS is not affected by the T stage of the primary tumor.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.09.20209445doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.09.20209445
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Performance of DLS in IO-treatment response and patient outcomes prediction 

The DLS in the patients experiencing DCB was significantly higher compared to those who did not 

in both the HLM retrospective (0.53 vs. 0.43, p<0.001) and prospective (0.57 vs. 0.45, p=0.014) 

cohorts. The AUCs of the DLS to identify the DCB patients were 0.70 (95%CI:0.63-0.77,p<0.001) and 

0.72 (95%CI:0.62-0.84, p=0.014) in the retrospective and prospective patients, respectively.  

For the retrospective patients, the PFS and OS were significantly longer among patients with high 

DLS (≥0.54) versus patients with low DLS (PFS: hazard ratio[HR]:0.42, 95%CI:0.26-0.69, p=0.001; OS: 

HR:0.49, 95%CI:0.26-0.92, p=0.028; Fig 3). Among patients with high DLS, the median PFS and OS 

were 15.80 months and 27.60 months, compared to 5.50 months and 19.77 months for patients with 

low DLS (PFS:p<0.001; OS:p=0.024). Similar results were also observed in the prospective patients 

with the HRs of 0.28 (95%CI:0.13-0.60, p=0.001) and 0.12 (95%CI:0.032-0.46, p=0.002) DLS for PFS and 

OS respectively (Fig 3). High DLS patients had a longer median PFS of 17.00 months compared to 4.0 

months in the low DLS patients (p<0.001,Fig 3). Median time to an OS event was not reached in the 

high DLS group and was 11.2 months in the low DLS group (p<0.001, Fig 3). The external VA test 

patients further validate the prognostic value of DLS with HRs of 0.36 (95%CI:0.13-0.99, p=0.049) and 

0.30 (95%CI:0.09-0.99, p=0.049) for PFS (9.00 vs 2.37 months, p=0.040) and OS(15.53 vs 4.93 months, 

p=0.037), respectively .  

 

Multivariable analysis for clinical outcomes prediction 

Univariable logistic and Cox regression analyses of the clinical characteristics (Supplemental 

Tables S3-S6) and gene mutation showed that none of three gene mutations were associated with 

clinical outcome, that patients with lower ECOG Status and adenocarcinoma showed significantly 

longer OS and PFS. Stratified analyses by histology and ECOG Performance Status were thus 
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performed to investigate the ability of DLS to predict outcomes in these subgroups. Among patients 

with ADC, the DCB rates were 91.3% and 100% in patients with higher DLS versus 50.88% and 62.5% 

in patients with lower DLS in both retrospective and prospective cohorts (p<0.001), respectively (Fig 

4). Among SCC patients, though the DCB rates were lower compared to ADC, the patients with higher 

DLS still had a significantly higher DCB rates in both retro- and prospective cohorts.  Congruously, the 

PFS and OS of high DLS group were also longer than the low DLS group in both ADC and SCC 

subgroups (Supplemental Table S7). The results of the stratified analysis based on ECOG status 

(Supplemental Table S8) also showed that low DLS was still associated with poor outcomes among 

patients with high ECOG status (≥1). 

Multivariable logistic regression and Cox proportional hazards regression analyses were 

conducted to adjust for potential confounding. Models including DLS, histology, and ECOG status, 

demonstrated high performance statistics (Supplemental Table S9 and Supplemental Fig S3) with C-

indices of 0.86 (95%CI:0.80-0.92, p<0.001) and 0.83 (95%CI:0.73-0.93, p<0.001) in DCB prediction, 

0.73 (95%CI:0.69-0.78, p<0.001) and 0.72 (95%CI:0.64-0.82, p<0.001) in PFS prediction,  0.78 

(95%CI:0.73-0.84, p<0.001) and 0.72 (95%CI:0.53-0.91, p<0.001) in OS prediction for the retrospective 

and prospective cohorts, respectively, showing better performance than clinical characteristics based 

models (including ECOG and histology) (p≤0.05, Supplemental Table S10). These models also 

demonstrated high performance statistics with C-indices of 0.81 (95%CI:0.70-0.93, p<0.001), 0.70 

(95%CI:0.59-0.80, p<0.001), and 0.75 (95%CI:0.65-0.84, p<0.001) in DCB, PFS and OS prediction, 

respectively in the external VA patients. 
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Discussion  

