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Abstract 

A precise diagnostic of precursor dysplastic urothelial lesions is critical for patients but it can be 
a challenge for pathologists. Multiple immunohistologic markers (panel) improve ambiguous di-
agnostics but results are subjective, with a high degree of observational variability. Our research 
objective was to evaluate how a classification algorithm may help morphology diagnostic. Data 
coming from 45 unequivocal cases of flat urothelial lesions (“training set”: 20 carcinomas in situ, 
8 dysplastic and 17 reactive lesions) were used as ground truth in training a random tree classi-
fication algorithm. 50 “atypia of unknown significance” diagnostics (diagnostic set) were digitally 
re-classified based on morphological and immunohistochemical features as possible carcinoma 
in situ (20), dysplastic (17) and reactive atypia cases (13). The main sorting criterium was mor-
phologic (nuclear area). A four-markers panel was used for a precise classification (74% correct-
ly classified, 93% accuracy, 76% precision, averaged ROC=0.828). 3 cases were “false nega-
tive”. The performance of the immunohistologic panel was evaluated based on a stain index, 
calculated for CD20, p53, Ki67 and observed for CD44. Within training set, the immunohistolog-
ic performance was high. In the diagnostic set both the percentage of high stain index for each 
marker and the percentage of cases with 2-3 strong markers were low, explaining the initial high 
number of equivocal cases. In conclusion, digital analysis of morphologic and immunohistologic 
features may bring clarification in classification of equivocal urothelial lesions. Computational 
pathology supports diagnostic process as it can measure features and handle data in a precise, 
reproducible and objective way. In our proof of concept study, a low number of cases and the 
(deliberate) absence of clinical data were main limitations. Validation of the method on a high 
number of cases, use of genomics and clinical data are essential for improving the reliability of 
machine learning classification              
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Introduction 

A precise diagnostic of flat urinary bladder lesions, critical for the treatment and prognosis of 
patients, can be difficult even for experienced uropathologists [1]. The most recent and widely 
used “flat urothelial lesions” classification (World Health Organization 2004 classification, modi-
fied in 2016) positioned Carcinoma in Situ (CIS), Dysplastic Lesions (DL), Reactive Hyperplasia 
(RH) and flat hyperplasia as part of a diagnostic continuum [2]. It is recommended to separate 
these diagnostic entities based on morphologic features [3] but a clear distinction is not always 
easy as bioptic tissue is scarce or fragmented, the normal urothelium histology is complex and 
important morphological features might be shared between normal, reactive and malign tissue 
[4]. CIS is described as a high-grade flat intraepithelial lesion composed of malignant cells with 
large hyper-chromatic nuclei (5-6x larger than a lymphocyte), serious pleomorphism and fre-
quent mitoses, having a high propensity of developing muscle invasive cancers [5]. DL is tissue 
with recognizable pre-neoplastic cytological and architectural changes that are under the 
threshold of diagnostic of CIS [6]. RH shows smaller nuclei (2-3x the diameter of a lymphocyte 
nucleus), organized tissue structure, less nucleolar persistence [7] and is often associated with 
benign urologic pathology. A new diagnostic category, “Atypia of Unknown Significance” (AUS), 
sometimes named “urothelial proliferation of uncertain malignant potential” was recently added 
in an attempt to nest cases where a clear differentiation is difficult. AUS is still a subject of con-
troversy and some authors recommend to avoid it as there is no robust evidence that patient 
outcomes are different from reactive atypia [8,9]. Because of overlapping morphology, a wide 
degree of subjectivity and inter-observational variability was reported mainly in equivocal cases 
[10,11].  
Immunohistochemistry (IHC), a histology technique that allows a precise detection of specific 
proteins based on the antibody-antigen reaction, may improve precision when morphologic 
characteristics are not enough for a clear diagnostic, when the history of the disease is unknown 
or there is an unusual morphologic presentation [12]. After 20 years of experience, caution is 
now suggested in IHC interpretation of urothelial lesions [13] as normal tissue may share some 
degree of staining patterns and there is no single specific/sensitive marker that can make a dif-
ference between diagnostics. A way to circumvent the IHC ambiguities is provided by the con-
comitant use (panels) of several IHC markers [3]. Concomitant use of 4 markers (IHC panel 
composed of CK20, CD44, p53, and KI-67) demonstrated a clear adjuvant value to morphology 
[14-16]. CD20 (cytoplasmatic) is widely recognized as the most reliable CIS associated marker 
[17]. KI67 (nuclear) is seen as an aggressiveness and prognostic indicator [18], usually evaluat-
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ed in connection with CD20 [19]. p53 (nuclear) is present in more than 50% of CIS cases and is 
often evaluated in conjunction with CD20 as well [20]. CD44 (membranous) is considered an 
exclusion marker [21,22]. Even with the help of IHC panels, a precise diagnostic is not always 
possible and many cases are still classified as AUS.    
Computational pathology (CP) help improving the histologic exam accuracy [23]. Digital image 
analysis (DIA) can assess any type of microscopic image, including IHC [24]. DIA consists of 
image data acquisition and ground truth generation, image analysis (object detection, segmen-
tation and recognition) and finally statistical evaluation of digital data [25]. When data is complex 
or equivocal, machine learning (ML) techniques can use mathematical models (algorithms) for 
statistical analysis. In the case of flat urothelial lesions diagnostic, CP can use an algorithm to 
analyze DIA data and generate associations in an objective, measurable and reproducible way.  
Our research objective was to evaluate how a decision tree algorithm can reclassify the AUS 
diagnostics after a supervised learning instruction process [26], using both morphology and IHC 
(4-panel) data.  

