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 2 

Abstract 23 

Extensive virological testing is central to SARS-CoV-2 containment, but many settings face 24 

severe limitations on testing. Group testing offers a way to increase throughput by testing 25 

pools of combined samples; however, most proposed designs have not yet addressed key 26 

concerns over sensitivity loss and implementation feasibility. Here, we combine a 27 

mathematical model of epidemic spread and empirically derived viral kinetics for SARS-CoV-28 

2 infections to identify pooling designs that are robust to changes in prevalence, and to ratify 29 

losses in sensitivity against the time course of individual infections. Using this framework, we 30 

show that prevalence can be accurately estimated across four orders of magnitude using only 31 

a few dozen pooled tests without the need for individual identification. We then exhaustively 32 

evaluate the ability of different pooling designs to maximize the number of detected infections 33 

under various resource constraints, finding that simple pooling can identify up to 20 times as 34 

many positives compared to individual testing with a given budget. We illustrate how pooling 35 

affects sensitivity and overall detection capacity during an epidemic and on each day post 36 

infection, finding that sensitivity loss is mainly attributed to individuals sampled at the end of 37 

infection. Crucially, we confirm that our theoretical results can be accurately translated into 38 

practice using pooled human nasopharyngeal specimens. Our results show that accounting 39 

for variation in sampled viral loads provides a nuanced picture of how pooling affects sensitivity 40 

to detect epidemiologically relevant infections. Using simple, practical group testing designs 41 

can vastly increase surveillance capabilities in resource-limited settings.  42 
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Introduction 43 

The ongoing pandemic of SARS-CoV-2, a novel coronavirus, has caused over 24 million 44 

reported cases of coronavirus disease 2019 (COVID-19) and 800,000 reported deaths 45 

between December 2019 and August 2020. (1) Although wide-spread virological testing is 46 

essential to inform disease status and where outbreak mitigation measures should be targeted 47 

or lifted, sufficient testing of populations with meaningful coverage has proven difficult. (2–7) 48 

Disruptions in the global supply chains for testing reagents and supplies, as well as on-the-49 

ground limitations in testing throughput and financial support, restrict the usefulness of testing–50 

both for identifying infected individuals and to measure community prevalence and epidemic 51 

trajectory. While these issues have been at the fore in even the highest-income countries, the 52 

situation is even more dire in low income regions of the world. Cost barriers alone mean it is 53 

often simply not practical to prioritize community testing in any useful way, with the limited 54 

testing that exists necessarily reserved for the healthcare setting. These limitations urge new, 55 

more efficient, approaches to testing to be developed and adopted both for individual 56 

diagnostics and to enable public health epidemic control and containment efforts. 57 

Group or pooled testing offers a way to increase efficiency by combining samples into a 58 

group or pool and testing a small number of pools rather than all samples individually. (8–10) 59 

For classifying individual samples, including for diagnostic testing, the principle is simple: if a 60 

pool tests negative, then all of the constituent samples are assumed negative. If a pool tests 61 

positive, then the constituent samples are putatively positive and must be tested again 62 

individually (Fig. 1A). Further efficiency gains are possible through combinatorial pooling, 63 

where, instead of testing every sample in every positive pool, each sample can instead be 64 

represented across multiple pools and potential positives are identified based on the pattern 65 

of pooled results  (Fig. 1B). (9,10)  66 
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Simple pooling designs can also be used to assess prevalence without individual specimen 67 

identification (Fig. 1C). It has already been shown that the frequency of positive pools can 68 

allow estimation of the overall prevalence. (11) Crucially however, we show here that 69 

prevalence estimates can be greatly honed by considering quantitative viral loads measured 70 

in each positive pool, rather than simply using binary results (positive / negative). In short, the 71 

viral (RNA) load measurement from a pool is proportional to the sum of the (diluted) viral loads 72 

from each positive sample in the pool. Thus, here we show how evaluating the viral loads 73 

greatly improves potential efficiency gains in prevalence estimates by providing crucial 74 

information on the estimated number of positive samples in the pool – when the expected 75 

distribution of viral loads across specimens is known, which is easily measured empirically in 76 

a given lab. (12,13) Although this approach requires more complex statistical methods, the 77 

efficiency gains for public health surveillance can be large, and simplifying templates can be 78 

produced to improve ease of use and access to these types of analyses. The outcome is a 79 

highly efficient method for estimating population prevalence and enabling robust public health 80 

surveillance where it was previously out of reach.  81 

Whilst the literature on theoretically optimized pooling designs for COVID-19 testing has 82 

grown rapidly, formal incorporation of biological variation (i.e., viral loads) and incorporation 83 

of general position along the epidemic curve, has received little attention. (14–17) Test 84 

sensitivity for example is not a fixed value, but depends on viral load, which can vary by 85 

many orders of magnitudes across individuals and over the course of an infection. (18–20) 86 

This large variation within a single infection affects sensitivity to detect infections at different 87 

points in the disease course, which has implications for appropriate intervention and the 88 

interpretation of a viral load measurement from a sample pool.  89 

Here, we comprehensively evaluate designs for pooled testing of SARS-CoV-2 whilst 90 

accounting for epidemic dynamics and variation in viral loads arising from viral kinetics and 91 

extraneous features such as sampling variation. We demonstrate efficient, logistically feasible 92 
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pooling designs for individual identification (i.e., diagnostics) and prevalence estimation (i.e., 93 

population surveillance). To do this, we use realistic simulated viral load data at the individual 94 

level over time, representing the entire time course of an epidemic to generate synthetic data 95 

that reflects the true distribution of viral loads in the population at any given time of the 96 

epidemic. We then used these data to derive optimal pooling strategies for different use cases 97 

and resource constraints in-silico. Finally, we demonstrate the approach using discarded de-98 

identified human nasopharyngeal swabs initially collected for diagnostic and surveillance 99 

purposes.  100 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 6 

 101 

Fig. 1. Group testing designs for sample identification or prevalence estimation. In group 102 

testing, multiple samples are pooled and tests are run on one or more pools. The results of 103 

these tests can be used for identification of positive samples (A, B) or to estimate prevalence 104 

(C). (A) In the simplest design for sample identification, samples are partitioned into non-105 

overlapping pools. In stage 1 of testing, a negative result (Pool 2) indicates each sample in 106 

that pool was negative, while a positive result (Pool 1) indicates at least one sample in the 107 

pool was positive. These putatively positive samples are subsequently individually tested in 108 

stage 2 to identify positive results. (B) In a combinatorial design, samples are included in 109 

multiple pools as shown in stage 1. All samples that were included in negative pools are 110 

identified as negative, and the remaining putatively positive samples that were not included in 111 

any negative test are tested individually in stage 2. (C) In prevalence estimation, samples are 112 

partitioned into pools. The pool measurement will depend on the number and viral load of 113 

positive samples, and the dilution factor. The (quantitative) results from each pool can be used 114 
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to estimate the fraction of samples that would have tested positive, had they been tested 115 

individually.  116 
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Results 117 

Modelling a synthetic population to assess pooling designs 118 

To identify optimal pooling strategies for distinct scenarios, we required realistic estimates of 119 

viral loads across epidemic trajectories. We developed a population-level mathematical model 120 

of SARS-CoV-2 transmission that incorporates empirically measured within-host virus 121 

kinetics, and used these simulations to generate population-level viral load distributions 122 

representing real data sampled from population surveillance, either using nasopharyngeal 123 

swab or sputum samples (Fig. 2). Full details are provided in Materials and Methods and 124 

Supplementary Material 1, sections 1-4. These simulations generated a synthetic, realistic 125 

epidemic with a peak daily per incidence of 19.5 per 1000 people, and peak daily prevalence 126 

of RNA positivity (viral load greater than 100 virus RNA copies per ml) of 265 per 1000 (Fig. 127 

2E). We used these simulation data to evaluate optimal group testing strategies at different 128 

points along the epidemic curve for diagnostic as well as public health surveillance, where the 129 

true viral loads in the population is known fully.  130 
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 131 

Fig. 2: Viral kinetics model fits, simulated infection dynamics and population-wide viral 132 

load kinetics. (A) Schematic of the viral kinetics and infection model. Individuals begin 133 

susceptible with no viral load, acquire the virus from another infectious individual (exposed), 134 

experience an increase in viral load and possibly develop symptoms (infected), and finally 135 

either recover following viral waning or die (removed). This process is simulated for many 136 

individuals. (B) Model fits to time-varying viral loads in swab samples. The black dots show 137 

observed log10 RNA copies per swab; solid lines show posterior median estimates; dark 138 

shaded regions show 95% credible intervals (CI) on model-predicted latent viral loads; light 139 

shaded regions show 95% CI on simulated viral loads with added observation noise. The blue 140 

region shows viral loads before symptom onset and red region shows time after symptom 141 

onset. The horizontal dashed line shows the limit of detection. (C) Distribution of positive viral 142 

loads from 10,000 individuals sampled at day 140. (D) 25 simulated viral loads over time. The 143 
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heatmap shows the viral load in each individual over time. (E) Simulated infection incidence 144 

and prevalence of virologically positive individuals from the SEIR model. Incidence was 145 

defined as the number of new infections per day divided by the population size. Prevalence 146 

was defined as the number of individuals with viral load > 100 (log10 viral load > 2) in the 147 

population divided by the population size on a given day. (F) As in (D), but for 500 individuals. 148 

The distribution of viral loads reflects the increase and subsequent decline of prevalence. We 149 

simulated from inferred distributions for the viral load parameters, thereby propagating 150 

substantial individual-level variability through the simulations.  151 
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Improved testing efficiency for estimating prevalence 152 