Though PD-L1 expression status based on IHC is currently used as a clinical decision-making tool 

to support the use of checkpoint inhibitors in NSCLC patients, PD-L1 testing has inherent analytic and 

predictive limitations. As such, there is a pressing need to identify robust and reproducible 

biomarkers that are highly predictive of immunotherapy treatment response that may complement 

PD-L1 IHC. In this study we developed a deep learning model using PET/CT images to predict PD-L1 

expression and found that the deeply learned score (DLS) could discriminate between positive and 

negative expression yielding an AUC of 0.89 in the training cohort and AUCs of 0.84 and 0.82 in two 

independent test cohorts.  When the DLS was combined with clinical covariates and tested in two 

cohorts for clinical utility by identifying patients most like to benefit to immunotherapy, we found 

high C-indices of 0.83-0.86 for predicting DCB, but somewhat attenuated C-indices of 0.72-0.78 for 

the DLS to predict PFS and OS. These models also demonstrated good performance in the external VA 

cohort. 

While others have demonstrated the utility of radiomics as a non-invasive approach to predict 

PD-L1 expression(11, 12) or predict lung cancer immunotherapy treatment response(22-26) , the 

current work is the first to develop a PD-L1 radiomic signature and then to use this for response 

prediction. With respect to PD-L1 expression prediction, Patil et al. (11) utilized CT images from 166 

early stage NSCLC patients from a single institution to develop and validate a machine learned 

predictor of PD-L1 status with an AUC of 0.73. Jiang et al.(12) utilized PET/CT radiomics of 399 NSCLC 

patients from a single institute to generate a classifier model with an AUC of 0.86. For the studies 

utilizing radiomics to predict immunotherapy treatment response, Tunali et al. built parsimonious 

classifier models with pre-treatment CT radiomic features combined with clinical covariates to predict 

hype-progression and progressive disease phenotypes with AUCs of 0.80-0.87(22), which were also 
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highly correlated with PFS and OS of immunotherapy(23). Trebeschi et al.(24) developed a CT-based 

radiomic signature that significantly discriminated progressive disease from stable and responsive 

disease (AUC=0.83) among NSCLC patients treated with immunotherapy. He et al developed and 

tested CT-based Tumor mutational burden (TMB) predictor with 327 patients, which expresses 

prognostic value in PFS and OS prediction of immunotherapy  in patients with advanced NSCLC(26).  

Notably, these prior studies were mostly limited to CT and required explicit tumor segmentation. By 

contrast, our study did not require accurate tumor segmentation, was conducted using rigorous 

training and validation in multiple cohorts from three institutions, and represented the single largest 

radiomic study population of NSCLC patients to date treated with immunotherapy to predict PD-L1 

status and subsequent treatment response using 18F-FDG PET/CT. Further, these studies were trained 

to only predict outcome without regard to PD-L1 status; thus, not accommodating the only accepted 

biomarker to direct treatment with immune checkpoint blockade.  We acknowledge that we observed 

a small attenuation in performance to predict PFS and OS compared to previous published radiomics 

model that was trained on clinical outcome without going through the process of predicting PD-L1(27); 

however, the current model has implications for clinical decision support because it can provide 

diagnostic information when tissue samples are insufficient, not available, or if an immediate PD-L1 

score is needed. 

Regarding underlying biology, one of the high-response areas of the middle layer of the SResCNN 

model recognized the necrotic region (activation_8_filter_8 in Fig 2a-b) through the visualization(28), 

suggesting that some final discriminant deeply learned features originate from necrotic regions. The 

quantification of the correlation between necrosis and DLS (Spearman’s rho: 0.61, p<0.001, 

univariable linear regression: coefficient=0.47, p=0.005) further potentially validated the important 

role of necrosis in predicting PD-L1 status. These results were also consistent with Jreige's result that 

the metabolic-to-morphological volume was a predictive biomarker to predict PD-L1 expression(29). 
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This could be explained with the presence of hypoxia, which can lead to necrotic cell death(30) and 

upregulate PD-L1 via hypoxia-inducible factor (HIF)-1α(31).  