Material and methods 
In this retrospective non-interventional analysis, precursor urothelial diagnostics found over a 
period of 3 years were re-evaluated by the principal investigator. All cases had a similar histol-
ogy evaluation (Hematoxylin eosin and panel IHC) and were processed and stained using the 
same methodology (details concerning IHC characteristics and technique are provided in annex 
1). Aside demographic info (sex and age), no other clinical information was available for this 
study. 
Based on initial diagnostic classification, 2 datasets were created. An unequivocal “training” 
dataset (CIS, DL and RL) and equivocal “diagnostic” dataset (AUS). Images from both datasets 
were digitally analyzed in 2 steps: Data gathering (microscopic image capture, image segmenta-
tion, features measurement) was followed by data processing (data analysis, algorithm training 
and re-classification).  

Data gathering 
Microscopic images were captured using standard microscopy (objective x20 and x40, camera 
12MP) and stored on a desktop computer.  

1. For morphology analysis, x20 images were manually segmented [27,28] under 3 labels 
(details in annex 1, table 2a). Probability maps were evaluated with the help of an open 
source software [29]. Binary images were used for digital measurement of nuclear area 
surface and roundness (length over width ratio) (image 1). The nuclear differentiation 
area threshold was based on previously published data [30,31]. Structural changes of 
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layers and nuclear atypia were evaluated using a semiquantitative scale (yes, no), by 
direct observation on binary images.  

2. IHC markers evaluation was performed on x40 segmented images, in 2 steps. First, cy-
toplasmatic and nuclear markers images were segmented (3 or 4 labels). A Region of 
Interest (ROI) was delineated by human pathologist in an area of maximal stain intensity. 
An optical density index (ODI) was determined based on ROI histogram (image 2) [32]. 
Using a dedicated plugin (IHC profiler), the total stained surface was measured in terms 
of pixel intensity of DAB stain (image 3) [33]. Finally, an IHC stain index (SI) was calcu-
lated for each IHC marker (adding only high positive and positive pixels and multiplying 
the sum by ODI value).  

3. CD44, as membranous marker, was measured semi-quantitatively (positive, absent or 
patchy).  

Image 1. 

 
Image 1. Morphology analysis. (a) IHC image, Ki67, x20. (b) Segmented image (3 labels). (c) 
Binary image. Atypia {yes}, Layer preservation {yes}, Bar: 40 microns  
Image 2. 

 
Image 2. CD20 sampling process. (a) IHC stain x40. (b) Segmented image (4 labels). (c) Inten-
sity of staining inside ROI: histogram. Bar: 40 microns  
Image 3  
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Image 3. IHC index calculation. Cytoplasmatic marker surface measurement (%) with an open 
source software and a dedicated plugin (IHC profiler). Surface stained: 68.86% 

Data processing  

A random decision tree classification algorithm was used for re-classification of all AUS cases. 
The “training” dataset (including all cases with a clear diagnostic of CIS, RH, DL and 5 cases of 
normal urothelium - 50 instances) was considered ground truth and was used for algorithm 
training. The “diagnostic” dataset included all cases of equivocal atypia discovered in the clinic 
in the same period of time (50 instances).   

