
 

Evolution of COVID-19 Cases in Selected Low- and Middle-Income 

Countries: have they peaked due to high levels of infection and 

immunity? 
 

 

Supplementary Materials including Methods  

 

Axel S. Lexmond1*, Carlijn J.A. Nouwen2*†, Othmane Fourtassi2 and J. Paul Callan2*† 

 
1 Department of Engineering, University of Pretoria, South Africa 

2 Personal capacity 

* These authors contributed equally to this work. 

† Corresponding authors:  nouwencarlijn@gmail.com ; paul_callan@post.harvard.edu 

 

 

25 September 2020; revised 1 October 2020 and 11 October 2020 
 

 

This paper contains the supplementary materials to the article “Evolution of COVID-19 cases in selected 

low- and middle-income countries: have they peak due to high levels of infection and immunity?” by the 

same authors. In that article, we examined the outbreak curves for 11 selected low- and middle-income 

countries (LMICs) and showed why the hypothesis that in these countries, COVID-19 cases have declined 

mainly through low susceptibility levels, is an option that warrants serious consideration. A simple model 

based on that hypothesis (a linearised version of Reed-Frost), with only a few constant parameters, fits 

the observed case data remarkably well, and yields parameter values that are reasonable.  

 

In this paper, we describe the method we have used to determine the best-fitting curve for each of these 

countries. We use the case of South Africa to provide the full analytical detail. Subsequently, we explain 

how we apply this method to the other 10 countries. 
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1. Model and equations used to describe the outbreak to date  

 

As we want to test the hypothesis whether the outbreak curve in these countries can be described a 

peak driven by low susceptibility, we use a set of equations that define a ‘natural’ exponential outbreak. 

For this, we use a homogeneous population model which describes a basic exponential growth outbreak 

model with constant parameters. In this model, we assume we can describe the outbreak in cycles. The 

number of people that is infected in cycle i+1 is given by 

 

eq. 1) 𝑛𝑖+1 = 𝑛𝑖𝑅0_𝑒 (1 −
𝑛𝑖𝑚𝑚𝑢𝑛𝑒

𝑛𝑡𝑜𝑡
)  

 
Where  

- ni is the number of people that have been infected in infection cycle i 

- R0_e is the reproduction number of the virus, taking into account any measures and behaviour 

change but not taking into account any immunity. We call this the ‘effective basic reproduction 

number’ to distinguish it from the effective reproduction number Re
1 

- ntot is the total population 

- nimmune is the average number of immune people during an infection cycle (see section 8 for 

averaging method) 

- and 𝑅0_𝑒 (1 −
𝑛𝑖𝑚𝑚𝑢𝑛𝑒

𝑛𝑡𝑜𝑡
)= the effective reproduction number, Re. This is the number of people 

any one infected person at a particular moment will infect on average, taking into account both 

behaviour and the build-up of immunity in the population. 

 

Assuming everyone who has been infected becomes immune, the number of immune people at the 

beginning of the cycle from i to i+1 is given by: 𝑛𝑖𝑚𝑚𝑢𝑛𝑒(𝑖) = ∑ 𝑛𝑗
𝑖
𝑗=0 .  

 

The number of people reported over the course of infection cycle i to be newly diagnosed with COVID-

19 is given by: 

 

eq. 2) xi=pni   where p is the detection rate 

 

The infection curve started when the first infected person entered South Africa (n0=1). To express the 

number of cases as a function of time (t, in days) rather than as a function of the number of infection 

cycles, we use equation 3: 

 

 
1 Three distinct reproduction numbers characterise the disease in different situations. First, the basic reproduction number, R0, is the average number of new 
infections caused by each current infected individual, that would happen in the absence of any disease control measures by governments or individuals, and before 
there is widespread immunity. Even this number is not a universal characteristic, because it can vary by location, even in the absence of control measures, due to 
differences in typical numbers of social contacts in different places. Second, we define the effective basic reproduction number, R0_e, as the adjusted basic 
reproduction number after control measures are taken, but without significant levels of immunity. This number can, therefore, change from time to time, as 
governments change policies and people change their practices. Third, the effective reproduction number, Re, is the actual average number of new infections 
caused by each current infected individual, which decreases as the number of people with immunity increases (and also depends on disease control policies and 
practices).   
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eq 3) t=tg*i-Δt  where t = time in days since first reported case 

 

The model has 5 parameters:  

- tg generation time – which is the cycle time with which we run the model2  

- R0_e  effective basic reproduction number of SARS-CoV-2 

- ntot  total population 

- Δt  number of days that the SARS-CoV-2 has been spreading undetected 

- p  detection rate 

The model has one dependant (output) variable 

- xi The number of reported people with COVID-19  

Of the 5 independent variables, 1 variable is constant (Δt) and 2 other variables are most likely constant 

as well (particularly for the timeline we are considering): the generation time and the total population. 

That gives 2 independent variables that could change over time: the effective basic reproduction 

number of the virus (R0_e) and the detection rate (p). 

Our model is a linearised version of the classic Reed-Frost model, a simple deterministic model for 

simulating the spread of a disease outbreak. The formula for the Reed-Frost model is:  

 

eq. 4) 𝑛𝑖+1 = 𝑠𝑖(1 − (1 − 𝑞)𝑛𝑖)  

where: 

- ni is the number of people that have been infected in infection cycle i 

- si is the number of susceptible people after infection cycle i (which equals the total population 

minus the sum of all those infected up to and including that cycle) 

- q is the probability that, within one time period, an infected person will come into contact with 

any other person in the population and will transmit the infection to that other person. 