We developed a statistical method to estimate prevalence of SARS-CoV-2 based on cycle 153 

threshold (Ct) values measured from pooled samples (Materials and Methods), potentially 154 

using far fewer tests than would be required to assess prevalence based on number of 155 

positive samples identified. We used our synthetic viral load data to assess inferential 156 

accuracy under a range of sample availabilities and pooling designs. Across the spectrum of 157 

simulated pools and tests we found that simple pooling allows accurate estimates of 158 

prevalence across at least four orders of magnitude, ranging from 0.02% to 20%, with up to 159 

400-times efficiency gains (i.e., 400 times fewer tests) than would be needed without pooling 160 

(Fig. 3). For example, in a population prevalence study that collects ~2,000 samples, we 161 

accurately estimated infection prevalences as low as 0.05% by using only 24 total qPCR 162 

tests (i.e., 24 pools of 96 samples each; Fig. 3A; Fig. S1). Importantly, because the 163 

distribution of Ct values may differ depending on the sample type (sputum vs. swab), the 164 

instrument, and the phase of the epidemic (growth vs. decline, Fig. S2), in practice, the 165 

method should be calibrated to viral load data (i.e., Ct values) specific to the laboratory and 166 

instrument (which can differ from one laboratory to the next) and the population under 167 

investigation. 168 

Estimation error arises in two stages: sample collection effects, and as part of the inference 169 

method (Fig. 3B). Error from sampling collection became less important with increasing 170 

numbers of positive samples, which occurred with increasing population prevalence or by 171 

increasing the total number of tested samples (Fig. 3B; Fig. S2). At very low prevalence, 172 

small sample sizes (N) risk missing positives altogether or becoming biased by false 173 

positives. We found that accuracy in prevalence estimation is greatest when population 174 

prevalence is greater than 1/N and that when this condition was met, partitioning samples 175 

into more pools always improves accuracy (Fig. S2). In summary, very accurate estimates of 176 
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prevalence can be attained using only a small fraction of the tests that would be needed in 177 

the absence of pooling.  178 
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 179 

Fig. 3: Estimating prevalence from a small number of pooled tests. In prevalence estimation, 180 

a total of N individuals are sampled and partitioned into b pools (with n=N/b samples per pool). 181 

The true prevalence in the entire population (x-axis in A) varies over time with epidemic 182 

spread. Population prevalences shown here are during the epidemic growth phase. (A) 183 

Estimated prevalence against true population prevalence using 100 independent trials 184 

sampling N individuals at each day of the epidemic. Each facet shows a different pooling 185 

design (more pooling designs shown in Fig. S1). Dashed grey lines show one divided by the 186 

sample size, N. (B) For a given true prevalence (x-axis, blue points), estimation error is 187 

introduced both through binomial sampling of positive samples (red points) and inference on 188 

the sampled viral loads (green points). Sampling variation is a bigger contributor at low 189 

prevalence and low sample sizes. When prevalence is less than one divided by N (grey 190 

boxes), inference is less accurate due to the high probability of sampling only negative 191 

individuals or inclusion of false positives.  192 
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Pooled testing for individual identification 193 

We next analyzed effectiveness of group testing for identifying individual sample results at 194 

different points along the epidemic curve with the aim of identifying simple, efficient pooling 195 

strategies that are robust to a range of prevalences (Fig. 1A&B). Using the simulated viral 196 

load data described in Materials and Methods, we evaluated a large array of pooling designs 197 

in silico (Table S1). Based on our models of viral kinetics and given a PCR limit of detection 198 

of 100 viral copies per ml, we first estimated a baseline sensitivity of conventional (non-pooled) 199 

PCR testing of 85% during the epidemic growth phase (i.e., 15% of the time we sample an 200 

infected individual with a viral load greater than 1 but below the LOD of 100 viral copies per 201 

mL, Fig. 4A), which largely agrees with reported estimates. (21,22) This reflects sampling 202 

during the latent period of the virus (after infection but prior to significant viral growth) or in the 203 

relatively long duration of low viral titers during viral clearance.  204 

Sensitivity of pooled tests, relative to individual testing, is affected by the dilution factor of 205 

pooling and by the population prevalence – with lower prevalence resulting in generally 206 

lower sensitivity as positives are diluted into many negatives (Fig. 4A). The decrease in 207 

sensitivity is roughly linear with the log of the dilution factor employed, which largely depends 208 

on the number and size of the pools and, for combinatorial pooling, the number of pools that 209 

each sample is placed into (Fig. S3A-C).  210 

There is a less intuitive relationship between sensitivity and prevalence as it changes over the 211 

course of the epidemic. Early in an epidemic there is an initial dip in sensitivity for both 212 

individual and pooled testing (Fig. 4A). Early during exponential growth of an outbreak, a 213 

random sample of infected individuals will be sampled closer to their peak viral load, while 214 

later on there is an increasing mixture of newly infected with individuals with lower viral loads 215 

at the tail end of their infection. We found that this means at peak prevalence, sensitivity of 216 

pooled testing increases as samples with lower viral loads, which would otherwise be missed 217 
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due to dilution, are more likely to be ‘rescued’ by coexisting in the same pool with high viral 218 

load samples and thus get individually retested (at their undiluted concentration) during the 219 

validation stage. During epidemic decline, fewer new infections arise over time and therefore 220 

a randomly selected infected individual is more likely to be sampled during the recovery phase 221 

of their infection, when viral loads are lower (Fig. S4D). Overall sensitivity is therefore lower 222 

during epidemic decline, as more infected individuals have viral loads below the limit of 223 

detection; during epidemic growth (up to day 108), overall sensitivity of RT-PCR for individual 224 

testing is 85%, whereas during epidemic decline (from day 168 onward) it is 60% (Fig. S5A). 225 

Sensitivity of RT-PCR for individual testing was ~75% across the whole epidemic. We note 226 

that in practice, sensitivity is likely higher than estimated here, because individuals are not 227 

sampled entirely at random. Together, these results describe how sensitivity is affected by the 228 

combination of epidemic dynamics, viral kinetics, and pooling design when individuals are 229 

sampled randomly from the population. 230 

We find that on average the majority of false negatives arise from individuals sampled seven 231 

days or more after their peak viral loads, or around seven days after what is normally 232 

considered symptom onset (~75% in swab samples during epidemic growth; ~96% in swab 233 

samples during epidemic decline; ~68% in sputum during epidemic growth). Importantly, only 234 

~3% of false negative swab samples arose from individuals tested during the first week 235 

following peak viral load during epidemic growth, and only ~1% during epidemic decline 236 

– (peak titers usually coincide with symptom onset) – and thus most false negatives are from 237 

individuals with the least risk of onward transmission (Fig. S3D&E). 238 

As mentioned above, the lower sensitivity of pooled testing is counterbalanced by gains in 239 

efficiency. When prevalence is low, efficiency is roughly the number of samples divided by 240 

the number of pools, since there are rarely putative positives to test individually. However, 241 

the number of validation tests required will increase as prevalence increases, and designs 242 

that are initially more efficient will lose efficiency (Fig. 4B). In general, we find that at very 243 
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low population prevalence the use of fewer pools each with larger numbers of specimens 244 

offers relative efficiency gains compared to larger numbers of pools, as the majority of pools 245 

will test negative. However, as prevalence increases, testing a greater number of smaller 246 

pools pays off as more validations will be performed on fewer samples overall (Fig. 4B). For 247 

combinatorial designs with a given number of total samples and pools, splitting each sample 248 

across fewer pools results in a modest efficiency gains (dashed versus solid lines in Fig. 249 

4B). 250 

To address realistic resource constraints, we integrated our analyses of sensitivity and 251 

efficiency with limits on daily sample collection and testing capacity to maximize the number 252 

of positive individuals identified (see Materials and Methods). We analyzed the total number 253 

of samples screened and the fold increase in the number of positive samples identified relative 254 

to individual testing for a wide array of pooling designs evaluated over a period of 50 days 255 

during epidemic spread (days 40-90 where point prevalence reaches ~2.5%; Fig. 4C&D). 256 

Because prevalence changes over time, the number of validation tests may vary each day 257 

despite constant pooling strategies. Thus, tests saved on days requiring fewer validation tests 258 

can be stored for days where more validation tests are required. 259 

Across all resource constraints considered, we found that effectiveness ranged from one 260 

(when testing every sample individually is optimal) to 20 (i.e., identifying 20x more positive 261 

samples on a daily basis compared with individual testing within the same budget; Fig. 4D). 262 

As expected, when capacity to collect samples exceeds capacity to test, group testing 263 

becomes increasingly effective. Simple pooling designs are most effective when samples are 264 

in slight excess of testing capacity (2-8x), whereas we find that increasingly complex 265 

combinatorial designs become the most effective when the number of samples to be tested 266 

greatly exceeds testing capacity. Additionally, when prevalence is higher (i.e., sample 267 

prevalence from 1.03% to 9.90%), the optimal pooling designs shift towards combinatorial 268 

pooling, and the overall effectiveness decreases – but still remains up to 4x more effective 269 
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than individual testing (Fig. S6). Our results were qualitatively unchanged when evaluating 270 

the effectiveness of pooling sputum samples, and the optimal pooling designs under each 271 

set of sample constraints were either the same or very similar (Fig. S7). Furthermore, we 272 

evaluated the same strategies during a 50-day window of epidemic decline (days 190-250) 273 

and found that similar pooling strategies were optimally effective, despite lower overall 274 

sensitivity as described above (Fig. S5).   275 
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 276 