As both datasets were small (100 instances, 16 attributes each) we opted for an open source 
machine learning toolkit (WEKA) software solution that is widely accepted in bioinformatics, has 
a good graphical interface and requires no programming [34]. A random tree classification algo-
rithm was selected over the classic “c4.5” as graphical representation of the decision is as intu-
itive but cross validating classification results were better. Datasets attributes, quantification 
methodology and cross-validation results are detailed in annex 1. The structure of the random 
tree is presented in image 4.  

Based on intensity of stain for each marker, we recorded the percentage of positive cases in 
each group (SI threshold for CD20 and p53 > 50% and for Ki67 >15%). We also counted the 
concomitant presence of strong stain for each marker in neoplastic against non-neoplastic 
groups in both training and diagnostic sets.  

Image 4 
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Image 4. Decision tree algorithm, training dataset, classification criteria.   

Statistics.  

All data was stored in a standard spreadsheet. Numerical data (age, nuclear diameter and nu-
clear area) was analyzed using MedCalc Statistical software (version 19.0.7, MedCalc Software 
bvba, Ostend, Belgium). Basic statistic results were expressed as mean ± standard deviation. 
Differences between means were tested for significance with a p-value set at p<0.05.  

Ethics.  

Patients provided written, informed consent before surgery specifically agreeing with the pro-
cessing and analyze of the pathology urothelium samples. The retrospective, non interventional 
IHC study protocol was approved by the hospital IRB (1123/2020). 

Results 

From 256 existing urinary bladder biopsies over 3 years (188 men, 68 women), 191 neoplastic 
cases were selected. 71 of cases received a diagnosis of T1 and 18 of T2 muscular infiltrative 
carcinomas. 20 cases were classified as CIS, 8 cases were DL and 17 HL based on unequivo-
cal morphologic and IHC features. 50 cases with an initial AUS diagnostic, were re-classified 
based on ground truth morphologic and IHC characteristics in 20 CIS, 17 DL and 13 RH. Re-
sults are summarized in table 1 (training dataset) and table 2 (diagnostic dataset). 

Table 1
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Table 1. Training dataset measurement results (*p<0.05, **p<0.0001 when compared to CIS nu-
clear area) (CD44: y=yes, pt=patchy, n=no)

Table 2

Training set

CIS DL HL Normal

Nr. 20 8 17 5

Sex 1f/19m 0f/8m 3f/14m 2f/3m

Age 73.75+6.7 73.38+6.5 67.82+8.3 63.4+10.6

Nuclear Area (µ2) 59.42+4.9 54.54+0.9* 49.09+5.4** 32.47+1.4

Layer preservation 20% 37.50% 75% 100%

Nuclear Roundness 0.59+0.02 0.57+0.02 0.54+0.02 0.49+0.01

Cell Atypia 95% 35% 17.60% 0%

CK20 Superficial 5% 12.50% 58.80% 80%

CK20 SI 49.69+11.7 44.3+13.9 9.56+9.4 1.24+0.43

p53 Negative 10% 12.50% 58.80% 100%

p53 SI 37.02+17.5 38.53+13.4 17.00+12.6 3.45+1.3

Ki67 Negative 10% 12.50% 53% 80%

Ki67 SI 14.36+5.1 10.65+3.06 7.58+1.8 4.52+2.9

CD44 0%y/5%pt/95%n 0%/25%pt/75%n 83%y/17%pt/0%n 75%y/25%pt/0%n

Diagnostic set

CIS DL HL

No 20 17 13

Sex 2f/18m 2f/15m 0f/13m

Age 71.05+5.6 72.71+7.3 69.61+7.9

Nuclear Area (µ2) 57.95+5.02 50.72+5.36** 45.25+4.3**

Layer preservation 40% 17% 46%
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Table 2 Diagnostic dataset. Measurement results after reclassification (*p<0.05, **p<0.0001 
when compared to CIS nuclear area) (CD44: y=yes, pt=patchy, n=no)

Discussion

Urothelial carcinoma is the 10th most common and the second most frequent genitourinary ma-
lignancy, worldwide [35]. As urothelial carcinoma has a high recurrence rate, an early, precise 
differentiation of precursor neoplasms from benign reactive atypia is critical [36]. Because many 
flat lesions morphologic and IHC features may overlap or are shared by normal urothelium, the 
diagnostic is sometimes equivocal with a possible increase of medico-legal risk [37].  
   