 

In this model, the effective basic reproduction number, the average number of people to whom the 

disease is transmitted by one infected person, in one infection cycle, when the entire population is 

susceptible, is simply: 

 

eq. 5) 𝑅0_𝑒 = 𝑛𝑡𝑜𝑡  𝑞  

 

where ntot is the total population. 

 

The duration of one infection cycle in this model is the generation time (tg), which is the average time 

from infection of one person and when that person infects other people. 

 
2 Understood as follows: if person Y infects multiple people, this is unlikely to happen all at the exact same time. Hence, one determines the time at which Y got 
infected to the moment Y infects the other person for each of the people Y infects. Averaging this number across all the people Y infects, gives the equivalent of the 
infection cycle for Y. To get to this number for the virus (tg as used here), this ‘individual’ infection cycle is averaged across all people who infected someone. At 
population level, tg is likely to decrease as the degree to which symptomatic patients self-isolate increases, and likely to increase as the proportion of asymptomatic 
cases increases.  
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The linear approximation of the Reed-Frost equation (4) is: 

 

 𝑛𝑖+1 ≈ 𝑠𝑖 (1 − (1 −  𝑛𝑖  𝑞 +  ⋯ )) =  𝑠𝑖 𝑛𝑖  𝑞  

 

which, substituting for R0_e using eq. (5) and for 𝑠𝑖 = 𝑛𝑡𝑜𝑡 − 𝑛𝑖𝑚𝑚𝑢𝑛𝑒, yields: 

 

 𝑛𝑖+1 ≈ 𝑛𝑖  
𝑅0_𝑒

𝑛𝑡𝑜𝑡
 (𝑛𝑡𝑜𝑡 − 𝑛𝑖𝑚𝑚𝑢𝑛𝑒)   

 

This is the same as eq. (1) above. 

 

Our model can also be described as a compartmentalised SIR model with constant parameters. In SIR 

models, people are either susceptible, infected or have recovered.  We model the “exposed” (infected-

but-not-yet-infectious) section of the population by running the outbreak through “infection cycles”. 

The duration of an infection cycle, the generation time, is the average time of the “exposed” stage in 

more complex SEIR models. The equations used describe the process in the same way as the differential 

equations used in SEIR models yet we use discrete time periods (infection cycles) rather than dt. 
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2. Selection of a country to illustrate fitting the parameters with 

 

We identified 11 low- and middle-income countries (LMICs) for which the observed pattern in the actual 

COVID-19 case numbers might be explained assuming cases peaked and declined as a result of low 

susceptibility. Of these 11 countries, on first visual inspection, South Africa seems to have the best fit. 

Figure 1 shows the observed data (the circles) and the best fitting curve (result of the process as 

described in this article) using a standard exponential outbreak curve (the red line), visually showing a 

good fit. South Africa also has a relatively large number of datapoints after the peak which makes the 

fitting procedure more accurate and easier to illustrate than when applied to countries which hit their 

peak more recently. In the remainder of this document, we will illustrate the application of the approach 

using South African data and references. In section 5, we will discuss the process of applying this 

approach to other countries – as well as the implications of poor data quality and the associated fitting 

approach in that case.  

 

  
Figure 1: Daily cases of COVID-19 in South Africa over time 
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3. The method used to derive the parameters  

Each parameter impacts the shape of the outbreak curve in a different way 

As outlined above, three of the five variables can be assumed to be constant over the period we are 

considering (and one of those, the total population of a country, is a known entity). Interestingly, each of 

the variables have a different effect on the shape of the outbreak curve: 

- Three of the four variables have a linear transformation effect on the curve (meaning they do 

not fundamentally alter the shape of the curve)  

o Δt shifts the entire curve horizontally (to ‘later’ or ‘earlier’) without altering the shape of 

the curve  

o p stretches the curve vertically (basically changing the scale on the vertical axis) without 

fundamentally altering the shape of the curve  

o tg stretches the curve horizontally (changing the scale on the horizontal axis). Whilst this 

is a linear transformation of the curve and does not fundamentally alter the shape of 

the curve the way R0_e does, tg’s effect is the hardest to separate out from R0_e 

- Only R0_e fundamentally alters the shape of the curve: R0_e defines the ratio between the growth 

rate during the increase of the daily caseload and the negative growth rate during the decrease 

of the daily caseload. This effect is illustrated in Figure 2 below. For a fixed doubling time (which, 

as discussed later, is a function of both R0_e and tg) assumed to be 10 days in this figure, this 

graph provides curves for daily caseload numbers (normalised to a scale from 0 to 1 on log-lin 

scale) for different levels of R0_e. The higher R0_e is, the greater the ratio between the pace of 

decline and the pace of growth – and the more ‘skewed’ the curves become.  

 

 
Figure 2: Normalised outbreak curves (log-lin scale) for a doubling time of 10 days and various values of R0_e showing 
how R0_e changes the 'shape' of the outbreak curve 
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The benefits of an analytical approach: covariance between R0_e and tg limits value of multi-parameter 

regression 

R0_e and tg are inherently linked. From the exponential growth rate in the early part of an outbreak, it 

follows3 that the doubling time equals  
ln 2

ln 𝑅0_𝑒
𝑡𝑔   

This link introduces the complexity that it is hard to determine the exact unique combination of R0_e and 

tg that leads to the observed curve; there often are a range of combinations of R0_e and tg which can 

produce very similar curves and thus have a very similar goodness-of-fit.  

We illustrate this in the figures below for South Africa. Figure 3 provides the link between R0_e and tg – 

for a broad range of of tg – from 3 to 11 days – in increments of 1 day, we identified the value for R0_e 

that yields the best possible fit (using least squares method). 