Additionally, the visualization of the SResCNN model (activation_8_filter_8 in Fig 2c-d) showed 

some final discriminant deeply learned features also originated from peritumoral region, and the 

high-response area of the positive/negative filter (Fig 2c-d) reconstructed by Grad-CAM also locate 

the peritumoral regions important regions, which suggests the peritumoral region may have played 

an important role in predicting PD-L1 expression. This is supported by prior work that higher levels of 

PD-L1+ staining in cells of peritumoral areas(32). These findings revealed an advantage of deeply 

learned models, which can agnostically capture features from the tumor and peritumoral 

microenvironments. 

Furthermore, the response strength of the positive or negative filter varied with the histology for 

the same group of PD-L1 expression (Fig 2a-d), and the 4 main distinct subgroups of deep learned 

features indicated by unsupervised hierarchical clustering analysis were also significantly correlated 

with histology (Fig 2e). Within PD-L1 positive patients or PD-L1 negative patients, there was 

significant difference of DLS between different histologies (PL-L1 +: p=0.026, PD-L1 -: p=0.007), and 

the high DLS is significantly correlated with squamous cell carcinoma (PL-L1 +: Spearman’s rho =0.22, 

p=0.018, PD-L1 -: Spearman’s rho =0.16, p=0.006). The different feature expression of ADC and SCC 

tumors by PD-L1 status is consistent with the genomic differences between ADC and SCC revealed by 

large-scale sequencing studies(33). Additionally, better outcomes for ADC (Fig 4b-c) were observed 

which may be possibly due to a significantly higher tumor-infiltrating lymphocyte population 

estimated using immune cell signatures compared to SCC(34).  

We also observed that hyper-image constructed with different modalities could significantly 

improve the accuracy of PD-L1 expression modelling. By training similar SResCNN models only using 

PET or CT images, the resulting DLSs (named DLS_PET and DLS_CT) achieved AUCs of 0.81 and 0.78 in 
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the training cohort, 0.73 and 0.70 in the validation cohort, which was significantly worse (p<0.001) 

than those generated using the hyper-images. This may be attributed to the important regions 

(represented by necrosis and the peritumoral regions) used for the accurate prediction of PD-L1 

expression could be better and easier localized by utilizing both metabolic and anatomical 

information as reflected by PET and CT images, respectively. 

We do acknowledge some limitations of this study. First, the PD-L1 prediction training data are 

still limited to a single institution and EGFR mutations were highly prevalent in the Asian patient 

population at 40% compared to only 7% in whites, but there are no significant association between 

different ethnicities and PD-L1 expression(35).  Additionally, the DLS could obtain high AUCs of 0.90, 

0.87 and 1.00 in patients with mutated EGFR and also high AUCs of 0.88, 0.82, and 0.80 in the patient 

with wild type of EGFR in the SPH-training, SPH-validation and HLM-PD-L1-test cohorts, respectively. 

Therefore, the difference of ethnicity and EGFR positive patients’ percentage between the two 

institutional cohorts would not cause significant effect on PD-L1 expression prediction. Second, 

compared to other PD-L1 level detection methods, such as enzyme-linked immunosorbent assay 

(ELISA)(36), immunofluorescence (IF)(37), and flow cytometry(38), only IHC was used in this study to 

detect PD-L1 expression levels based on the recommendation in the NCCN Clinical Practice 

Guidelines(6), its ease of use, strong repeatability, and high accuracy(39, 40). Comparison among 

different detection methods should be considered in future research. In order to reduce sampling 

effect, only the area of the sample with more malignant cells, less differentiated cells, and less 

hemorrhage and necrosis was scored. The slides were scored blindly by 2 experienced pathologists to 

further improve the reliability of the PD-L1 expression levels. Third, the patient cohorts were 

heterogeneous in terms of PET/CT image acquisition. However, this can be viewed as a strength, as 

this heterogeneity decreases the possibility of overfitting to a particular subset of tumors or imaging 

parameters, and thus will result in a model that is more robust and transportable. Fourth, the stage 
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distribution was different between the SPH and the HLM cohorts, as the HLM cohort was mostly 

advanced stage patients. However, the DLS was not correlated with tumor volume (p=0.10 for whole 

SPH cohort, p=0.79 for HLM-PD-L1-test cohort), and the DLS obtain high AUCs of 0.90(95%CI:0.85-