Our research objective was to evaluate how a machine learning algorithm can reclassify am-
biguous precursor flat lesions diagnostics that were previously included under the AUS diagnos-
tic category. A random decision tree classification algorithm was trained using data from all un-
equivocal flat lesions diagnosed in our unit over 3 years (20 CIS, 17 HL, 8 DL). 5 normal urothe-
lium IHC stained tissue were also included in the training dataset for classification purposes 
only. The training process used both morphologic and a “classic” 4-markers IHC panel data.  
Both datasets (training and a diagnostic) were digitally evaluated using open label software and 
affordable computational technology.  
Based on classification information provided in the training dataset, the random tree algorithm 
reclassified the diagnostic dataset (50 AUS cases). 20 CIS, 17 DL and 13 HL possible diagnos-
tics were suggested. 
In the classification process, as expected, the nuclear area played a central role in differentiat-
ing precursor malign from benign diagnostics. Further, layer preservation, circularity and IHC 

Nuclear Roundness 0.59+0.03 0.58+0.03 0.57+0.04

Cell Atypia 35% 47% 30.70%

CK20 Superficial 0% 0% 38.50%

CK SI 38.64+13.9 43.16+9.37 19.82+14.4

p53 Negative 35% 11.70% 38.50%

p53 SI 26.1+19.8 29.04+13.1 21.27+16.61

Ki67 Negative 25% 35.25% 30.70%

Ki67 SI 8.53+4.66 7.35+5.04 7.051+3.9

CD44 0%y/0%pt/100%n 0%y/11%pt/89%n 0%y/46%pt/54%n
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calculated index were used at different levels of classification. Reported differences between the 
nuclear area measured in diagnostic set were by 9.7% smaller than in the training set (p=0.35), 
making human optical measurement and differentiation difficult. Similar difficulties were noticed 
for all other morphologic classification criteria. 
The specific performance of the IHC panel was analyze based on percentage of strong SI for 
each marker in each set. Results are presented in table 4. In the training set, CIS/DL group had 
a 3-markers strong positivity in 23.75% of cases and of 2-markers in 56.25% of cases. In the 
diagnostic dataset only 7.5% of cases had 3-markers and 27% a 2-markers strong presence. 
For HL patients, results were negative for all inclusion markers except Ki67 in 5 cases. All cases 
in the diagnostic dataset were CD44 negative (13 cases were considered “patchy”).  

Table 4           

Table 4 IHC panel performance based on staining intensity for different diagnostic groups in 
training and diagnostic datasets (after ML re-classification)   

Overall, the random tree algorithm classification had a good performance (74% correctly classi-
fied, 93% accuracy, 76% precision) when measured against the ground truth. The receiver op-
erating characteristics (ROC) for CIS was 0.817, for DL was 0.741 and for HL 0.866. Important, 
only 3 cases were “false negative” (one CIS and one DL cases were classified as HL and one 
HL as DL) (confusion matrix table 3). 

CIS train CIS dg DL train DL dg HL train HL dg

CK20+ 
(Si>50)

70.00% 30.00% 50.00% 30.00% 0.00% 0.00%

p53+ 
(SI>50)

45.00% 25.00% 0.00% 17.00% 0.00% 0.00%

Ki67+ 
(SI>15)

50.00% 35.00% 65.00% 17.50% 0.00% 5.00%

CD44  
(yes, 
patchy, no)

0%/5%/
95%

0%/0%/
100%

0%/25%/
75%

0%/11%/
89%

83%/17%/
0%

0%/46%/
54%
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Table 3 

Table 3. Confusion matrix, Random tree classification, training data set, (*) false negative cases 
meaning malign cases classified as benign or benign as malign. Mis-classification within same 
classes were not penalized (CIS as DL or HL as normal) 

In conclusion, urothelial flat lesion classification can be a diagnostic challenge on bioptic materi-
al. Usually, a distinction between malign and benign cases is made using morphologic features 
and IHC is used mainly for confirmatory reasons. Both diagnostic methods are subjective and 
may have inter and intra observational variability and may generate ambiguous diagnostics. Our 
objective was to evaluate how CP can be used to circumvent flat lesions diagnostics uncertainty. 
Digital data from 45 unequivocal urothelial flat lesions data were used for training a ML algo-
rithm (random tree). Main criteria for algorithm classification were morphological and a calculat-
ed IHC stain index coming from a classical panel of 4 IHC markers. The performance of the 
classification algorithm was good: 93% accuracy and 76% precision, averaged ROC 0.828. 
Only 3 cases were classified as “false negative”.  Based on this “ground truth”, 50 equivocal di-
agnostics (AUS) were reclassified as 40% CIS, 34% DL and 26% HL. The IHC panel perfor-
mance in classification was finally judged based on each of the 4 markers SI: in the training set, 
the panel performed well but in the diagnostic set, the performance was overall low.  