  

Figure 3: Relationship between R0_e and tg (combinations yielding the curve with the best fit) for South Africa 

Figure 4 provides the associated value of R2 – the goodness-of-fit measure using the least squares 

method for each of these datapoints. R2 is very high for all, indicating that the curve generated with 

these parameters provides a very good fit for the observed data. Importantly, though, R2 hardly varies 

over a wide range of parameters: over the full range of tg from 3 to 11 days and the associated range of 

R0_e from 1.2 to 2.1, the R2 is 0.99. What this shows, is that because of the strong covariance between tg 

and R0_e it is impossible to determine the exact unique combination that leads to the observed curve. 

The wide range of underlying values introduces an uncertainty that is not particularly helpful – which is 

why we sought an analytical approach to deriving the parameters from the observed caseload data. 

Once one of them is determined, the relationship between them makes it possible to determine the 

other one. We then go from a fitting exercise with 3 variables to one with only 1 variable left: the 

 
3 See section 9 for full derivation of the equation 
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detection rate (p), which – as we shall see – can also be derived analytically provided that R0_e has been 

defined analytically and the outbreak has ‘passed the peak’.  

Note that this very issue of strong covariance is why it is very hard to determine the basic reproduction 

number, R0, for any new disease, even when the case doubling time (as determined by 
ln 2

ln 𝑅0_𝑒
𝑡𝑔  ) is well-

known. The equations we use, assume R0_e, p and tg are constant during the entire outbreak. Once we 

have determined the parameters, we will test this assumption by considering whether the resulting 

fitted curve fits the observed caseload well with reasonable assumptions for the parameters. In section 

6, we will discuss these assumptions in more detail.  

 

  

Figure 4: Value of R2 (goodness of fit) for full range of combinations of R0_e and tg for South Africa 

 

A simple analytical method to derive R0_e and tg 

Derivation of R0_e 

The number of daily new cases grows exponentially well before the peak, and decreases exponentially 
well after the peak. The growth and decline are functions of both R0_e and tg, but the ratio of growth and 
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𝜏 =
𝑡2 − 𝑡1

log10 (
𝑛2
𝑛1

)
 

Where t1 and t2 are 2 moments during incline (for τ↑) or decline (for τ↓) 

τ↑= time for cases to incease ten-fold (well before peak of the outbreak) 

τ↓= time for cases to decease ten-fold (well after peak of the outbreak) 

Figure 5 below plots the daily caseload on a log-lin scale (for just a part of the outbreak, in order to 

better see the relevant section). In this figure, the red lines show the inclines of both the growth and the 

decline in the caseload – each of which are exponential processes. As articulated above in the equations, 

the ratio between the growth and decline exponents is solely a function of R0_e. These red lines are 

chosen as follows: 

- Firstly, we want to determine the incline at portions of the curve that are both straightest on log 

scale (indicating that both p and R0_e can be assumed constant) and within the lockdown period 

(to have relatively consistent circumstances).  

- For the decline period, we do not have a long set of data to choose from – so we took the 

straightest final part of the curve (the further away from the peak, the straighter the line is on 

log-lin scale).  

- We are interested in the ratio; and the shape of the curve to either side of the peak is very 

comparable (although the inclines will be different, which is linked to R0_e, the shape to either 

side of the peak is very similar which is a mathematical result).  

- Therefore, to get the most accurate estimate of the ratio, we should take the incline pre-peak 

that covers the same number of daily cases as the period chosen to the right of the peak does 

(in this case ranging from 3,500 to 8,500 cases per day). We could also have taken the much 

longer stretch to the left of the peak; that would create greater accuracy for the incline but 

reduce comparability with the decline portion.  

- This logic makes us determine incline and decline over the red periods in Figure 5 below.  
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Figure 5: Selected interval range for determination of ratio of incline and decline - to analytically determine R0_e 

In order to increase accuracy, we calculated the inclince and decline and their ratio a number of times 

(indicated by the blue double-headed arrows in the figure above). In all cases, we kept the highest point 

fixed (as above that, very quickly the curve deviates from being a straight line). We then varied the 

lowest point to get various intervals and applied a regression analysis on the actual measured caseload 

data to determine the value of τ↑, and τ↓.  As the curve is less steep before the peak, the same stretch 

on the vertical axis incorporates more datapoints than to the right of the peak.  

- Thus, to determine the value of τ↑,we were able to use 10 intervals for which a reasonably 

‘matching’ pair could be found in the decline4: each ending at day 119 and start date ranging 

from day 101 up and until day 109.  

- To determine the value τ↓, we could use 5 intervals: each starting at day 150 and end date 

ranging from day 159 to day 163 

The regression outcomes for each of these intervals are provided in Figure 6. 

 
4 At first, we used 15 intervals during the period of incline but for 5 of them, no reasonably matching pair could be made with a decline interval – using these would 
have introduced too much discretion and potentially inaccuracy 
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Figure 6: Regression outcomes for τ↑ for each of the 10 intervals used (left) and for τ↓ for each of the 5 intervals used (right) 

 

We then combine these datapoints to find ‘matching’ pairs – see Figure 7. This requires some judgment 

as we have only 5 values for τ↓ and 15 for τ↑. We matched the datapoints (with weighted averaging 

and intrapolation) to get 10 pairs and thus 10 ratios.  

 

Figure 7: Pairs for estimates of incline ratio - x axis is number of reported cases at lower end of interval 

This provided a range for the τ↓/ τ↑ ratio for each of the 10 pairs. Figure 8 shows the relationship 

between this ratio and the R0_e using the equations in the model (the blue line). From this, we can derive 

the range for R0_e for the range for the τ↓/ τ↑ratio which was derived from the reported case data 

(1.15 – 1.31).5 This gives a range for R0_e of 1.45 – 1.90. Averaging across the 10 resulting values for R0_e 

(associated with the 10 ratios - thus not simply taking the average of the range) gives the best-estimate 

R0_e of 1.74. 

