
Supplementary material about 
segmentation for the paper “Integration 
of clinical characteristics, lab tests and 
a deep learning CT scan analysis to 

predict severity of hospitalized 
COVID-19 patients.”  



Annotation scenario of CT scans by radiologists  
Two radiologists (4 and 9 years of experience) examined and annotated 307 anonymized             

chest scans independently and without access to the patient's clinic or COVID-19 PCR             

results. All CT images were viewed with lung window parameters (width, 1500 HU; level,              

-550 HU) using the SPYD software developed by Owkin. Regions of interest were annotated              

by the radiologists in four distinct classes : healthy pulmonary parenchyma, ground glass             

opacity, consolidation, crazy-paving. The presence of organomegaly was also notified when           

present, as a binary class. When multiple CT images were available for a single patient, the                

image to analyze was selected using the SPYD software. One AI and imaging PhD student               

also provided full 3D annotation of the four classes on 22 anonymized chest scans using the                

3D Slicer software.  

 
Method to segment CT-scans 
The model used to perform segmentation and compute the AI-​segment score was based on              

3 segmentation networks: 3D Resnet50​(Hara, Kataoka, and Satoh 2017) , 2.5D U-Net, and             

2D U-Net ​(Ronneberger, Fischer, and Brox 2015)​. U-Net consists of convolution, max            

pooling, ReLU activations, concatenation and up-sampling layers with sections: contraction,          

bottleneck, and expansion (Supp Fig segmentation 1). ResNet contains convolutions, max           

pooling, batch normalization, and ReLU layers that are grouped in multiple bottleneck            

blocks. All models were trained on CT scans provided by Kremlin-Bicêtre (KB) and             

evaluated on annotated CT scans from Institut Gustave Roussy (IGR). The dataset was             

divided into two categories: Fully Annotated Scans (FAS) composed of 22 scans (8 from KB               

and 14 from IGR) and Partially Annotated Scans (PAS) composed of 307 scans (176 from               

KB and 131 from IGR). PAS contains a total of ​7,374 annotated slices and ​24,476,521               

annotated pixels, i.e. 24 slices per PAS and 3,319 pixels annotated per slice on average.  

 

 
 

https://paperpile.com/c/RSOgSS/qTlTG
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Supp Fig segmentation 1: architecture of the segmentation model- ​Proposed pipeline to 
generate lesion volumetry estimates from patient CT scans employing ensemble of segmentation 
networks. Normalized patient scans are provided to our trained 2.5D U-Net and 3D ResNet50. The 
masks predicted from both models are then merged by arithmetic mean. In parallel, we segment 
left-right lungs from the patient scans using a dedicated U-Net. Finally, the left-right lung mask is used 
to mask-out lesions in left and right lungs from the ensemble output. This pipeline utilizes the 
complementary features learned by a weak model (2.5D U-Net) and a strong one (3D ResNet50). 
 

 

2D U-Net was trained for left/right lung segmentation and 3D ResNet and 2.5D U-Net were               

used for lesion segmentation. 3D ResNet50 was trained on 8 KB FAS (i.e. ​3,704 slices)​.               

Inputs for the 3D ResNet consist of a height and a width of 128, and a depth of 32. We                    

initialized the 3D ResNet with pretrained weights ​(Chen, Ma, and Zheng 2019)​. We then              

trained the network with Stochastic Gradient Descent for parameter optimization and an            

initial learning rate of 0.1 with a decay factor of 0.1 every 20 epochs. The network was                 

trained for a total of 100 epochs. For the 2.5D U-Net, we first pretrained the network on a                  

left-right lung segmentation task using the LCTCS dataset ​(Yang et al. 2018)​. The network              

was then trained on the KB dataset using Adam optimization algorithm with a learning rate,               

weight decay, gradient clipping and learning rate decay parameters of 1e-3, 1e-8, 1e-1, and              

0.1 (applied at epochs 90 and 150) for 300 epochs. While the validation set remains the                

same as when evaluating the 3D resnet50 model, 176 KB PAS scans were added to the 8                 