Fig. 4: Group testing for sample identification. We evaluated a variety of group testing designs 277 

for sample identification (Table S1) on the basis of sensitivity (A), efficiency (B), total number 278 

of positive samples identified (C) and the fold increase in positive samples identified relative 279 

to individual testing (D). (A and B) The average sensitivity (A, y-axis, individual points and 280 

spline) and average number of tests needed to identify individual positive samples (B, y-axis) 281 

using different pooling designs (individual lines) were measured over days 20-110 in our 282 

simulated population, with results plotted against prevalence (x-axis, log-scale). Results show 283 

the average of 200,000 trials, with individuals selected at random on each day in each trial. 284 
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Pooling designs are separated by the number of samples tested on a daily basis (individual 285 

panels); the number of pools (color); and the number of pools into which each sample is split 286 

(dashed versus solid line). Solid red line indicates results for individual testing. (C) Every 287 

design was evaluated under constraints on the maximum number of samples collected 288 

(columns) and average number of reactions that can be run on a daily basis (rows) over days 289 

40-90. Text in each box indicates the optimal design for a given set of constraints (number of 290 

samples per batch (N), number of pools (b), number of pools into which each sample is split 291 

(q), average number of total samples screened per day). Color indicates the average number 292 

of samples screened on a daily basis using the optimal design. Arrows indicate that the same 293 

pooling design is optimal at higher sample collection capacities due to testing constraints. (D) 294 

Fold increase in the number of positive samples identified relative to individual testing with the 295 

same resource constraints. Error bar shows range amongst optimal designs.  296 
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Pilot and validation experiments 297 

We validated our pooling strategies using anonymized clinical nasopharyngeal swab 298 

specimens. To evaluate simple pooling across a range of inputs, we diluted 5 299 

nasopharyngeal clinical swab samples with viral loads of 89000, 12300, 1280, 140 and 11 300 

viral copies per ml, respectively, into 23 negative nasopharyngeal swab samples (pools of 301 

24). Further details are provided in Materials and Methods, and Supplementary Material 302 

1, sections 7&8. The results matched the simulated sampling results: the first three pools 303 

were all positive, the fourth was inconclusive (negative on N1, positive on N2), and the 304 

remaining pool was negative (Fig. 5A, Table S2). These results are as expected because 305 

the EUA approved assay used has a limit of detection of ~100 virus copies per ml, such that 306 

the last two specimens fall below the limit of detection given a dilution factor of 24 (i.e. 0.46 307 

and 5.8 virus copies per ml once pooled). 308 

We next tested combinatorial pooling, first using only a modest pooling design. We split 48 309 

samples, including 1 positive, into 6 pools with each sample spread across three different 310 

pools. The method correctly identified the three pools containing the positive specimen (Fig. 311 

5B, Table S2). One negative sample was included in the same 3 pools as the positive 312 

sample; thus, 8 total tests (6 pools + 2 validations) were needed to accurately identify the 313 

status of all 48 samples, a 6x efficiency gain, which matched our expectations from the 314 

simulations.  315 

We next performed two larger validation studies (Materials and Methods, and 316 

Supplementary Material 1, section 8). To validate combinatorial pooling, we used 317 

anonymized samples representing 930 negative and 30 distinct positive specimens (3.1% 318 

prevalence), split across 10 batches of 96 specimens each (Table S3). For each batch of 96, 319 

we split the specimens into 6 pools and each specimen was spread across 2 pools (Fig. 5C, 320 

Table S4). For this combinatorial pooling design and prevalence, our simulations suggest 321 
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that we would expect to identify 26 out of 30 known positives (87%) and would see a 2.81x 322 

efficiency gain – using only 35% of the number of tests compared to no pooling. We 323 

identified 24 of the 30 known positives (80%) and, indeed, required 35% fewer tests (341 vs 324 

960, a 2.8x efficiency gain). 325 

To further validate our methods for prevalence estimation, we created a large study 326 

representing 2,304 samples with a (true) positive prevalence of 1%. We aimed to determine 327 

how well our methods would work to estimate the true prevalence using 1/48th the number of 328 

tests compared to testing samples individually. To do this, we randomly assigned 24 distinct 329 

positive samples into 48 pools, with each pool containing 48 samples (Table S3; to create the 330 

full set of pools, we treated some known negatives as distinct samples across separate pools). 331 

By using the measured viral loads detected in each of the pools, our methods estimated a 332 

prevalence of 0.87% (compared to the true prevalence of 1%) with a bootstrapped 95% 333 

confidence interval of 0.52% - 1.37% (Fig. 5D), and did so using 48x fewer tests than without 334 

pooling. This level of accuracy is in line with our expectations from our simulations. Notably, 335 

the inference algorithm applied to these data used viral load distributions calibrated from our 336 

simulated epidemic, which in turn had viral kinetics calibrated to samples collected and tested 337 

on another continent, demonstrating robustness of the training procedure. 338 
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 339 

Fig. 5: Validation of simple and combinatorial pooling. Pooled testing of samples was validated 340 

experimentally. (A) Five pools (columns of matrix), each consisting of 24 nasopharyngeal 341 
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swab samples (rows of matrix; 23 negative samples per pool and 1 positive, with viral load 342 

indicated in red on right) were tested by viral extraction and RT+qPCR. Pooled results 343 

indicated as: negative (blue), inconclusive (yellow), or positive (red). (B) Six combinatorial 344 

pools (columns) of 48 samples (rows; 47 negative and 1 positive with viral load of 12,300) 345 

were tested as above. Pools 1, 2, and 4 tested positive. Arrows indicate two samples that were 346 

in pools 1, 2, and 4: sample 32 (negative), and sample 48 (positive). (C) Previously tested de-347 

identified samples were pooled using a combinatorial design with 96 samples, 6 pools, and 2 348 

pools per sample. 30 positive samples were randomly distributed across 10 batches of the 349 

design. Viral RNA extraction and RT-qPCR were performed on each pool, with the results 350 

used to identify potentially positive samples. (D) Samples were pooled according to a simple 351 

design (48 pools with 48 samples per pool). 24 positive samples were randomly distributed 352 

among the pools (establishing a 1% prevalence). The pooled test results were used with an 353 

MLE procedure to estimate prevalence (0.87%), and bootstrapping was used to estimate a 354 

95% confidence interval (0.52% - 1.37%).  355 
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Discussion 356 

Our results show that group testing for SARS-CoV-2 can be a highly effective tool to 357 

increase surveillance coverage and capacity when resources are constrained. For 358 

prevalence testing, we find that fewer than 40 tests can be used to accurately infer 359 

prevalences across four orders of magnitude, providing large savings on tests required. For 360 

individual identification, we determined an array of designs that optimize the rate at which 361 

infected individuals are identified under constraints on sample collection and daily test 362 

capacities. These results provide pooling designs that maximize the number of positive 363 

individuals identified on a daily basis, while accounting for epidemic dynamics, viral kinetics, 364 

viral loads measured from nasopharyngeal swabs or sputum, and practical considerations of 365 

laboratory capacity.  366 

While our experiments suggest that pooling designs may be beneficial for SARS-CoV-2 367 

surveillance and identification of individual specimens, there are substantial logistical 368 

challenges to implementing theoretically optimized pooling designs. Large-scale testing 369 

without the use of pooling already requires managing thousands of specimens per day, 370 

largely in series. Pooling adds complexity because samples must be tracked across multiple 371 

pools and stored for potential re-testing. These complexities can be overcome with proper 372 

tracking software (including simple spreadsheets) and standard operating procedures in 373 

place before pooling begins. Such procedures can mitigate the risk of handling error or 374 

specimen mix-up. In addition, expecting laboratories to regularly adapt their workflow and 375 

optimize pool sizes based on prevalence may not be feasible in some settings. (8,16) A 376 

potential solution is to follow a simple, fixed protocol that is robust to a range of prevalences. 377 

Supplementary Material 2 provides an example spreadsheet guiding a technician receiving 378 

96 labeled samples to create 6 pools, enter the result of each pool and be provided a list of 379 

putative positives to be retested.  380 
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Enhancing efficiency at the expense of sensitivity must be considered depending on the 381 

purpose of testing. For prevalence testing, accurate estimates can be obtained using very 382 

few tests if individual identification is not the aim. For individual testing, although identifying 383 

all positive samples that are tested is of course the objective, increasing the number of 384 

specimens tested when sacrificing sensitivity may be a crucially important tradeoff. This 385 

tradeoff is particularly pertinent because the specimens most likely to be lost due to dilution 386 

are those samples with the lowest viral loads already near the limit of detection (Fig. 387 

S3D&E). Although there is a chance that the low viral load samples missed are on the 388 

upswing of an infection – when identifying the individual would be maximally beneficial – the 389 

asymmetric course of viral titers over the full duration of positivity means that most false 390 

negatives would arise from failure to detect late-stage, low-titer individuals who are less 391 

likely to be infectious. (20) Optimal strategies and expectations of sensitivity should also be 392 

considered alongside the phase of the epidemic and how samples are collected, as this will 393 

dictate the distribution of sampled viral loads. For example, if individuals are under a regular 394 

testing regimen or are tested due to recent exposure or symptom onset, then viral loads at 395 

the time of sampling will typically be higher, leading to higher sensitivity in spite of dilution 396 

effects. 397 

Testing throughput and staffing resources should also be considered. If a testing facility can 398 

only run a limited number of tests per day, it may be preferable to process more samples at a 399 

slight cost to sensitivity. Back-logs of individual testing can result in substantial delays in 400 

returning individual test results, which can ultimately defeat the purpose of identifying 401 

individuals for isolation - potentially further justifying some sensitivity losses. (23,24) Choosing 402 

a pooling strategy will therefore depend on target population and availability of resources. For 403 

testing in the community or in existing sentinel surveillance populations (e.g., antenatal 404 

clinics), point prevalence is likely to be low (<0.1 - 3%), which may favor strategies with fewer 405 

pools. (6,25–27) Conversely, secondary attack rates in contacts of index cases may vary from 406 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 26 