 
5 Note that this method of using multiple intervals, was applied in order to deal with any errors in underlying data. Therefore, we do not provide a wider confidence 
interval on top of this range.   
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Figure 8: Range for incline ratios and R0_e   

  

Derivation of tg 

The width of a peak (W), defined as the time between the days where the daily number of infected 

persons is exactly half the maximum of the daily number of infected persons (so half the peak), depends 

on R0_e and tg only. Since R0_e is known and the width is a linear function of tg, this allows one to 

determine tg. This method is visualised in Figure 9 and captured in the equation below. 

𝑊 = 𝐴 (𝑅0_𝑒) ∙ 𝑡𝑔 

where W = width of the peak and A is a constant. A is a function of R0_e - and as R0_e is constant, it 

follows that A is constant.  

  

range τ↑ (days) τ↓ (days) τ↑ /τ↓ R

highest ratio in range 44.4 33.8 1.31 1.90

lowest ratio in range 41.0 35.6 1.15 1.45

best estimate 1.74
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Figure 9: Visualisation of the method to determine tg 

First, we determine the width from the observed data. The maximum number of cases (7 day average) in 

the observed data is 12584 cases/day. Half this amount of cases is found by interpolation at 113.56 (left 

side of curve) and 156.13 (right side of the curve) days since the first reported case, so the width of the 

curve, defined in this way, is 42.6 days. 

Next, we determine the value for tg as a parameter in the equation above such that we get the same 

width. A(R0_e=1.74) can be determined from the simulated outbreak results, using the governing 

equations 1-3. For tg =10 and R0_e=1.74, W=54.5. From this it follows that A(R0_e)=5.45. Filling in W=42.6 

days and A=5.45 gives the generation time (tg): tg =42.6/5.45=7.8 days.  

For R0_e= 1.45, the associated tg= 4.8 days and for R0_e= 1.90, the associated tg= 9.1 days. 

 

Derivation of p (the detection rate) 

At the top of the outbreak, when the infection level is so high that the number of cases peaks and starts 

to decline, the number of infected people is given by  N=Ntot∙(1-1/R). The total amount of reported 

positive cases can also be determined from the outbreak data: X=Σx where X is the number of reported 

cases before the peak and x is the daily number of reported cases. The detection ratio is given by: 

p=X/N.  

R ranges from 1.45 to 1.90, with a best estimate of 1.74. As a result, the estimated total number of 

infected people at the peak of the outbreak (day 137, N in the equation) ranges from 18.41 million (for 

R=1.45) to 28.09 Million for R=1.9, with a best estimate of 25.22 Million for R=1.74.  

Best estimate for p (for R=1.74) p = 355,633 / 25,223,236 =1.41%.  

High estimate for p: p=X/N=355,633 / 18,406,145 =1.93% (R=1.45). 
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Low estimate for p: p=X/N=355,633 / 28,093,590 =1.27% (R=1.9) 

The resulting best-fitting curve has an associated R2 of 0.984.6 Visually, one can understand the ‘fit’ by 

seeing how well the model (the solid red line in Figure 10) overlays with the observed caseload (the 

circles). 

 

Figure 10: Daily cases of Covid 19 is SA vs time. Model: R0_e=1.74, tg =7.8 days, p=1.41%; R2 = 0.98.  

The model with constant parameters fits the data well – in other words: the entire pattern of observed 

daily cases can be explained with this particular set of parameters7 that belong to a set of equations that 

describe an outbreak pattern that reaches a single peak driven by low susceptibility due to high levels of 

infection and immunity.  

 

 
6 This R2 is marginally lower than the R2 for fits using the optimising algorithm. The analytical method focuses on data related to the core of the outbreak, 
using half-way width and incline/ decline ratios. The R2 uses all data – so the values the optimising algorithm finds, will fit the entire curve, including the 
tail, a bit better than the associated R2 (across the entire curve) for the analytically derived values.   
7 More complex modelling should be used if p and R0_e cannot be assumed constant for a sufficiently long portion of the outbreak. However, for South 
Africa, the high R2 now confirms that this assumption of constant p and R0_e was a decent assumption. 
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4. What else could it be, if not low susceptibility due to high levels of infection and 

immunity?  

 

We have posed the hypothesis that the South African case pattern can be explained by high levels of 

infection and immunity – and have shown that the best-fitting curve using constant values for p, R0_e and 

tg, has a strong fit with an R2 of 0.99. But is it possible that the caseload goes down as observed in the 

absence of such high levels of infection and immunity? That is possible, if we do not assume R0_e, p and 

tg to be constant. Note that the pattern of observed number of cases (the circles in Figure 1) can be 

reproduced by solving eq. 1-3 while varying R0_e as a function of time (assuming a constant p) OR by 

varying p at constant R0_e. We have already seen that the shape of this type of a curve is uniquely 

determined by R0_e. Yet, we did assume that both p and R0_e were constant over a sufficiently long, 

relevant part of the outbreak that we use to determine the parameters. We will now show what 

alternative explanations would look like focusing on stress testing that particular assumption. We will 

show why alternative explanations are much less likely than accepting the hypothesis of low 

susceptibility due to high levels of infection and immunity.  