0.97,p<0.001) among  the subset of SPH patients with advanced stage, which suggest that stage 

doesn’t affect the final DLS prediction. Fifth, due to the small sample sizes of the prospective cohort, 

different HRs were observed for some clinical factors (BMI and ECOG). Though BMI was significant 

variable in univariable analysis, it was not significant in the multivariable Cox regression analysis for 

PFS and OS prediction. The C-index (0.88, 95%CI: 0.84-0.93) for the DCB prediction model with BMI 

was not statistically significantly different (p=0.09) compared to the DCB prediction model without 

BMI. As such, we opted to report a more parsimonious model where BMI was not included in the DCB, 

PFS and OS prediction model. From Supplemental Tables S9 and S10, ECOG was included in the 

prediction models, but it didn’t affect the final C-indices of the prospective and external test cohorts 

based on the prediction results. Finally, more IO-treated patients with PD-L1 IHC score will be needed 

to improve the PD-L1 prediction model, and validate the efficiency of the DCB, PFS and OS prediction 

models. 

In conclusion, an effective and stable deeply learned score to predict PD-L1 expression status was 

identified and may serve as a prognostic biomarker for immunotherapy response. Because images are 

routinely obtained and are not subject to sampling bias per se, we propose that the individualized risk 

assessment information provided by these analyses may be useful as a future clinical decision support 

tool pending in larger prospective trials.   
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Materials & Methods 

Study population  

In this multi-institutional study, five cohorts of patients were firstly accrued from two institutions: 

the Shanghai Pulmonary Hospital (SPH), Shanghai, China and H. Lee Moffitt Cancer Center & Research 

Institute (HLM), Tampa, Florida.  The detailed inclusion criteria are provided in Fig 1 and 

Supplemental S1. Among these, the SPH retrospective cohort, which was split into training (N=284) 

and validation  (N=116) cohorts randomly by 70-30%, and the retrospective HLM cohort with PD-L1 

status (N=85) were used for training and testing the DLS to predict PD-L1 expression; one IO-treated 

retrospective cohort (N=128) and one IO-treated prospective cohort (N=49) were used to investigate 

and validate the association of the DLS and clinical characteristics on the clinical outcomes. 

Additionally, a sixth cohort (N=35) from the third institution, James A. Haley Veterans’ Hospital (VA), 

Tampa, Florida, was curated as an external validation of the DLS and the prognostic models.   

The progression of the distinct IO-treated cohorts used to investigate the association of the DLS 

and clinical characteristics with the clinical outcome including DCB (PFS>6month (41)), PFS, and OS, 

were defined using Response Evaluation Criteria in Solid Tumors (RECIST1.1)(42). The index date for 

both OS and PFS was the date of initiation of immunotherapy. 

This study was approved by the Institutional Review Boards at SPH, University of South Florida 

(USF) and VA, and was conducted in accordance with ethical standards of the 1964 Helsinki 

Declaration and its later amendments. The requirement for informed consent was waived, as no PHI 

is reported. 
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18F-FDG PET/CT Imaging 

Detailed acquisition parameters for the 18F-FDG PET/CT imaging for each cohort are presented in 

Supplemental Table S11. All PET images were converted into SUV units by normalizing the activity 

concentration to the dosage of 18F-FDG injected and the patient’s body weight after decay correction. 

 

PD-L1 expression by immunohistochemistry  

The detailed information of IHC staining for PD-L1 expression is provided in Supplemental S2. For 

both SPH and HLM-PD-L1 cohort, the platform of Dako Link 48 and the antibody of Dako 22C3 were 

used for PD-L1 staining to quantify the presence of PD-L1. The level of PD-L1 expression was 

presented as a tumor proportion score (TPS), which is the percentage of viable tumor cells showing 

membrane PD-L1 staining relative to all viable tumor cells and is given as 0%, 1-49% and ≥50%, and 

PD-L1 positivity was defined as ≥1% of TPS(3, 43, 44). 