<1% to 17% depending on the setting (e.g., casual vs. household contacts), (28–30) and may 407 

be even higher in some instances, (31,32) favoring more pools. These high point prevalence 408 

sub-populations may represent less efficient use cases for pooled testing, as our results 409 

suggest that pooling for individual identification is inefficient once prevalence reaches 10%. 410 

However, group testing may still be useful if testing capacity is severely limited – for example, 411 

samples from all members of a household could be tested as a pool and quarantined if tested 412 

positive, enabling faster turnaround than testing individuals. This approach may be even more 413 

efficient if samples can be pooled at the point of collection, requiring no change to laboratory 414 

protocols. 415 

Our modelling results have a number of limitations and may be updated as more data 416 

become available. First, our simulation results depend on the generalizability of the 417 

simulated Ct values, which were based on viral load data from symptomatic patients. 418 

Although some features of viral trajectories, such as viral waning, differ between 419 

symptomatic and asymptomatic individuals, population-wide data suggest that the range of 420 

Ct values do not differ based on symptom status. (20,33) Furthermore, we have assumed a 421 

simple hinge function to describe viral kinetics. Different shapes for the viral kinetics 422 

trajectory may become apparent as more data become available. Nonetheless, our 423 

simulated population distribution of Ct values is comparable to existing data and we 424 

propagated substantial uncertainty in viral kinetics parameters to generate a wide range of 425 

viral trajectories. For prevalence estimation, the MLE framework requires training on a 426 

distribution of Ct values. Such data can be available based on past tests from a given 427 

laboratory, but care should be taken to use a distribution appropriate for the population 428 

under consideration. For example, training the virus kinetics model on data skewed towards 429 

lower viral loads (as would be observed during the tail end of an epidemic curve) may be 430 

inappropriate when the true viral load distribution is skewed higher (as might be the case 431 

during the growth phase of an epidemic curve). Nevertheless, we used our simulated 432 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 27 

distribution of Ct, which were fit to virus kinetics in published reports from distinct labs from 433 

across the world and obtained highly accurate results throughout. Thus, despite the 434 

limitations just mentioned, this shows that the virus kinetics models are quite robust and may 435 

not, in practice, require new fitting to the individual laboratory or population. In addition, while 436 

we assume that individuals are sampled from the population at random in our analysis, in 437 

practice samples that are processed together are also typically collected together, which 438 

may bias the distribution of positive samples among pools.   439 

We have shown that simple designs that are straightforward to implement have the potential 440 

to greatly improve testing throughput across the time course of the pandemic. These principles 441 

likely also hold for pooling of sera for antibody testing, which remains an avenue for future 442 

work. There are logistical challenges and additional costs associated with pooling that we do 443 

not consider deeply here, and it will therefore be up to laboratories and policy makers to decide 444 

where these designs are feasible. Substantial coordination will therefore be necessary to make 445 

group testing practical but investing in these efforts could enable community screening where 446 

it is currently infeasible and provide epidemiological insights that are urgently needed.  447 
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Materials and Methods 448 

Simulation model of infection dynamics and viral load kinetics 449 

We developed a population-level mathematical model of SARS-CoV-2 transmission that 450 

incorporates realistic within-host virus kinetics. Full details are provided in Supplementary 451 

Material 1, sections 1-4, but we provide an overview here. First, we fit a viral kinetics model 452 

to published longitudinally collected viral load data from nasopharyngeal swab and sputum 453 

samples using a Bayesian hierarchical model that captures the variation of peak viral loads, 454 

delays from infection to peak and virus decline rates across infected individuals (Fig. 5A&B; 455 

Fig. S8). (19) By incorporating estimated biological variation in virus kinetics, this model allows 456 

random draws each representing distinct within-host virus trajectories. We then simulated 457 

infection prevalence during a SARS-CoV-2 outbreak using a deterministic Susceptible-458 

Exposed-Infected-Removed (SEIR) model with parameters reflecting the natural history of 459 

SARS-CoV-2 (Fig. 5D). For each simulated infection, we generated longitudinal virus titers 460 

over time by drawing from the distribution of fitted virus kinetic curves, using distributions 461 

derived using either nasopharyngeal swab or sputum data (Fig. S4). All estimated and 462 

assumed model parameters are shown in Table S5, with model fits shown in Fig. S8. Posterior 463 

estimates and Markov chain Monte Carlo trace plots are shown in Fig. S9 and Fig. S10. We 464 

accounted for measurement variation by: i) transforming viral loads into Ct values under a 465 

range of Ct calibration curves, ii) simulating false positives with 1% probability, and, 466 

importantly, iii) simulating sampling variation. We assumed a limit of detection (LOD) of 100 467 

RNA copies / ml.  468 

Estimating prevalence from pooled test results 469 

We adapted a statistical (maximum likelihood) framework initially developed to estimate HIV 470 

prevalence with pooled antibody tests to estimate prevalence of SARS-CoV-2 using pooled 471 

samples. (12,13) The framework accounts for the distribution of viral loads (and uncertainty 472 
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around them) measured in pools containing a mixture of negative and potentially positive 473 

samples. By measuring viral loads from multiple such pools, it is possible to estimate the 474 

prevalence of positive samples without individual testing. See Supplementary Material 1, 475 

section 5 for full details. 476 

We evaluated prevalence estimation under a range of sample availabilities (N total samples; 477 

N=288 to ~18,000) and pooling designs. We varied the pool size of combined specimens (n 478 

samples per pool; n=48, 96, 192, or 384) and the number of pools (b=6, 12, 24, or 48). For 479 

each combination, we estimated the point prevalence from pooled tests on random samples 480 

of individuals drawn during epidemic growth (days 20-120) and decline (days 155-300). 481 

Because the data is realistic but simulated, we used ground truth prevalence in the 482 

population and, separately, in the specific set of samples collected from the overall 483 

population to assess accuracy of our estimates (see for example Fig. 3B). We calculated 484 

estimates for 100 entirely distinct epidemic simulations. 485 

Pooled tests for individual sample identification 486 

Using the same simulated population, we evaluated a range of simple and combinatorial 487 

pooling strategies for individual positive sample identification (Supplementary Material 1, 488 

section 6). In simple pooling designs, each sample is placed in one pool, and each pool 489 

consists of some pre-specified number of samples. If a pool tests positive, all samples that 490 

were placed in that pool are retested individually (Fig. 1A). For combinatorial pooling, each 491 

sample is split into multiple, partially overlapping pools (Fig. 1B). (9,10) Every sample that 492 

was placed in any pool that tested negative is inferred to be negative, and the remaining 493 

samples are identified as potential positives. Here, we consider a very simple form of 494 

combinatorial testing, where identified potential positive samples are individually tested in a 495 

validation stage. 496 
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A given pooling design is defined by three parameters: the total number of individuals to be 497 

tested (N); the total number of pools to test (b); and the number of pools a given sample is 498 

included in (q). For instance, if we have 50 individuals (N) to test, we might split the 50 samples 499 

into four pools (b) of 25 samples each, where each sample is included in two pools. Note that, 500 

by definition, in simple pooling designs each sample is placed in one pool (q=1).  501 

To identify optimal testing designs under different resource constraints, we systematically 502 

analyzed a large array of pooling designs under various sample and test kit availabilities. We 503 

evaluated different combinations of between 12 and ~6,000 available samples/tests per day. 504 

The daily testing capacity shown is the daily average, though we assume that there is some 505 

flexibility to use fewer or more tests day to day (i.e., there is a budget for period of time under 506 

evaluation). 507 

For each set of resource constraints, we evaluated designs that split N samples between 1 to 508 

96 distinct pools, and with samples included in q=1 (simple pooling), 2, 3, or 4 (combinatorial 509 

pooling) pools (Table S1). To ensure robust estimates (especially at low prevalences of less 510 

than 1 in 10,000), we repeated each simulated pooling protocol at each time point in the 511 

epidemic up to 200,000 times. 512 

In each scenario, we calculated: i) the sensitivity to detect positive samples when they existed 513 

in the pool; ii) the efficiency, defined as the total number of samples tested divided by the total 514 

number of tests used; iii) the total number of identified true positives (total recall); and iv) the 515 

effectiveness, defined as the total recall relative to individual testing. 516 

Pilot experiments 517 

For validation experiments of our simulation-based approach, we used fully de-identified, 518 

discarded human nasopharyngeal specimens obtained from the Broad Institute of MIT and 519 

Harvard. In each experiment, sample aliquots were pooled before RNA extraction and qPCR 520 
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and pooled specimens were tested using the Emergency Use Authorization (EUA) approved 521 

SARS-CoV-2 assay performed by the Broad Institute CLIA laboratory. The protocol is 522 

described in full detail in Supplementary Material 1, section 7. Specifics of each pooling 523 

approach is detailed alongside the relevant results and in Supplementary Material 1, section 524 

8.  525 
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Supplementary Material 1: additional materials and methods 681 

1. Model of infection dynamics 682 

We implemented a deterministic compartmental model to describe the increase and 683 

subsequent decline of SARS-CoV-2 infection incidence and prevalence. The model captured 684 

the following progression: individuals begin fully susceptible to infection (S); become exposed 685 

but not yet infectious (E); become infectious (I); and are finally removed (R). Our aim was to 686 

capture changes in incidence over time (increasing incidence rate before the peak and 687 

declining incidence thereafter) and the resulting population-level distribution of viral loads, and 688 

we therefore did not model additional complexity such as deaths, pre-symptomatic 689 

transmission or age-stratified outcomes. Although incorporating these mechanisms may alter 690 

the simulated epidemic dynamics for a given set of transmission parameters, we do not expect 691 

them to impact inference from the pooled testing analyses.  692 

The model was defined by the following set of ordinary differential equations: 693 