Firstly, the reported number of cases can go down in the absence of sufficiently low susceptibility8 

because the detection rate (p) has gone down: i.e., the testing strategy has changed and as a result, a 

greater proportion of cases go undetected. That would lead to a lower reported number of cases whilst 

the real number of cases continues to increase (because we have not reached a sufficiently high level of 

infection and immunity). However, a once-off drop in detection rate in the absence of sufficiently low 

susceptibility would result in a once-off drop in the number of cases – after which exponential growth 

continues. Figure 11 shows what this would look like: the red and blue lines show this scenario with red 

representing the caseload observed before the drop in detection rate and blue after the once-off drop. 

These curves combined look nothing like the actual observed case numbers (the circles). So a once-off 

reduction in detection rate cannot have driven the reduction in observed cases.9  

 
8 By ‘sufficiently low’ susceptibility – or conversely ‘sufficiently high levels of infection and immunity’ we mean levels level at which the remaining susceptible 
population is not large enough to sustain further growth of the epidemic, thus causing a peak and subsequent decline in cases. 
9 Interestingly, the number of confirmed cases DID show exactly this type of discontinuity on the exact day the lockdown started. As any change in R0_e due to 
lockdown would not show instantaneously (but at least have a ~7 day timelag), this points towards the fact that testing approach changed as lockdown started – 
and became overall less effective. There is at least anecdotal evidence for this statement: early on during the lockdown, entire (rural) communities were tested even 
if no cases had been present in them to understand spread to date. Conversely, before the lockdown, focus was more on track-and-trace of individual cases. 
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Figure 11: Scenario with a sudden change in testing approach and thus detection rate 

A more continuous drop in detection rate, and not a change in R0_e or peak due to low susceptibility, 

could also result in a reduction in number of observed cases. For that to result in the reduction as 

observed, the detection rate mid-September should be over a factor 1000 smaller than the detection 

rate at the start of level 5 lockdown. For this to materialise, the testing approach needs to change very 

dramatically (to result in a factor of 1000 poorer detection result) yet gradually and continuously (to 

result in a smooth curve rather than discontinuity shown above). As the cases began to drop, the South 

African government examined the testing approach – they checked, for example, whether there was a 

shortage in reagents that could cause a drop in testing and thus a drop in the reported number of cases 

even if the real number of new cases was increasing or stable. They explicitly communicated this was 

not the case – making a deterioration of a factor of 1000 an extremely unlikely alternative explanation 

for the drop in number of cases.  

Another potential explanation for a drop in case numbers, is a reduction in the effective basic 

reproduction number (R0_e). In Figure 12 below  the straight line on a log-lin scale shows that the 

exponential growth rate was largely constant for a long period of time (between day 30 and 120 since 

first confirmed case).  
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Figure 12: Daily cases in South Africa on a log-lin scale 

When we zoom in, in Figure 13, we show that this is not exactly right: the curve slopes slightly 

downward. If we attribute this slight deviation from the straight line from Figure 12 fully to a change in 

R0_e (and thus assume p constant), R0_e would have had to decrease by 22% over a period of 90 days to 

drive the slight downward deviation from the straight line.10  

 
10 This figure uses tg =8 to determine the value of R0_e – yet the decline in R0_e (thus the 22% and 75%) is independent of the exact value of R0_e (thus, the values on 
the vertical axis are irrelevant to the analysis here). At a different value for tg, R0_e would be different but the necessary change observed in R0_e in order to fit the 
full curve (assuming p constant) would not shift. 
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Figure 13: Predicted R0_e vs time (for constant p and tg = 9.5 days) What R0_e should be over time, assuming a constant % of cases 
get detected, to get the evolution of the caseload as actually observed. Note that case numbers are a moving 14-day average to 
remove some of the empirical noise and note that the % is independent of tg. 

The colour coding in Figure 12 shows the various levels of ‘lockdown’ that South Africa implemented: 

the darkest shade pink is the most stringent period, level 5, followed by level 4 and level 3. The 

exponential growth rate is a function of the virus reproductive process and of the behaviour of people: 

the more social distancing and contact restrictions, the lower the exponential growth rate is expected to 

be. Between days 30 and 120, South Africa saw a pretty substantial shift in its containment measures, 

going from strict lockdown level 5 to more lenient levels 4 and 3. One would expect the growth rate to 

increase (i.e., the growth to accelerate) as restrictions eased. Yet over that entire period, the growth 

was surprisingly constant and, if anything, decreased somewhat. However, in the middle of level 3 

lockdown, the curve curbed strongly, suddenly and consistently. Figure 13 shows that if we tried to 

explain this entire shift through a shift in R0_e (keeping p constant), R0_e would need to start to decrease 

steadily – not once-off but continuously and in a very particular and rapid way – decreasing by 75% in 

~40 days. That is not very realistic given how consistent the exponential growth rate (and, if we assume 

p constant, therefore R0_e) has been across various degrees of lockdown. 

The most likely explanation for this pattern is thus not that the underlying R0_e suddenly changed (and 

continued to do so in a specific pattern) when it had not over such a long period of time and range of 

circumstances. The most likely explanation is that infection levels has become so high that the remaining 

susceptible population is not large enough to sustain enable further growth.  
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5. Application of the methodology to other countries 

 

Fitting of parameters for the 10 LMICs other than South Africa 

In the absence of exact empirical determination of any of the parameters, it is impossible to determine 

the exact right value within this set. As we explain in our main paper, we assume the analytically derived 

value for tg of 7.8 days to be valid in other countries as well – yet we also present a credible range.  

For the range, we varied tg in steps of 1 day each across a realistic spectrum from 3 to 11 days as 

explained in the main paper. We estimate R0_e, p and the horizontal shift delta t by fitting the curve 

optimally to the observed caseload data. This is done by minimising the sum of the squared residuals 

(and thus maximising the R²), using a non-linear Generalised Reduced Gradient algorithm, iterating until 

the relative change in sum of the squared residuals is less than 10 ^ - 4 in each of the last five iterations. 