 

Development of the deeply learned score (DLS) 

The pipeline for the PD-L1 expression prediction small-residual-convolutional-network (SResCNN) 

model is presented in Supplemental Fig S4. To train this model, the regions of interest (ROIs) of the 

PET and CT images from SPH were selected by experienced nuclear medicine radiologist (L.J) after 

registration using ITK-SNAP(45)  on the condition that entire tumor and its peripheral region  were 

included (Supplemental Fig S5). To reduce the effect of the difference between the central slice and 

peripheral slices, only the ROIs with area larger than the 30% of the maximum area of this patient 

were regarded as valid ROI patches. The valid ROI patch was resized to 64x64 pixels by cubic spline 

interpolation, and constructed a three-channel hyper image together with their fusion image (alpha-

blending fusion(46), α=1, Supplemental Fig S6). This hyper-image was input into the SResCNN model, 
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and a deeply learned score (DLS) representing the PD-L1 positivity could be yielded after a sequential 

activation of convolution and pooling layers. To develop a robust prediction, the average DLSs of all 

valid slices including tumor tissue fed into the SResCNN model with equal weight was regarded as the 

final PD-L1 positive probability of the tumor. Details of the building, training, optimization and 

application methods were provided in Supplementary S3. The implementation of this model used the 

Keras toolkit and Python 3.5. The same pipeline (available at https://github.com/lungproject/lungio) 

was performed by an experienced radiologist (Y.S) on the three HLM cohorts and external VA cohort 

to obtain the DLS based on the guideline. Given there were minor differences between the different 

radiologists in selecting the ROIs, ROIs within the SPH-validation cohort were also selected by Y.S 

again to validate the reproducibility of DLS. 

 

Visualization of the SResCNN model 

To further understand the prediction processing and explore the biological underpinnings of the 

deep learning feature, intermediate activation layers were firstly visualized to assess how the network 

carries the information from input to output(47).  Additionally, the Gradient-weighted Class 

Activation Mapping (Grad-CAM) was used to understand the importance of each neuron for a 

decision of PD-L1 positive or negative, and produce a coarse localization map highlighting the 

important regions in the image for predicting the target concept (PD-L1 positive or PD-L1 negative) by 

using the gradient information of target concept flowing into the last convolutional layer of the 

SResCNN model. And the reconstructed maps were named as positive and negative filters later, which 

were also used to evaluate the class discrimination (28). Besides, unsupervised hierarchical clustering 

was performed on the deeply learned features (i.e., the output of global average pooling, N=256) to 

create a heatmap to show their distinguishable expression pattern among different patients. The 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.09.20209445doi: medRxiv preprint 

https://github.com/lungproject/lungio
https://doi.org/10.1101/2020.10.09.20209445
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

clusters formed were based purely on the similarities and dissimilarities among the patients by the 

expressions of the deeply learned features.  

Statistical analysis  

The Wilcoxon signed-rank test and Fisher’s exact test were used to test the differences for 

continuous variables and categorical variables, respectively. The area under the receiver operating 

characteristics curve (AUC), accuracy, sensitivity, specificity, and the 95% confidence interval (CI) by 

the Delong method(48) were used to assess the ability of DLS in discriminating between positive and 

negative PD-L1 expression. The median value of the DLS from the SPH-training patches was used as 

the cut-off. The inter-rater agreement of DLS estimations were calculated by intraclass correlation 

coefficient (ICC) between two radiologists. The correlation between different metadata (including age, 

BMI, Sex, stage, smoking status, ECOG, and SUVmax) and molecular biology (including histology, EGFR, 

ALK, ROS1, necrosis, and PD-L1 TPS) was analyzed by Spearman’s rank correlation coefficient. The 

details of necrosis quantification were shown in supplemental S4). Comparison of the magnitude of 

two correlations was performed with a software package named cocor(49). 

In the IO-treated cohorts, the patients were clustered into high-DLS and low-DLS groups with the 

obtained cut-off, and survival analyses were performed using Kaplan-Meier method and Cox 

proportional hazards model. And further multivariable models, including the risk factors selected in 

univariate analysis according to the significance, were determined for the prediction of DCB, PFS and 

OS, which were evaluated using C-indices. Z test was applied to compare the differences between 

different models. To rigorously assess the quality of the study design, the radiomic quality score (RQS) 

was calculated(50) (Supplemental S5 and Supplemental Table S12). Two-sided p-values of less than 

0.05 were regarded as significant and all statistical analyses were conducted with IBM SPSS Statistics 

25 (Armonk, New York) and MATLAB R2019a (Natick, MA). 
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Tables 

Table 1. Demographic and clinical characteristics of patients used to predict PD-L1 status 