KB FAS, in the training set. PAS were only added to the 2.5D U-Net training set due to the                   

incompleteness of the annotated volume in the scans which would not satisfy the volumetric              

https://paperpile.com/c/RSOgSS/tnOMX
https://paperpile.com/c/RSOgSS/ZNyoM


requirements of the 3D ResNet50 input. Finally, for the left/right lung segmentation, the 2D              

U-Net was trained on the 8 KB FAS. Similarly to 2.5D U-Net, Adam optimization algorithm               

was used with a learning rate, weight decay, gradient clipping, learning rate decay, and              

number of epochs of 1e-3, 1e-8, 1e-1, 0.1 (applied at epoch 70), and 104. Both 2.5D U-Net                 

and 2D U-Net used affine transformation and contrast change for data augmentation while             

3D ResNet50 used affine transformation, contrast change, thin plate splines, and flipping. 3D             

ResNet and 2.5D U-Net are trained through the minimization of a cross entropy loss and 2D                

U-Net minimized a binary cross entropy loss. All training was performed on NVIDIA Tesla              

V100 GPUs using Pytorch as a coding framework. During the validation phase, ensemble             

inference​(Baldeon Calisto and Lai-Yuen 2020) was performed on all available scans by            

averaging lesion masks, which were predicted from the 3D ResNet and 2.5D U-Net models,              

using arithmetic mean. 

 

We evaluated the segmentation model on three distinct aspects. First, we evaluated its             

ability to perform accurate segmentation. To this aim, we computed F1 scores for the PAS               

(partially annotated scans) and FAS (fully annotated scans), of the IGR test set, when              

discriminating lesions versus sane areas inside the lung. Micro-averaging was used to limit             

the effect of class imbalance for the three different lesion types. We also reported the               

accuracy to discriminate background versus lung regions using FAS where background           

regions outside of the lung were annotated. Second, we evaluated its ability to estimate the               

proportion of each lesion type per scan. To this aim, we computed the median, minimum and                

maximum of the absolute value of the difference between the ground truth percentage of              

each lesion type obtained from radiologists’ annotations and the estimated ones, on the 14              

available FAS of the IGR dataset. Third, we evaluated to what extent the segmentation              

model reproduces the analysis reported by radiologists. To this aim, we first compared the              

binary decision ‘presence or absence of a lesion type’ of the network to the radiologist report                

considered as ground truth. A lesion type was detected by the segmentation model when its               

estimated volumetry, averaged over both lungs, was above a certain threshold. The            

difference was then evaluated in terms of detection accuracy and F1 score, for two threshold               

values, using all scans of the IGR dataset (Supp Table segmentation 1). Then, we compared               

disease extent as evaluated by radiologists to the one predicted by the neural network (Supp               

Fig 3)​. 

 
 
 

https://paperpile.com/c/RSOgSS/HW0DX


 
Supp Fig segmentation 2​: ​Axial chest CT scans and segmentation results COVID-19 radiology patterns,              
as provided by the neural network model for segmentation, for 3 patients with COVID-19. Green/transparent:               
sane lung; blue: GGO; yellow : crazy paving; red: consolidation. (Top) Patient with diffuse distribution, and                
multiple large regions of subpleural GGO with consolidation to the right and left lower lobe. Estimated disease                 
extent by AI: 69%/47% (right/left). Radiologist report: critical stage of COVID-19 (stage 5). (Middle) Patient with                
diffuse distribution and multiple large regions of subpleural GGO with superimposed intralobular and interlobular              
septal thickening (crazy paving). Estimated disease extent by AI: 51%/68% (right/left). Radiologist report: severe              
stage of COVID-19 (stage 4). (Bottom) Patient with minimal impairment, and multiple small regions of subpleural                
GGO with consolidation to the right lower lobe. Estimated disease extent 13%/7% (left/right). Radiologist report:               
moderate stage of COVID-19 (stage 2). 



 
 

 GGO Crazy paving Consolidation 

Accuracy (1% thresh.) 0.7951 0.7684 0.6167 

F1 Score  (1% thresh.) 0.8848 0.6452 0.7473 

Accuracy (2% thresh.) 0.7876 0.7692 0.6667 

F1 Score  (2% thresh.) 0.8800 0.6182 0.7848 

 
Supp Table segmentation 1: Detection accuracy and F1 scores of the segmentation model             
when considering the radiologist report as ground truth​. ​The binary decision used to compute the               
score is “presence or not of a lesion type”​. ​Accuracy and F1 score are averaged over the IGR                  
validation set​. We compared, for each patient of the IGR validation set, detection obtained using                
AI​-segment ​to the information provided in the standardized radiologist report. When using the neural              
network, a lesion type is considered as present when its relative volume w.r.t. the full volume of both                  
lung, is above a certain threshold indicated into parenthesis in the 1st column of the table. 
 