Subsequently, we run the optimisation again, starting with the resulting values of the previous run, until 

the relative change in the sum of squared residuals does not exceed 10^-4 for all of the runs done in an 

iteration of the algorithm. This process gives decent results yet is not perfect. It does not run a (near) 

infinite set of combinations with an unlimited number of decimals. Therefore, the parameter values 

resulting from this process still have an error margin. However, given the iterative process and the 

observation of really constant outcomes, this error margin is expected to be relatively low.  

The resulting parameters, for tg of 7.8 days as a point estimate and a range from 3 to 11 days, are in 

Table 1 below. Note that the values for South Africa are the analytically derived values (which associate 

with a range for tg of 4.8 to 9.1)   

Table 1: Key parameters for 11 selected LMICs for which we have shown that a decline in cases due to low susceptibility, is a very 
plausible hypothesis for their outbreak curve profile 

Country Effective basic 

reproduction 

number (R0_e) 

[see text] 

Detection rate (p) % of population 

infected  

up to 7 Sept  

R-squared for 

fitted curve 

[perfect fit = 1] 

Afghanistan 1.7 (1.2 – 2.1) 0.13% (0.26% - 0.12%) 71% (37% - 82%) 0.97  

Bolivia 1.4 (1.1 - 1.6) 2.35% (5.20% - 1.90%) 45% (20% - 57%) 0.99  

Central African 

Republic 

1.8 (1.3 - 2.2) 0.13% (0.25% - 0.12%) 74% (39% - 86%) 0.94  

Colombia 1.5 (1.2 – 1.7) 2.86% (6.24% - 2.35%) 46% (21% - 58%) 1.00  

Egypt 1.6 (1.2 – 1.9) 0.15% (0.30% - 0.13%) 64% (32% - 77%) 0.98  

Kenya 1.7 (1.2 – 2.0) 0.09% (0.19% - 0.08%) 66% (33% - 77%) 0.98  

Madagascar 2.0 (1.3 – 2.4) 0.07% (0.12% - 0.06%) 79% (44% - 89%) 0.96  

Malawi 1.6 (1.2 – 1.9) 0.05% (0.09% - 0.04%) 64% (32% - 77%) 0.94  

Namibia 1.7 (1.2 – 2.1) 2.04% (3.89% - 1.75%) 71% (37% - 83%) 0.97  

Pakistan 1.6 (1.2 – 2.0) 0.20% (0.38% - 0.16%) 66% (34% - 80%) 0.95  

South Africa 1.7 (1.5 – 1.9) 1.41% (1.93% - 1.27%) 71% (55% - 77%) 0.98  
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Fitting of parameters for comparison countries 

In order to test whether our approach yields viable results across too broad a range of countries (thus 

invalidating it), we applied it to a number of countries for which herd immunity is not assumed at all: 

China, France, Germany, United Kingdom, New Zealand and Spain. The reported cases in each these 

countries has an initial peak. We determined the parameters associated with the best-fitting curve if we 

fit to only that first peak. We used the same optimisation approach as described earlier. For these 

countries, we enforced a minimum value for tg of 3 days. In a Reed-Frost model assuming constant R0_e, 

the ratio of the incline over the decline is never less than 1 – case numbers go down more rapidly than 

they go up. The lower the value of R0_e, the smaller this difference. Many comparator countries have a 

slower rate of decline of cases after the first peak than the rate of increase before the first peak – 

because the Reed-Frost model with herd immunity does not describe well their first peaks. As we try to 

apply the Reed-Frost model with constant R0_e and p, lower values of R0_e result in better fits as a 

consequence of this curve shape – hence a lower bound restriction is needed. In our main paper, we 

discuss the value of the resulting parameters and answer the question whether this approach yields 

viable results across too broad a range of countries.   
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6. Discussion of methodology assumptions and uncertainties 

 

The main finding that in our 11 LMICs of focus, COVID-19 cases have declined as a result of low 

susceptibility due to high infection levels and immunity, is a reasonable hypothesis to explain the 

reported cases, appears robust (and thus is worthy of further consideration); it is difficult to explain the 

observations in another way. However, the parameters determined from our calculations and least-

square fits are subject to uncertainty, which we describe here. This is driven by three aspects: (1) limited 

accuracy of the reported data and specifically, the potential inaccuracy of the assumption that R0_e and p 

are constant, (2) the fact that several phenomena have not been incorporated in the model and (3) the 

covariance between the effective basic reproduction number (R0_e) and infection cycle time (tg) which 

impact the shape of the curve in a similar way and have a covariance, making it hard to untangle them.  

Firstly, we assume that R0_e and p are constant. We know these parameters will not entirely be 

constant and thus making that assumption is an approximation. In the section around Figure 13, we 

argued that the maximum variation in R0_e assumed prior to the peak (if p is constant) was still 

acceptable and continued to generate parameter values that do not change our key conclusions.  