Charac-
teristic 

SPH Training Cohort (N=284) SPH Validation Cohort (N=116) HLM-PD-L1-test Cohort (N=85) 

PD-L1  + PD-L1 - P PD-L1  + PD-L1 - P PD-L1  + PD-L1 - P 

Age(y) 0.41 
 

0.46  0.40 

Mean±SD 62.71±8.78 63.51±8.56  63.6±9.28 62.73±8.84  68.22±9.25 64.77±14.35  

Sex, NO. (%) 0.035
*
 

 
0.062  0.082 

Male 58  (68.24) 108  (54.27)  26 (74.29) 44  (54.32)  23  (50) 27  (71.05)  

Female 27  (31.76) 91  (45.73)  9  (25.71) 37  (45.68)  23  (50) 11  (28.95)  

TNM stage  0.12   0.42  0.25 

I 43 (50.59) 122 (61.31)  17 (48.57) 55 (67.9)  0  (0) 2  (5.26)  

II 22  (26.19) 34  (17.08)  9  (25.71) 14  (17.28)  2  (4.35) 0  (0)  

III 11  (13.10) 31  (15.58)  9  (25.71) 12  (14.81)  2  (4.35) 1  (2.63)  

IV 9  (10.71) 12  (6.03)  0  (0) 0  (0)  42  (91.3) 35  (92.11)  

Histology (baseline), NO. (%) <.001
*
  0.006

*
  0.2 

ADC 48  (56.47) 156  (78.39)  19  (54.29) 65  (80.25)  21  (42.86) 26  (66.67)  

SCC 37  (43.53) 43  (21.61)  16  (45.71) 16  (19.75)  25  (57.14) 13  (33.33)  

EGFR, NO. (%) 0.020   0.28   1.00 

Mutation 24 (28.57) 87 (43.72)  9 (25.71) 32 (39.51)  2 (4.35) 2 (5.13)  

Wild 55 (65.48) 101 (50.75)  23 (65.71) 46 (56.79)  37 (80.43) 27 (69.23)  

ALK, NO. (%)  0.51   0.20   1.00 

Mutation 1 (1.19) 1 (0.50)  2 (5.71) 1 (1.23)  1 (2.17) 0  

Wild 78 (92.86) 187 (93.97)  30 (85.71) 77 (95.06)  37 (80.43) 31 (79.49)  

ROS1, NO. (%) 1.00   NaN   NaN 

Mutation 0 2 (1.01)  0 0  0 0  

Wild 77 (91.67) 179 (89.95)  31 (88.57) 75(92.59)  24 (52.17) 19 (48.72)  

Smoking Status, NO. (%) <.001
*
   0.025

*
  0.12 

Never 32  (37.65) 118  (59.3)  11  (31.43) 45  (55.56)  13  (41.94) 33  (61.11)  

Former 53  (62.35) 81  (40.7)  24  (68.57) 36  (44.44)  18  (58.06) 21  (38.89)  

SUVmax <.001
*
   0.003

*
  0.002

*
 

Mean±SD 12.32±5.99 8.42±4.83  12.14±5.88 8.61±5.49  14.26±7.8 10.14±9.64  

Deep Learning Score  <.001
*
   <.001

*
   <.001

*
 

Median 
(IQR) 

0.70 
(0.60,0.78) 

0.43 
(0.30,0.55) 

 
0.63 

(0.55,0.71) 
0.41 

(0.27,0.52) 
 

0.58 
(0.53,0.62) 

0.39 
(0.26,0.43) 

 

PD-L1 Positivity by IHC          

NO. (%) 84  (29.93) 199 (70.07)  35  (30.17) 81  (69.83)  46  (54.12) 39  (45.88)  

 

Note: 
*
 means P value <0.05. The comparasion of age and SUVmax between two groups was performed with Wikcoxon 

sign rank test, and the rest variables were compared with Fisher’s exact test. IQR is short for interquartile range. The 
demographic and clinical characteristics of external VA patients were provided in Supplemental Table S2.   
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Table 2. Demographic and clinical characteristics for IO-treated patients 

 
Retrospetive HLM IO-treated patients (N=128)  Prospective HLM IO-treated patients (N=49) 

Characteris
tic 

All 
Deep Learning Score 

P  All 
Deep Learning Score 

P  
High (N=44) Low (N=84) High (N=32) Low (N=17) 