𝑑𝑆
𝑑𝑡

=	
−𝛽𝑆𝐼
𝑁

 694 

𝑑𝐸
𝑑𝑡

= 	
𝛽𝑆𝐼
𝑁

− 	𝜎𝐸 695 

𝑑𝐼
𝑑𝑡
= 𝜎𝐸	 − 	𝛾𝐼 696 

𝑑𝑅
𝑑𝑡

= 𝛾𝐼 697 

where β is the transmission rate, scaled to give a basic reproductive number 𝑅. of 2.5; 1/𝜎 is 698 

the incubation period, assumed to have a mean of 6.4 days; 1/𝛾 is the infectious period 699 

assumed to have a mean of 7 days; and N is the population size, set to 12,500,000 to generate 700 

at least 10,000,000 infected individuals. All model parameters and assumed values are 701 
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described in Table S5. Using this model, we simulated per capita daily infection probability 702 

(i.e., the daily incidence) and prevalence. 703 

2. Viral load kinetics 704 

Following infection (𝑡123) and after a latent period (𝑡4), viral load was assumed to increase 705 

exponentially, peaking a short time (𝑡5) after the end of the latent period and before the onset 706 

of symptoms (𝑡6). Viral load then decreased monotonically to undetectable levels, defined by 707 

a time parameter (𝑡7) giving the number of days post symptom onset before crossing the limit 708 

of detection. These assumptions are equivalent to linear growth and decay on a log scale. We 709 

chose to model viral load waning with respect to symptom onset rather than peak viral load, 710 

as almost all available time-series viral load data are presented with respect to symptom onset 711 

time. The 𝑙𝑜𝑔;. viral load over time, 𝑣(𝑡), was given by: 712 

𝑣(𝑡) =

⎩
⎪
⎨

⎪
⎧

0, 𝑡12E < 𝑡 ≤ 	 𝑡4	
𝛼
𝑡5
𝑡, 𝑡4 < 𝑡	 ≤ 𝑡5

𝛼 −	
𝛼

𝑡123 − 𝑡5 + 𝑡7
(𝑡 − 𝑡5), 𝑡4 < 𝑡	 ≤ 𝑡5

 713 

where 𝑡12E  is the time of infection; 𝑡123  is the incubation period for symptom onset; α is the 714 

peak viral load; 𝑡4 is the latent period before viral growth; 𝑡5 is the time taken to reach peak 715 

viral load post; and 𝑡7 is the number of days from symptom onset to becoming undetectable. 716 

Note that all individuals are assigned a symptom onset time regardless of whether they show 717 

symptoms or not, as the parameter is used here to describe viral kinetics. 718 

3. Fitting the viral kinetics model 719 

Time-series viral load data were obtained from a case series of 9 hospitalized COVID-19 720 

patients from a single hospital in Munich, Germany. (34) These data provide regular 721 

measurements of 𝑙𝑜𝑔;. RNA copies per nasopharyngeal swab and per ml of sputum. Data 722 
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 3 

were extracted using a web plot digitizer (https://automeris.io/WebPlotDigitizer/). We used a 723 

random-effects model to infer individual-level viral kinetics parameters alongside population-724 

level distributions. Under this model, each individual had their own parameter values for 𝑡123 , 725 

α, 𝑡4, 𝑡5 and 𝑡7. α and 𝑡7 drawn from a multivariate normal distributed with estimated means 726 

(𝛼J, 𝑡7JJJ), standard deviations (𝜎K, 𝜎LM) and correlation (𝜌K,LM) (Table S5).  727 

Although the viral load measurements were taken after the onset of symptoms, we are 728 

interested in modelling the entire time course from the time of infection, including uncertainty 729 

in the incubation period. We therefore estimated 𝑡123  for each individual by placing a strongly 730 

informative log-normal prior on the incubation period based on previous estimates. (35) 731 

Because no observations were made before symptom onset, the posterior distribution for this 732 

parameter matched the prior.  733 

The model was fit separately to the swab and sputum data using a Markov chain Monte 734 

Carlo (MCMC) framework, using a likelihood that assumes normally distributed observation 735 

error with estimated standard deviation 𝜎6OP (Fig. S8). The likelihood function accounted for 736 

truncation at the lower limit of detection (LOD) by integrating over the left-hand tail of the 737 

normal cumulative density function for model-predicted viral loads less than the LOD. 738 

Furthermore, Wölfel et al. present data with a limit of detection of 0 𝑙𝑜𝑔;.	copies / swab or / 739 

ml, but a limit of quantification of 2 𝑙𝑜𝑔;.	copies. We therefore considered that observed viral 740 

loads between 0 and 2 had unknown between 0 and 2. We placed uniform priors on 𝛼J and 741 

	𝑡7JJJ, half Cauchy priors on 𝜎K and 𝜎LM with scale parameters of 1, a uniform prior on 𝜌K,LM 742 

between -1 and 1 and informative uniform priors on 𝑡4, and 𝑡5.  743 

Code to regenerate the MCMC fitting is available in the accompanying GitHub repository. (36) 744 

Briefly, an adaptive Metropolis-Hastings algorithm was run for 3,000,000 iterations with the 745 

first 1,000,000 iterations discarded as burn in to obtain posterior estimates for the model 746 

parameters (Fig. S9). Convergence was assessed visually based on trace plots of 3 747 
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independent chains (Fig. S10). All estimated parameters had an effective sample size (ESS) 748 

greater than 200 and 𝑅Q < 1.1. 749 

4. Simulation framework 750 

We combined the estimates from the transmission model and viral kinetics model above to 751 

simulate viral loads for a population of 12,500,000 individuals over time. We performed 752 

separate simulations for swab and sputum data. For each individual, we simulated a time of 753 

infection (or no infection) from the time-varying probability of infection, 𝑝(𝑡). For each infected 754 

individual, an incubation period was drawn from a log normal distribution with mean (of the 755 

natural log) = 1.621 and standard deviation (of the natural log) = 0.418 as estimated previously. 756 

(35) This incubation period was used as a reference point for 𝑡7, but we did not explicitly model 757 

symptomatic vs. asymptomatic individuals. Next, we drew viral kinetics parameters for each 758 

individual from the joint posterior distribution. Finally, we simulated the time-varying viral load 759 

of each infected individual, starting at the time of infection. Because of the high variance of 760 

the drawn kinetics parameters, some simulated viral loads reached very high values, and we 761 

therefore truncated all simulated viral loads at 16 𝑙𝑜𝑔;. virus copies per ml. These simulations 762 

provide a population of viral loads incorporating realistic variability in viral load kinetics and 763 

between-individual parameters. 764 

5. Estimating prevalence from pooled test results 765 

In this section, we adapt a previously described maximum likelihood estimate (MLE) 766 

framework to estimate prevalence of positive samples, p, amongst N samples using b pooled 767 

tests, with each pooling containing 𝑛 = U
O
. (12,13) Briefly, the MLE is determined by computing 768 

the conditional probability of an observed RT-qPCR result given that there were k positive 769 

samples in the pool, and integrating over all values of k. To compute these conditional 770 

distributions, we estimate an empirical distribution of cycle threshold (Ct) values that follows 771 

from the distribution of viral loads in infected individuals derived from a subset of the simulated 772 
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 5 

viral load measurements described above. This is conceptually similar to using the empirical 773 

distribution of all real measurements from a population taken to date.  774 

Let 𝑓W,2 = 𝑃(𝑌|	𝑘, 𝑛) represent the conditional probability of the observed Ct values in each 775 

pool, 𝑌 = [𝑦;, . . . , 𝑦O], given that there were k positive samples in the pool and n-k negative 776 

samples. Computing these distributions will be the central task of generating prevalence 777 

estimates. 778 

To begin, we model Ct values as a function of the underlying viral loads: 779 

𝑦(𝑣) = 𝑦. − 𝑙𝑜𝑔_(10)	𝑙𝑜𝑔;.(𝑣), 780 

where v is the viral load (in copies per ml). To capture variance in the LOD between labs or 781 

across batches within a lab, we let the intercept, 𝑦., be normally distributed with unknown 782 

mean and standard deviation. We assume uniform priors over each 𝑦.	(𝜇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(37,39), 783 

𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,1)). These ranges and the log-linear relationship are based on a calibration 784 

of Ct values to a dilution curve of positive control SARS-CoV-2 RNA samples (data not shown) 785 

and are consistent with prior measurements calibrated to SARS coronavirus. (37) 786 

𝑓W,2 depends not only on the distribution of Ct values arising from a given viral load, but also 787 

on the distribution of viral loads in infected and uninfected individuals. Here we assume that 788 

the viral load in uninfected individuals is always zero (we do, however, allow for false 789 

positive PCR results, as discussed below). Given access to the true distribution of viral 790 

loads, 𝑓W,2 can be generated by the convolution of k density functions. Since we do not have 791 

access to the true distributions, we approximate 𝑓W,2 through a kernel density estimate (KDE) 792 

of empirical convolutions. Specifically, for a given value of n and each value of k from 1 to n, 793 

we generate 10,000 random combinations of k viral loads, 794 

𝑉W,2: 𝑣1 = ∑ 𝑧mW
mn; 		𝑓𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	10,000, 795 
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 6 

where 𝑧mare the randomly sampled viral loads. For each i, we sample 𝜇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(37,39), 796 

𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,1) and 𝑦. ∼ 𝑁(𝜇, 𝜎) and then generate Ct values: 797 

𝑋W,2: 𝑥1 = 𝑦(𝑣1)		𝑓𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	10,000. 798 

We then approximate 𝑓W,2 = 𝐾𝐷𝐸(𝑋W,2)with a bandwidth parameter of 0.1. 799 

Several adjustments to these density approximations are needed to account for false 800 

positives and undefined Ct values (i.e., undetected viral RNA). To allow for Ct values that 801 

might arise from false positives, we define 𝑓.,2 = 𝑓;,2	𝑟, where r is an assumed false positive 802 

rate of PCR (here, we set 𝑟 = 0.2% and allow this to be misspecified when simulating false 803 

positives below). When viral RNA is undetected and 𝑘 > 1, we let 𝑓W,2(𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) =804 

∫ 𝑓W,2(𝑥)
z
{. 	𝑑𝑥, where a Ct value of 40 is used as a typical limit of detectable RNA. When 𝑘 =805 

0, 𝑓.,2(𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) = 1 − 𝑟. 806 

Following the model of Zenios and Wein, (12) the MLE of prevalence, p, is defined as: 807 

𝑝|PL1}~L|� =
1
𝑛𝑏
��𝑘𝑃(𝑘	|	𝑦1, 𝑝),

2

Wn.