Main limitations of this study are the low number of analysed cases (explaining the 76% preci-
sion rate), the deliberate absence of clinical data, absence of genomic information and the use 
of a non-customizable classification algorithm. The number of flat urothelial lesions is low and 
reflects the rarity of this diagnostic in everyday uro-pathology practice. The absence of clinical 
data is an important clinical limitation as many of flat lesions are recurrent. Long term clinical 
follow-up of cases, use of a molecular phenotyping information and a customized classification 
algorithm may further improve classification precision. 

Confusion matrix

a b c d e Classified as:

14 1* 0 5 0 a = CIS

0 14 0 1* 2 b = HL

0 0 0 0 0 c = AUS

2 1* 0 5 0 d = DL

0 1 0 0 4 e = Norm 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.04.20206524doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.04.20206524
http://creativecommons.org/licenses/by/4.0/


In flat atypia equivocal cases, CP can be a support for diagnostics, as it may handle multiple 
data attributes in a fast, effective and precise way.  
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Annex 

Table 1a 

Table 1a. IHC Markers Characteristics 

Histologic staining was performed on 4-µm-thick sections from formalin-fixed, 

paraffin-embedded tissue blocks. 

Table 2a 

Table 2a IHC Segmentation labels  

Table 3a 

Table 3a Morphologic threshold for DIA measurements in different flat urothelial lesions 

AB CLONE DILUTION DETECTION CRO-
MOGEN

Company

Ki67 MM1 1:100/1:20
0

MACH	4	
(PROBE+POLYMER)

DAB BIOCARE	MED-
ICAL

CK20 Ks20,8 1:100/1:20
0

MACH	2	(POLYMER) DAB BIOCARE	MED-
ICAL

p53 Y5 1:100/1:20
0

MACH	2	(POLYMER) DAB BIOCARE	MED-
ICAL

CD44 156-3C11 RTU MACH	2	(POLYMER) DAB BIOCARE	MED-
ICAL

Segmentation x20 IHC atypia cells, normal cells, back-

ground 

Segmentation x40 Cytoplasm, atypia nucleus, normal nucle-

us, background

Category Lymphocyte Normal 

Urothelium

Hyperplastic Dysplastic CIS

Nucleus 1 x2 x2.3 x2.9 x4.5
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Table 4a 

Table 4a Attributes and quantification methods used in algorithm training and classification 

datasets (CIS: carcinoma in situ, Hp: Reactive Hyperplasia, AUS: atypia of unknown signifi-

cance, Dys: dysplasia, Norm: Normal urothelium)    

Details of classification accuracy – training set 

=== Detailed Accuracy By Class === 

TP_Rate FP_Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 
0.700    0.067    0.875      0.700    0.778      0.665    0.817     0.732     CIS 
0.824    0.091    0.824      0.824    0.824      0.733    0.866     0.738     Hp 

   ? 0.000     ?     ?   ?    ?  ? ?        AUS? 
0.625    0.143    0.455      0.625    0.526      0.427    0.741     0.344     DL 

Attribute Quantification

Sex {f, m}

Age numeric

Area numeric

Structure {Yes, No,}

Circularity Numeric

Atypia {0, 1, 2}

CK20_superficial {Yes, No}

CK20_index numeric

p53 _negative {Yes, No}

p53 _index numeric

Ki67 _negative {Yes, No}

Ki67_index numeric

CD44 {No, Yes, Patchy}

Dg {CIS, Hp, AUS, DL, Norm}
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0.800    0.044    0.667      0.800    0.727      0.698    0.878     0.553     Norm 
Weighted Avg.    0.740    0.085    0.769      0.740    0.748      0.653    0.828     0.654      

=== Confusion Matrix === 

  a b c d e   <-- classified as 
 14 1 0 5 0 |  a = CIS 
  0  14 0 1 2 |  b = Hp 
  0   0 0 0 0 |  c = AUS? 
  2 1 0 5 0 |  d = DL 
  0 1 0 0 4 |  e = Norm 

No AUS data was provided for training in order to avoid the risk of overfitting. Neoplastic cases (CIS and DL) were 
considered false negative only if classified as benign. 7% of neoplastic and 5.8% of benign cases were falsely classi-
fied as negative.   
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