Age(y) 0.18  0.20 

Mean ± SD 65.48±13.24 67.11±13.75 64.63±12.96  66.8±10.04 65.31±9.38 70.00±10.42  

BMI    0.17   0.48 

Mean ± SD 26.14±5.08 25.40±5.39 26.53±4.90  26.06±5.02 25.97±5.47 26.1±4.09  

Sex, NO. (%)  0.46   0.37 

Male 81  (63.28) 25  (56.82) 56  (66.67)  25  (51.02) 18  (56.25) 7  (41.18)  

Female 47  (36.72) 19  (43.18) 28  (33.33)  24  (48.98) 14  (43.75) 10  (58.82)  

TNM stage   0.10   0.65 

III 25  (19.53) 11  (25.00) 14  (16.67)  6  (12.24) 5  (15.63) 1  (5.88)  

IV 103  (80.47) 33  (75.00) 70  (83.33)  43  (87.76) 27  (84.38) 16  (94.12)  

Histology (baseline), NO. (%) 0.089   0.37 

ADC 80  (62.50) 23  (52.27) 57  (67.86)  28  (57.14) 20  (62.5) 8  (47.06)  

SCC 48  (347.50) 21  (47.73) 27  (32.14)  21  (42.86) 12  (37.5) 9  (52.94)  

EGFR, NO. (%)   0.71    0.53 

Mutation 8 (6.25) 3 (6.98) 5 (5.88)  2 (4.08) 2 (6.25) 0  

Wild 85 (66.41) 27 (62.79) 58 (68.24)  37 (75.51) 23 (71.88) 14 (82.35)  

ALK, NO. (%)   1.00    NaN 

Mutation 2 (1.56) 0 2 (2.35)  0 0 0  

Wild 89 (69.53) 28 (65.12) 61 (71.76)  39 (79.59) 24 (75.00) 15 (88.24)  

ROS1, NO. (%)   NaN    NaN 

Mutation 0 0 0  0 0 0  

Wild 35 (27.34) 7 (16.28) 28 (32.94)  33 (67.35) 20 (62.50) 13 (76.47)  

Smoke, NO. (%) 0.70   0.74 

Never 49  (38.28) 18  (40.91) 31  (36.9)  14  (28.57) 10  (31.25) 4  (23.53)  

Former 79  (61.72) 26  (59.09) 53  (63.1)  35  (71.43) 22  (68.75) 13  (76.47)  

ECOG Scale, NO. (%)  0.15   0.72 

0 29  (22.66) 6  (13.64) 23  (27.38)  10  (16.33) 6 (18.75) 4  (23.53)  

1 91  (71.09) 36  (81.82) 55  (65.48)  38  (81.63) 26  (81.25) 14  (82.35)  

>=2 8  (6.25) 2  (4.55) 6  (7.14)  1  (2.04) 1  (3.13) 0  (0)  

SUVmax 0.005
*
   0.15 

Mean ± SD 11.82±6.98 13.53±5.41 10.93±7.55  14.59±9.53 15.21±7.55 13.44±12.65  

Clinical Benefit, NO. (%)  <.001
*
   0.004

*
 

DCB 69 (53.91) 33 (75.00) 36 (42.86)  32 (65.31) 26 (81.25) 6 (35.29)  

NDB 59 (46.09) 11 (25.00) 48 (57.14)  17 (34.69) 6 (19.75) 11 (64.71)  

Progression free Survival  <.001
*
   0.011

*
 

Median 
(95%CI) 

7.43 
(6.39,8.47) 

15.80 
(9.67,21.93) 

5.50 
(2.87,8.13) 

 
7.93 

(4.67,11.20) 
17.00 

(4.25,29.75) 
4.00 

(2.39,5.61) 
 

Overall Survival  0.024
*
   <0.001

*
 

Median 
(95%CI) 

21.77 
(13.50,30.03) 

27.60 (NR) 
19.77 

(13.58,25.96) 
 17.00 (NR) NR 

11.23 
(6.60-15.86) 

 

Deep Learning Score  <.001
*
   <.001

*
 

Median 
(IQR) 

0.48 
(0.01,0.93) 

0.63 
(0.54,0.93) 

0.42 
(0.01,0.54) 