O

1n;

 808 

where n is the number of samples per pool, b, is the number of pools, and 𝑦1 is the Ct value 809 

observed in pool i. We calculate 𝑃(𝑘	|	𝑦1, 𝑝) using the conditional densities above: 810 

𝑃(𝑘	|	𝑦1, 𝑝) =
�
�5

�(;�5)���E�,�(����64�(;.)	�64��(2))

∑ �
�5

�(;�5)���E�,�(����64�(;.)	�64��(2))�
���

, 811 

substituting the appropriate values of  f  when the Ct value is undefined. Note that each of 812 

the observed Ct values is adjusted to account for n-fold dilution. Finally, we find 𝑝|PL1}~L|� 813 

through an iterative expectation-maximization algorithm, where at each iteration 814 
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 7 

𝑝L�; =
1
𝑛𝑏
��𝑘𝑃(𝑘	|	𝑦1, 𝑝L)

2

Wn.

.
O

1n;

 815 

Using this model, we evaluated prevalence estimation across time in our simulated 816 

populations. We first partition the simulated population into training and testing sets. Observed 817 

viral loads in 20% of individuals (selected at random) are used to train the KDEs above. 818 

Furthermore, training data were divided into growth phase (days 20 to 120) or decline phase 819 

(days 155 to 300) data, allowing us to ascertain the effect of training and estimating on data 820 

from consistent or inconsistent phases of the epidemic. All remaining prevalence estimation 821 

and analyses are done on the testing population. We simulate viral loads in b pools of samples 822 

as 𝑉: 𝑣1 = ∑ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
��
2
)	2

mn; for i from 1 to b, where Poisson sampling is used to model the 823 

sampling of a small volume from each swab. From these we simulate Ct values, Y. At each 824 

time point, we randomly select N individuals, partition them into b pools, and simulate the 825 

pooled viral loads and Ct values, Y, with 𝑦. ∼ 𝑁(38.5,1) sampled randomly in each trial and 826 

applying the transformation described previously. To capture false positive PCR results at a 827 

rate of 1%, with 1% probability in each pool we add a viral load of 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(��
2
), with 𝑧m selected 828 

at random from all positive samples with �
2
> 𝐿𝑂𝐷 on a given date. We then compute the true 829 

prevalence in the population, 𝑝L��|, the prevalence in the population of N samples, 𝑝P~}5�|�, 830 

and the prevalence estimated from b tests, 𝑝|PL1}~L|�. To quantify accuracy we calculate the 831 

mean and standard deviation of these values at each time point across 100 random trials and 832 

summarize differences between 𝑝|PL1}~L|� and either 𝑝L��| or 𝑝P~}5�|� with the normalized 833 

root mean squared error (NRMSE; either ��������
5����

 or ����� ¡¢£�¤

5� ¡¢£�¤
; Fig. S2). 834 

To demonstrate the importance of calibrating the correct empirical distribution of Ct values, 835 

Fig. S2 shows the accuracy of the framework in recovering the true population prevalence 836 

during the growth and decline phases of the epidemic when the model is calibrated to Ct 837 
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values measured during the growth and decline phases. Estimation accuracy is highest when 838 

the calibrated Ct values were measured during the same phase as is being measured.  839 

6. Group testing for sample identification 840 

We evaluated an array of pooling designs for individual identification as described in the main 841 

text. For any given design we can simulate pooled testing results on the simulated population 842 

described above. For each time point, we randomly select N individuals from the population. 843 

Each individual is then randomly assigned to q out of b pools. For each pool, we then calculate 844 

the net sampled viral load, 𝑣1 = ∑ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
��
�
)�

m∈566��  using the viral loads 𝑧m for each individual 845 

included in 𝑝𝑜𝑜𝑙1, where Poisson sampling is used to model a small volume sampled from 846 

each swab. If 𝑣1 > 𝐿𝑂𝐷 the pool is assigned a positive value, otherwise the pool is negative 847 

(here, with LOD=100). To allow for false positive PCR results at a rate of 1%, with probability 848 

1% we set the result of the pool to be positive, regardless of the viral load. 849 

Simulations were run by repeating the random pooling, pooled testing, and decoding 850 

procedures described in the main text. At each point in time, 200,000 trials are run selecting 851 

N individuals at random in each trial. We then record the number of validation tests, s, in 852 

each trial, corresponding to the number of putative positive samples. Average efficiency at a 853 

point in time, t, is then calculated as 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦L =
U
O�P

. Average sensitivity is calculated as 854 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦L =
U¢�� ��¦�
U¢§����¦�

 where 𝑁56P1L1¨| is the total number of infected individuals (viral load > 855 

1) that were sampled across all trials and  𝑁5�L~L1¨| is the number of such individuals who 856 

were identified as putative positives. From these values we calculate 𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑐𝑎𝑙𝑙L =857 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦L	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦L. 858 

Based on these results we evaluated a large array of group testing designs (Table S1) under 859 

a series of constraints on number of samples collected and number of reactions run per day 860 

(Fig. 4C). For a given design, 𝐷: (𝑁, 𝑏, 𝑞) we calculate the average number of tests run, 𝑠L6L~� =861 
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𝑏 + 𝑠, and the total number of times that D could be run on a daily basis, 𝑟¬ =862 

𝑚𝑖𝑛(P~}5�|P	36��|3L|�
U

, L|PL124	W1LP
P�§� £

). We then calculate the effective testing capacity on a daily 863 

basis, 𝑐¬ = 𝑁	𝑟¬	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦¬, and average this value over days 40 to 90 (Fig. 4C) or 80 to 864 

108 (Fig. S6) of the simulated epidemic. Notably, when sample collection is limiting, 𝑐¬ =865 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(P~}5�|P	36��|3L|�,P~}5�|P	36��|3L|�,;), corresponding to individual 866 

testing. Finally, the optimal design for a given combination of constraints is the design with the 867 

greatest average effective testing capacity. In Fig. 4C and Fig. S6 we show the relative 868 

effectiveness, corresponding to effective capacity relative to individual testing. Fig. S7 shows 869 

the same results as Fig. 4 and Fig. S6, but when samples were simulated based on viral 870 

trajectories using the sputum data. Fig. S5 shows the same results again, but for the decline 871 

phase of the epidemic. 872 

7. Broad Institute CRSP SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR 873 

Diagnostic Assay 874 

RNA is isolated from nasopharyngeal and oropharygneal specimens in 50ul VTM/UTM using 875 

MagMAX™-96 Viral RNA Isolation Kits (Thermo Fisher Scientific, AMB18365), performed on 876 

an Agilent Bravo Liquid Handling Platform running VWorks (Build 11.4.0.1233), and is reverse 877 

transcribed to cDNA and subsequently amplified in the Applied Biosystems® ViiA7 Real-Time 878 

PCR Instrument with QuantStudio version 1.3 software. In the process, the probe anneals to 879 

a specific target sequence located between the forward and reverse primers. During the 880 

extension phase of the PCR cycle, the 5’ nuclease activity of Taq polymerase degrades the 881 

probe, causing the reporter dye to separate from the quencher dye, generating a fluorescent 882 

signal. With each cycle, additional reporter dye molecules are cleaved from their respective 883 

probes, increasing the fluorescence intensity. Fluorescence intensity is monitored at each 884 

PCR cycle by Applied Biosystems® ViiA7 Real-Time PCR System with QuantStudio version 885 
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1.3 software. The software allows the fluorescence intensity to be monitored at each PCR 886 

cycle to allow for the qualitative detection of nucleic acid from SARS-CoV-2. 887 

To create the final pools for our larger validation studies (10 batches of 96 for sample 888 

identification, and 48 pools of 48 samples for prevalence estimation), we treated a total of 96 889 

known negative specimens as distinct samples across batches (in the case of sampled 890 

identification study) or pools (for the prevalence study). Each positive sample in a batch or 891 

pool was a distinct sample, and only used in one batch or pool. For the prevalence study, only 892 

pools with one or more positive samples were tested using the assay above (the remaining 893 

pools were assigned an “undefined” Ct value). All pools in all batches were tested in the 894 

identification study, regardless of whether they contained a positive sample. 895 