The deviation can also come from a variation in p. We know that the number of tests done for every 

positive case found (a proxy for p)11 has varied over time. However, at very low numbers of tests per 

positive case, the relationship between this number and the detection rate breaks down: if one doubles 

the number of tests (and thus – everything else held constant – increases the detection rate), at very 

low numbers the proportion of tests yielding a positive result may not change in line with the detection 

rate improvement. With many countries being in this low range, at least for part of the period studied, 

number of tests per positive case is not a sufficient proxy to model p dynamically. In the absence of a 

credible alternative assumption to model p dynamically, keeping p constant is a prudent choice: given its 

impact on the curve stretching it vertically, one can make any dataset fit a particular curve, if one 

allowed any function of p over time. Keeping p constant avoids having too many free parameters, which 

might lead to good fits even if the model incorrectly describes the disease dynamics.12  

The high goodness-of-fit (with few degrees of freedom) is the main measure that indicates our 

assumptions are reasonable. That said, we did do one additional check. In Figure 14 below, we mapped, 

on log-lin scale the reported case numbers and the reported deaths in all 11 LMICs and, in Figure 15, the 

6 comparison countries. As one can see, for each of the 11 selected LMICs, these two curves look very 

much like each other – even for countries with low absolute numbers of daily new cases and deaths.13 If 

the detection rate for cases, p, the ratio of reported cases to actual cases, were to vary wildly, one might 

expect that the detection/reporting rate for deaths might also be inconsistent over time, and there 

would be no reason to believe that the two detection rates would vary in the same way over time. A 

 
11 P and the number of tests per positive case are correlated, but not linearly: whilst the number of tests per positive case has halved/ doubled over the period in 
which we derive the parameter value, this translates in a much smaller variation in p. See 
https://www.medrxiv.org/content/10.1101/2020.05.12.20098889v1.full.pdf for insights into this link..  
12 We did run a few tests to confirm that the potential range for p (if that were to explain the slight lack of linearity on log-lin scale) does not substantially impact our 
parameters and findings and found this impact to be very limited.  
13 This is not necessarily the case for the 6 comparator countries. Notably, the widening of the gap between the 2 curves in the UK, France and Germany, could point 
towards a more expansive testing approach catching more, less-critical cases. 

https://www.medrxiv.org/content/10.1101/2020.05.12.20098889v1.full.pdf


21 

simpler and more reasonable explanation is that the two detection rates – for cases (p) and for deaths – 

do not vary wildly, which supports the reasonableness of the approximation that the two rates, 

including p, are constant over time. 
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Figure 14: Reported cases and reported deaths for 11 selected LMICS on log-lin scale  
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Figure 15: Reported number of cases and reported number of deaths in 6 comparison countries, on log-lin scale 

 

Secondly, as we saw when we described the equations and the effect of different parameters on the 

curve, R0_e and tg are the two parameters that are the hardest to separate. It is possible to separate 

them – and our analytical determination for South Africa illustrates this – but it requires good quality 

data and even then, this approach starts to break down for values for R0_e below ~ 1.5. However, the 

fact that their relation uniquely defines the doubling time (derived from the exponential growth rate) 

means that any reasonable combination yields the exact same pace of the outbreak which reduces the 

relevance and necessity of exact untangling for understanding the curve writ large. To determine exactly 

where in the possible range the parameters really sat, one of them needs to be confirmed fully 

empirically which to date, has not been done. 

This means that the values of parameters should be considered order-of-magnitude parameters; 

especially in situations of a relatively low R0_e and/ or where poor data quality makes analytical 

determination of R0_e and tg impossible and one needs to rely on regression fitting.  

Thirdly, we will consider heterogeneity. We are assuming a homogenous society – which is a crude 

approximation. What follows here, is the mathematical explanation of the inaccuracy that we would 

introduce in our parameters in three separate cases in which we falsely assumed homogeneity (for two 

different types of heterogeneity). 
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Firstly, in a highly interactive society with a few people who have a high infection risk and a lot of people 

with a relatively low infection risk (a few ‘superspreaders’ and many, many ‘wallflowers’), the people 

with a high infection risk will get infected and thus immune first – and thus are removed from the pool 

of ‘susceptible’ individuals. As a result, the R0_e of the society will decrease over time, making the 

exponential growth rate before the peak larger than the exponential decline rate after the peak. This 

was not observed in South Africa (where we saw assuming a constant R0_e is a valid assumption), but a 

weak effect in this type of inhomogeneity could result in an underestimation of R0_e.  

Another possibility is that there are several groups in society with almost no interaction and a different 

level of infection due to different abilities or willingness to socially distance. Conceptually, this would be 

a few ‘subsystems’ that each experience their outbreak relatively independently of one another. This 

will result in similar effect; the exponential growth rate before the peak will be larger than the 

exponential decline rate after the peak. Also, this will result in peak widening. Again, this was not 

observed in the SA data so it is likely not an important effect. However, it could result in an 

underestimation of R0_e.  

The best way to solve this issue is by accurately determining one of the outbreak parameters – that 

would allow one to ‘lock’ that parameter in and determine the other parameters in relation to this exact 

known value. Tg could be determined from detailed and diligent tracking and tracing data. Alternatively, 

the total number of infected people could be determined from testing for immunity (serological 

detection of antibodies in blood; or T cell immunity testing if one wants to include people with a cross-

reactive T-cell immunity response – which would most likely confer partial immunity). Of these options, 

we expect that determining the average tg will be most accurate.  
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7. Source and approach to determining the derived case fatality rate in Bolivia, 

Colombia and South Africa 

 

As we discuss in our companion article, we ran a comparison between expected infection fatality rates 

(IFR), reported fatalities and the infection fatality rate that would be associated with our findings. To do 

this, we used the following approach: 

Firstly, we derived the expected IFR by applying the latest estimates for age-specific IFRs to the 

breakdown of the population of each of the countries into these age categories. This results in an IFR 

that adjusts for the country-specific age profile (taking into account the often-cited ‘youthfulness’ of 

LMICs) and assumes the age-specific IFRs to be constant across countries. For the age-specific IFRs, we 

used the estimates in Table 2.14 

Table 2: Age-specific IFRs 

Age category Total, weighted average IFR 

0-34 0.01% 

35-44 0.06% 

45-54 0.20% 

55-64 0.70% 

65-74 2.20% 

75-84 7.30% 

85+ 27.10% 

 

Subsequently, we took the reported deaths from COVID-19 in three countries (Bolivia, Colombia and 

South Africa – for which information on excess mortality was available), for the period for which excess 

mortality information was available. We attributed all excess mortality from natural causes to COVID-19, 

to get an ‘upper band’ estimate of deaths from COVID-19. Lastly, we divided this over the number of 

infections over that same period, as they result from applying our derived parameters.  