 
0.55 

(0.14,0.86) 
0.59 

(0.54,0.86) 
0.33 

(0.14,0.52) 
 

Notes:  
*
 indicates a P value <0..05. The comparasion of age, BMI and SUVmax between two groups was performed with 

Wilcoxon sign rank test, PFS and OS were compared with log-rank test, and the rest variables were compared with Fisher’s 
exact test. IQR: interquartile range.NR:  Not reached 
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Figures 

 

Fig 1. Study design and inclusion and exclusion diagram. The SPH data comprised PD-L1 expression 

data and the corresponding imaging data was used to train the deep learning signature. The HLM-PD-

L1 data comprised PD-L1 expression data and the corresponding imaging data and was used for the 

test of the deep learning signature. The HLM retrospective and prospective data comprised patients 

included in anti-PD-1 and anti-PD-L1 immunotherapy were used for the investigation of the 

prognostic value of the deep learning signature. The external VA immunotherapy-treated data were 

used as the external validation for the estimation of PD-L1 expression and prognosis evaluation to 

immunotherapy. 
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Fig 2.  NSCLC histology subtypes and PD-L1 expression. Squamous cell carcinoma (SCC) patients with positive 

PD-L1 expression (a) and negative PD-L1 expression (b).  Adenocarcinoma (ADC) patients with positive PD-L1 

expression (c)  and negative PD-L1 expression (d), respectively. For (a)-(d), the first line of (a)-(d) are the CT, 

PET and fusion images, the first and second columns of the second and third line shows the response of the 

fourth ResBlock, which shows the self-learned important areas in expressing PD-L1 status (peritumoral and 

necrosis regions), the third column of the second and third line shows the response of the negative filter and 

the positive filter in the PD-L1 positive-negative tumors (the CT images were overlapped to reveal the location 

of the response), the last line shows the pathological examination of the resected mass demonstrating PD-L1 

expression (left, ×100; right, ×200). (e) The heatmap generated with unsupervised hierarchical clustering of all 

the SPH patients and HLM-PD-L1 patients on the horizontal axis and deeply learned features expression (i.e. 

the output of the last activation filters, N=256) on the vertical axis. There were four distinct subgroups 

obtained. Groups G1 and G2 (including more PD-L1- patients) had similar feature expression, which is opposite 

to the feature expression of G3 and G4 (including more PD-L1+ patients) . Furthermore, some features of G1 
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and G2 (or G3 and G4) are different. G1 and G3 had more SCC patients, while G2 and G4 had more ADC 

patients. The χ2 test showed the significant association of the 4 kind of deep learning expression patterns with 

PD-L1 expression (SPH patients: p<0.001, HLM patients: p<0.001), and different histology (SPH patients: 

p<0.001, HLM patients: p=0.061). The similar patterns of the external HLM-PD-L1 cohorts further showed the 

stability of the deep learning features. 

 

 

Fig 3. Performance of the DLS in the different cohorts. (a) The distribution of DLS between PD-L1 positive (+) 

and negative (-) groups in SPH-training, SPH-validation and external HLM-PD-L1-test cohorts, and the ROC 

curves of DLS and SUVmax in SPH-training, SPH-validation and external HLM-PD-L1-test cohorts. (b) The PFS 

relative to the DLS (high versus low defined by 0.54, which was the median value of the SPH training) in the 

retrospective and prospective HLM IO-treated patients. (c) The OS relative to the DLS (high versus low defined 

by 0.54, which was the median value of the SPH training) in the retrospective and prospective HLM IO-treated 

patients. 
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Fig 4. Stratification analysis of the performance of the DLS in prognosis prediction. (a) The DCB rates of the 

different subgroups of the HLM retrospective and prospective IO-treated patients. (b) The PFS relative to the 

DLS and histology in the HLM retrospective and prospective IO-treated patients. (c) The OS relative to the DLS 

and histology in the HLM retrospective and prospective IO-treated patients. Note: HADC is short for HDLS ADC, 

meaning ADC patients with high DLS, LADC is short for LDLS ADC, meaning ADC patients with Low DLS, HSCC is 

short for HDLS SCC, meaning SCC patients with High DLS, and LSCC is short for LDLS SCC, meaning SCC patients 

with Low DLS, the high DLS versus low DLS defined by 0.54, which was the median value of the SPH training. 
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