 

Variable Center Odds ratio ​(95% 
lower - 95% upper) 

P-value P-value Stouffer 

GGO AI KB 0.61 (0.51,0.73) 3.57e-08  
1.37e-08 

GGO AI IGR 0.77 (0.54,1.10) 0.15 

Crazy Paving AI KB 1.60 (1.29,1.99) 1.74e-05  
7.10e-06 

Crazy Paving AI IGR 1.31 (0.92,1.87) 0.13 

Consolidation AI KB 1.51 (1.27,1.79) 2.85e-06  
1.32e-06 

Consolidation AI IGR 1.27 (0.89,1.82) 0.19 

Disease extent AI KB 2.15 (1.77,2.60) 7.90e-15  
1.92e-16 

Disease extent AI IGR 1.90 (1.30,2.79) 9e-4 

 

Supp Table segmentation 2​: ​Association between severity and amount of lesions inferred by             

the segmentation model. ​For disease extent, we consider the proportion of lung volume. For the               

other three variables (GGO, consolidation, crazy paving), we normalize them by disease extent so              

that each variable measures the proportion of the corresponding lesion.   

 

 



 

 

Segmentation results for CT-scans of hospitalized COVID-19 patients 

The segmentation model provides automatic quantification ​of the volume of lesions,           

expressed as a percentage of the full lung volume (see Supp Fig segmentation 2). These               

patterns included the three distinguishable features that appear as disease severity           

progresses: ground glass opacity (GGO), crazy paving, and finally consolidation. The model            

was trained on 184 patients from KB hospital (8 fully annotated scans, 176 partially              

annotated ones) and evaluated on 145 patients from IGR hospital (14 fully annotated scans              

and 131 partially annotated ones). To evaluate the segmentation network, we first compared             

its performance to that of radiologists manual annotation. The segmentation network           

discriminated lung regions from regions outside of the lung with an accuracy of 99.9% when               

evaluated on the fully annotated scans. Within the lung, the model's ability to discriminate              

between lesions and healthy areas had F1 values of 0.85 and 0.98 on partially and fully                

annotated scans. In the fully annotated scans, the predicted volumes of each lesion type had               

relative errors (median [min-max]) of 3.77% [0.054%-14%] for GGO, 0.96% [0.058%-4.4%]           

for consolidation, and 5.92% [0.41%-13%] ​for sane lung (no crazy paving was present in              

these scans). We next compared the segmentation network to the information contained in             

the radiology reports. The F1 score measuring the ability of the network to detect the               

presence of a lesion type per patient, was of 0.88 for GGO, 0.65 for crazy paving, and 0.75                  

for consolidation (Supp Table segmentation 1). Correlation between quantification of the           

proportion of lesions with the network ​and the radiologist evaluation was of 0.56 ​(Supp Fig               

3). Inspection of visual results were also consistent with radiologist observations (see Supp             

Fig segmentation 2 for three representative cases). We lastly evaluated to what extent the              

segmentation network provided biomarkers of future severity (Supp Table 2 segmentation).           

We found that severity was significantly associated to GGO extent (OR KB = 0.61              

(0.51,0.73), OR IGR = 0.77 (0.54,1.10), P​Stouffer = 1.37e-08), crazy paving extent (OR KB =               

1.60 (1.29-1.99), OR IGR = 1.31 (0.92,1.87), P​Stouffer = 7.10e-06), consolidation extent (OR             

KB = 1.51 (1.27,1.79), OR IGR = 1.27 (0.89,1.82), P​Stouffer = 1.32e-06) as well as total                

disease extent (OR KB = 2.15 (1.77,2.60), OR IGR = 1.90 (1.30,2.79), P​Stouffer = 1.92e-16)               

(accounting for multiple testing). 
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