8. Selecting pool compositions for large-scale sample identification validation 896 

To form pools, we put each of the N = 96 individuals into 𝑞 = 2 out of 𝑏 = 6 pools (A-F) by 897 

cycling through the following ordered list of pool pairs: AB, CD, EF, BC, DF, AE, BD, AF, CE, 898 

BE, CF, AD, BF, DE, AC. Namely, individual 1 is put in pools A and B, individual 2 in C and D, 899 

and so on; after individual 15, we return to the beginning of the list and cycle through again. 900 

Finally, since each pair of pools is assigned to multiple individuals, we reordered the 901 

individuals by what pair of pools they were put in. This final reordering simplifies the 902 

presentation to one more conveniently arranged for manual pipetting. 903 

A strength of the procedure is that it is simple and flexible; it can easily be carried out for any 904 

number of individuals. Moreover, the resulting design here has pools with 32 individuals each, 905 

so the final pool sizes are balanced. In addition, the first 6 pool pairs are each assigned to 7 906 

individuals and the remaining 9 pairs are each assigned to 6 individuals, so the pairs of pools 907 

are also approximately balanced. Indeed, the ordered list of pool pairs above was chosen to 908 

achieve this balance; the list uses each pair of pools once and the five consecutive sets of 909 

three pairs all use each pool once.  910 
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 911 

Fig. S1: Population prevalence (left) or prevalence in sample (right) against maximum 912 

likelihood prevalence estimates. Population prevalence shown here are during the epidemic 913 

growth phase. Results shown are from 100 independent trials at each day of the epidemic. 914 

Each facet shows the pooling design with the fewest pools (tests used) for each sample size. 915 

Dashed grey lines show one divided by the sample size, N.  916 
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 917 

Fig. S2: Prevalence estimation can depend on training and application period. Prevalence 918 

estimation uses past observations to learn conditional distributions of pooled Ct values. 919 

When the inference algorithm is applied to Ct values from new pooling data, these training 920 

distributions are used to generate a maximum likelihood estimate. The error in these 921 

estimates (here, NRMSE, the root mean squared error normalized to the true prevalence) 922 

depends on the pooling design (individual rows) and true prevalence (columns, binned 923 

prevalence windows). In addition, error can depend on a (mis)match between the training 924 
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(two columns of panels) and application (two rows of panels) period. Colorbar and annotated 925 

values within boxes indicate NRMSE.  926 
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 927 

Fig. S3: Sensitivity of sample identification relative to dilution factor and time since peak viral 928 

load. (A) The sensitivity (y-axis) of different designs (individual points) is plotted against the 929 

dilution factor of each design (x-axis, log scale). Pooling designs are separated by the 930 

number of swab samples tested on a daily basis (individual panels); the number of pools 931 

(color); and the number of pools into which each sample is split (circle versus cross). (B and 932 

C) As in (A), with sensitivity plotted against days since peak viral load (x-axis) for swab (B) 933 
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and sputum (C) samples. (D and E) The density of false negative (red) and true positive 934 

(blue) results is shown as a function of days since peak viral load (x-axis) and viral load (y-935 

axis, log10 scale) at the time of sample collection and pooled testing for swab (D) and 936 

sputum (E) samples. Contour plots depict 2-d density, and histograms show marginal 937 

density over time (top) and viral load (right).  938 
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 939 

Fig. S4: Simulated viral loads. (A) Black lines show 50 randomly drawn viral load trajectories 940 

based on parameters estimated from fitting to swab data. Vertical dashed line shows time of 941 

symptom onset. Horizontal dashed lines show limit of detection assumed in subsequent 942 

analyses (black line) and limit of detection reported by Wölfel et al (red line). Blue and 943 

orange line shows median viral load on each day with respect to symptom onset. (B) as in 944 

(A), but fitted to sputum data. (C) Proportion of true viral loads above the limit of detection 945 

(LOD = 2 log10 RNA copies / swab or ml) on each day with respect to symptom onset for 946 

simulated swab (red) and sputum (blue) data. Note that the distribution for observed viral 947 

loads will differ slightly due to the addition of observation and sampling error. (D) Distribution 948 

of simulated cycle threshold values from swab samples at different stages of the epidemic.  949 
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 950 

Fig. S5: Group testing for sample identification during epidemic decline. Results shown are 951 

based on the same testing strategies as in Fig. 4. We evaluated a variety of group testing 952 

designs for sample identification (Table S1) on the basis of sensitivity (A) shows sensitivity 953 

and (B) shows efficiency. total number of positive samples identified (C) and the fold increase 954 

in positive samples identified relative to individual testing (D). (A and B) The average 955 

sensitivity (A, y-axis, individual points and spline) and average number of tests needed to 956 

identify individual positive samples (B, y-axis) using different pooling designs (individual lines) 957 

were measured over days 20-110 in our simulated population, with results plotted against 958 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 18 

prevalence (x-axis, log-scale). Results show the average of 200,000 trials, with individuals 959 

selected at random on each day in each trial. Pooling designs are separated by the number 960 

of samples tested on a daily basis (individual panels); the number of pools (color); and the 961 

number of pools into which each sample is split (dashed versus solid line). Solid red line 962 

indicates results for individual testing. (C) Every design was evaluated under constraints on 963 

the maximum number of samples collected (columns) and average number of reactions that 964 

can be run on a daily basis (rows) over days 40-90. Text in each box indicates the optimal 965 

design for a given set of constraints (number of samples per batch (N), number of pools (b), 966 

number of pools into which each sample is split (q), average number of total samples screened 967 

per day). Color indicates the average number of samples screened on a daily basis using the 968 

optimal design. Arrows indicate that the same pooling design is optimal at higher sample 969 

collection capacities due to testing constraints. (D) Fold increase in the number of positive 970 

samples identified relative to individual testing with the same resource constraints. Error bar 971 

shows range amongst optimal designs.  972 
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 973 

Fig. S6: Effectiveness of optimal testing design under resource constraints at high 974 

prevalence. As in Fig. 4, every design was evaluated under constraints on the maximum 975 

number of samples collected (columns) and average number of reactions that can be run on 976 

a daily basis (rows), here from days 80-108. Text in each box indicates the optimal design 977 

for a given set of constraints (number of samples per batch (N), number of pools (b), number 978 

of pools into which each sample is split (n), average number of total samples screened per 979 

day). Color indicates the average number of samples screened on a daily basis using the 980 

optimal design. Arrows indicate that the same pooling design is optimal at higher sample 981 

collection capacities.  982 
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 983 

Fig. S7: Effectiveness of optimal testing design under resource constraints using sputum data. 984 

(A) and (B) show optimal designs at lower and higher prevalence ranges respectively. Text in 985 

each box indicates the optimal design for a given set of constraints (number of samples per 986 

batch (N), number of pools (b), number of pools into which each sample is split (n), average 987 

number of total samples screened per day). Color indicates the average number of samples 988 

screened on a daily basis using the optimal design. Arrows indicate that the same pooling 989 

design is optimal at higher sample collection capacities. (C) Fold increase in the number of 990 
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positive samples identified relative to individual testing with the same resource constraints. 991 

Error bar shows range amongst optimal designs.  992 
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 993 

Fig. S8: Model fits to swab viral loads. Data were extracted from Wölfel et al. 2020. (34) The 994 

black dots show observed log10 RNA copies/swab; solid lines show posterior median 995 

estimates; dark shaded regions show 95% credible intervals (CI) on model-predicted latent 996 

viral loads; light shaded regions show 95% CI on simulated viral loads with added 997 

observation noise. The vertical dashed line shows the time of symptom onset. The horizontal 998 

dashed line shows the limit of quantification and the y-axis shows limit of detection reported 999 

by Wölfel et al. Inset text shows posterior median and 95% credible intervals of the fitted 1000 

parameters.   1001 
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 1002 

Fig. S9: Posterior distributions of estimated parameters fitted to swab and sputum data. 1003 

Parameters are described in Table S5.  1004 
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 1005 

Fig. S10: Markov chain Monte Carlo trace plots from fitting to swab and sputum data. Each 1006 

color shows an independent chain. Trace plots showing the path of the Markov chain Monte 1007 

Carlo sampler, demonstrating convergence to the same stationary distribution for all chains. 1008 

Parameters are described in Table S5. (A) Swab data. (B) Sputum data.   1009 

s r

tinc tp tg

tw stw tw

0 100 200 300 400

−5
0
5
10
15
20

0
10
20
30

0

1

2

3

0
1
2
3
4
5

2.5
5.0
7.5
10.0
12.5

0

1

2

3

−1.0
−0.5
0.0
0.5
1.0

a sa a

0 100 200 300 400 0 100 200 300 400

6

8

10

8
12
16
20

0
5
10
15
20

1.2
1.4
1.6
1.8
2.0

Iteration

Va
lu
e

A

s r

tinc tp tg

tw stw tw

0 100 200 300 400

0
5
10
15

0
20
40
60
80

0

1

2

3

0
1
2
3
4

10

20

0

1

2

3

−1.0
−0.5
0.0
0.5
1.0

a sa a

0 100 200 300 400 0 100 200 300 400

8
10
12
14

10
20
30
40
50

5
10
15
20

1.25
1.50
1.75
2.00

Iteration

Va
lu
e

B

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 25 

Table S1. List of all group test designs for sample identification. 1010 

Number of pools Number of 
samples 

Number of pools 
per sample 

1 2 1 
1 4 1 
1 8 1 
1 16 1 
1 32 1 
1 64 1 
6 12 2 
6 12 3 
6 24 2 
6 24 3 
6 48 2 
6 48 3 
6 96 2 
6 96 3 
6 192 2 
6 192 3 
6 384 2 
6 384 3 