 

  

 
14 A.T. Levin et al. “Assessing the Age Specificity of Infection Fatality Rates for COVID-19: Meta-Analysis & Public Policy Implications” - medRxiv 2020.07.23.20160895 
doi:  https://doi.org/10.1101/2020.07.23.20160895.  

https://doi.org/10.1101/2020.07.23.20160895
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8. Centre averaging method to approximate the number of immune people during 
an infection cycle 

 

The model assumes that the number of infected people is constant during one single time step. As a 

result, we also assume that the amount of immune people is constant during a time step. Obviously, 

that is not true, especially when the number of daily infected people is very high. In fact, the way in 

which the number of infected people during a time step is calculated, can influence the predicted 

outbreak dynamics. We solved this problem by calculating a low estimate and a high estimate of the of 

the amount people in the next time step. For the high estimate of ni+1 (which we call 𝑛𝑖+1
+ ), we assume 

that the amount of immune people during a time step is the amount of immune people at the beginning 

of that time step:   

𝑛𝑖+1
+ = 𝑛𝑖𝑅 (1 −

𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖

𝑛𝑡𝑜𝑡
)  

where nimmune,i is the number of immune people at the moment i. Calculating the low estimate of ni+1 

(which we call 𝑛𝑖+1
− ), is slightly less straightforward: for this we need to know the number of immune 

people at the end of a time step. We cannot calculate this however, since we do not yet know how 

many people will be infected during a time step. However, since we are dealing with a linear equation in 

ni+1, this can be solved analytically: 

 

𝑛𝑖+1
− = 𝑛𝑖𝑅 (1 −

𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖+1

𝑛𝑡𝑜𝑡
) 

𝑛𝑖+1
− = 𝑛𝑖𝑅 (1 −

𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖 + 𝑡𝑐𝑛𝑖+1
−

𝑛𝑡𝑜𝑡
) 

𝑛𝑖+1
− = 𝑛𝑖𝑅 (1 −

𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖

𝑛𝑡𝑜𝑡
) − 𝑛𝑖𝑅

𝑡𝑐𝑛𝑖+1
−

𝑛𝑡𝑜𝑡
 

𝑛𝑖+1
− (1 +

𝑡𝑐𝑛𝑖𝑅

𝑛𝑡𝑜𝑡
) = 𝑛𝑖𝑅 (1 −

𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖

𝑛𝑡𝑜𝑡
) 

𝑛𝑖+1
− =

𝑛𝑖𝑅 (1 −
𝑛𝑖𝑚𝑚𝑢𝑛𝑒,𝑖

𝑛𝑡𝑜𝑡
)

1 +
𝑡𝑐𝑛𝑖𝑅
𝑛𝑡𝑜𝑡

 

Now we assume that the best estimate for the number of infected people at the end of step i+1 is the 

average of 𝑛𝑖+1
−  and 𝑛𝑖+1

+ : 

𝑛𝑖+1 = (𝑛𝑖+1
− + 𝑛𝑖+1

+ )/2 

We compared the results using the forward (low estimate), backward (high estimate) and centre 

averaging method and found only small variations. This indicates that whilst centre average (as used) is 

still the most accurate approximation, the results are not very sensitive to this as opposed to using 

forward or backward averaging.  
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9. Derivation of the equation for the relationship between R0_e and tg 

 

Long before the peak, there is exponential growth. The general equation for exponential growth is: 

Eq 1)  𝑛 = 𝑎. 𝑒
𝑡

τ 

At t1 there are n1 cases and at t2 there are n2 cases. Substituting in equation 1 gives:  

𝑛1 = 𝑎. 𝑒
𝑡1
τ  

𝑛2 = 𝑎. 𝑒
𝑡2
τ  

Choose time step t2 in such a way that t2=t1+ Δt, where  Δt = tg.  

From the outbreak equation, the ratio of n1 and n2 is given:  

𝑛2 = 𝑅0_𝑒 . 𝑛1 [1 −  
∫ 𝑛 𝑑𝑡

𝑁𝑡𝑜𝑡
] = 𝑅0𝑒

. 𝑛1 

𝑅0_𝑒  =  
𝑛2

𝑛1
 =  

𝑒
𝑡2
τ

𝑒
𝑡1
τ

 =  𝑒
𝑡2−𝑡1

τ  =  𝑒
𝑡𝑔

τ  

 From which follows Eq 2) 
𝑡𝑔

τ
 = ln 𝑅0_𝑒 

Now choose t3 in such a way that between t1 and t3, the number of cases double: 

𝑛1 = 𝑎. 𝑒
𝑡1
τ  

𝑛3 = 𝑎. 𝑒
𝑡3
τ  

We define doubling time td where td = t3 – t1  and  
𝑛3

𝑛1
= 2 

Eq 3) 
𝑡𝑑

τ
= ln 2 

From (eq 2) and (eq 3): 

τ =  
𝑡𝑔

ln 𝑅0_𝑒
 =  

𝑡𝑑

ln 2
 

𝑡𝑑  =  
ln 2

ln 𝑅0_𝑒
𝑡𝑔 

 