12 24 2 
12 24 3 
12 24 4 
12 48 2 
12 48 3 
12 48 4 
12 96 2 
12 96 3 
12 96 4 
12 192 2 
12 192 3 
12 192 4 
12 384 2 
12 384 3 
12 384 4 
12 768 2 
12 768 3 
12 768 4 
24 48 2 
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24 48 3 
24 48 4 
24 96 2 
24 96 3 
24 96 4 
24 192 2 
24 192 3 
24 192 4 
24 384 2 
24 384 3 
24 384 4 
24 768 2 
24 768 3 
24 768 4 
24 1536 2 
24 1536 3 
24 1536 4 
48 96 2 
48 96 3 
48 96 4 
48 192 2 
48 192 3 
48 192 4 
48 384 2 
48 384 3 
48 384 4 
48 768 2 
48 768 3 
48 768 4 
48 1536 2 
48 1536 3 
48 1536 4 
48 3072 2 
48 3072 3 
48 3072 4 
96 192 2 
96 192 3 
96 192 4 
96 384 2 
96 384 3 
96 384 4 
96 768 2 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.05.01.20086801doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20086801
http://creativecommons.org/licenses/by-nc/4.0/


 27 

96 768 3 
96 768 4 
96 1536 2 
96 1536 3 
96 1536 4 
96 3072 2 
96 3072 3 
96 3072 4 
96 6144 2 
96 6144 3 
96 6144 4 

  1011 
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Table S2: Cycle threshold values from qPCR on pooled samples with variable viral load. 1012 

Five positive samples with variable viral loads (89,000, 12,300, 1,280, 140, and 11, for 1013 

samples 1-5, respectively) were each pooled with 23 negative samples (“Dil_1” to “Dil_5”). 1014 

Values in bottom table show the Ct values for each of five pools for three primer pairs (N1, 1015 

N2, and RP), along with a final call (positive, negative, or inconclusive). 1016 

Sample 

Name N1 CT N2 CT RP CT Call 

24_Dil_1 28.93 29.58 28.62 POS 

24_Dil_2 31.07 31.73 28.71 POS 

24_Dil_3 33.29 33.91 28.37 POS 

24_Dil_4 Undetermined 35.9 29.17 Inconclusive 

24_Dil_5 Undetermined Undetermined 28.62 Negative 

     
Pool_1 30.49 31.18 28.3 POS 

Pool_2 31.49 31.93 28.75 POS 

Pool_3 Undetermined Undetermined 29.62 Negative 

Pool_4 31.71 31.66 29.34 POS 

Pool_5 Undetermined Undetermined 30.01 Negative 

Pool_6 Undetermined Undetermined 29.99 Negative 

 1017 
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Table S3: Positive sample distribution within validation pools. 30 positive samples were 1018 

randomly distributed across batches of combinatorial pooling (B1-B10) and randomly 1019 

assigned sample numbers within batches. 24 separate positive samples were randomly 1020 

assigned to 1 of 48 simple pools ("Prevalence", pool number 2...48). 1021 

Positive sample id Batch Sample number 
within batch 

1 B5 46 

2 B1 77 

3 B5 21 

4 B10 35 

5 B2 10 

6 B8 89 

7 B1 5 

8 B7 17 

9 B6 6 

10 B1 8 

11 B7 91 

12 B8 79 

13 B2 20 

14 B10 53 

15 B8 30 

16 B6 15 

17 B5 50 

18 B5 67 

19 B9 7 

20 B1 47 

21 B9 6 

22 B4 66 

23 B2 46 

24 B5 78 

25 B2 96 

26 B8 72 
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27 B3 83 

28 B10 39 

29 B8 20 

30 B7 24 
   

Positive sample id Batch Pool number 

31 Prevalence 2 

32 Prevalence 3 

33 Prevalence 6 

34 Prevalence 7 

35 Prevalence 12 

36 Prevalence 12 

37 Prevalence 16 

38 Prevalence 16 

39 Prevalence 18 

40 Prevalence 22 

41 Prevalence 23 

42 Prevalence 25 

43 Prevalence 26 

44 Prevalence 26 

45 Prevalence 28 

46 Prevalence 29 

47 Prevalence 29 

48 Prevalence 30 

49 Prevalence 35 

50 Prevalence 37 

51 Prevalence 38 

52 Prevalence 38 

53 Prevalence 40 

54 Prevalence 48 

1022 
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Table S4: Pool design for combinatorial test with 96 samples. Each of 96 samples was split 1023 

in equal volume into 2 out of 6 pools. 1024 

Sample Pools 
1 A B 
2 A B 
3 A B 
4 A B 
5 A B 
6 A B 
7 A B 
8 C D 
9 C D 
10 C D 
11 C D 
12 C D 
13 C D 
14 C D 
15 E F 
16 E F 
17 E F 
18 E F 
19 E F 
20 E F 
21 E F 
22 B C 
23 B C 
24 B C 
25 B C 
26 B C 
27 B C 
28 B C 
29 D F 
30 D F 
31 D F 
32 D F 
33 D F 
34 D F 
35 D F 
36 A E 
37 A E 
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38 A E 
39 A E 
40 A E 
41 A E 
42 A E 
43 B D 
44 B D 
45 B D 
46 B D 
47 B D 
48 B D 
49 A F 
50 A F 
51 A F 
52 A F 
53 A F 
54 A F 
55 C E 
56 C E 
57 C E 
58 C E 
59 C E 
60 C E 
61 B E 
62 B E 
63 B E 
64 B E 
65 B E 
66 B E 
67 C F 
68 C F 
69 C F 
70 C F 
71 C F 
72 C F 
73 A D 
74 A D 
75 A D 
76 A D 
77 A D 
78 A D 
79 B F 
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80 B F 
81 B F 
82 B F 
83 B F 
84 B F 
85 D E 
86 D E 
87 D E 
88 D E 
89 D E 
90 D E 
91 A C 
92 A C 
93 A C 
94 A C 
95 A C 
96 A C 

1025 
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Table S5: Description of all parameters used in the viral kinetics and transmission models. 1026 

Values shown are posterior median estimates and 95% credible intervals or fixed value. 1027 

Parameter Description Posterior mean (95% 
CI) Prior (parameters) 

Viral kinetics model (swab) 
α   Mean of peak viral load parameters 7.98 (6.66-9.47) Uniform(-100,100) 

σα Standard deviation of peak viral load 
parameters 0.498 (0.0254-2.13) Half-Cauchy (1) 

αi Individual peak viral load parameters Varied Multivariate normal 

tw   Mean time from peak viral load to 
undetectable 15.1 (12-18.4) Uniform(-100,100) 

σtw Standard deviation of viral waning 
parameters 3.72 (2.02-7.55) Half-Cauchy (1) 

tw Individual time from peak viral load to 
undetectable Varied Multivariate normal 

tinc Time from infection to symptom onset 5.52 (2.23-11.5) Log normal (1.621, 0.418) 

tg Duration of pre-viral growth latent 
period Varied Uniform(0,3) 

tp Time from growth initiation to peak 
viral load Varied Uniform(0,3) 

σ Standard deviation of observation 
process 1.52 (1.31-1.82) Uniform(0,10) 

ρ Correlation between α   and tw   -0.0808 (-0.79-0.765) LKJ correlation matrix 
(η=2) 

Viral kinetics model (sputum) 
α   Mean of peak viral load parameters 8.91 (7.8-10.5) Uniform(-100,100) 

σα Standard deviation of peak viral load 
parameters 0.674 (0.0417-2.32) Half-Cauchy (1) 

αi Individual peak viral load parameters Varied Multivariate normal 

tw   Mean time from peak viral load to 
undetectable 26.0 (18.2-34.4) Uniform(-100,100) 

σtw Standard deviation of viral waning 
parameters 10.4 (6.51-18.2) Half-Cauchy (1) 

tw Individual time from peak viral load to 
undetectable Varied Multivariate normal 

tinc Time from infection to symptom onset 5.52 (2.23-11.5) Log normal (1.621, 0.418) 

tg Duration of pre-viral growth latent 
period Varied Uniform(0,3) 

tp Time from growth initiation to peak 
viral load Varied Uniform(0,3) 

σ Standard deviation of observation 
process 1.49 (1.31-1.73) Uniform(0,10) 

ρ Correlation between α   and tw   -0.398 (-0.925-0.579) LKJ correlation matrix 
(η=2) 

SEIR Model 
R0 Basic reproductive number 2.5 (fixed) NA 
1/γ Infectious period 7 days (fixed) NA 
1/σ Incubation period 6.4 days (fixed) NA 
I0 Initial number of infected individuals 100 (fixed) NA 
N Total population size 12500000 (fixed) NA 

1028 
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Table S6: RT-qPCR results for pooling validations. 10 batches of combinatorial pools (B1-1029 

B10, pools A-F in each batch) and 19 simple pools (“Prevalence”, pools P2...P48) were 1030 

tested by RT-qPCR. Test results (POS, NEG, INCONCLUSIVE, or INVALID) and Ct values 1031 

for N1, N2, and RP primers are shown for each pool. 1032 

Batch PoolID Result N1 Ct N2 Ct RP Ct 

B1 A POS 29.39 30.37 31.36 

B1 B POS 21.32 23.31 30.48 

B1 C POS 32.76 35.59 32.12 

B1 D POS 25.39 27.54 31.34 

B1 E NEG Undetermined Undetermined 32.47 

B1 F NEG Undetermined Undetermined 32.55 

B2 A POS 20.37 21.34 30.26 

B2 B POS 17.19 18.52 31.24 

B2 C POS 27.22 27.15 30.95 

B2 D POS 22.61 23.93 31.7 

B2 E POS 26.63 28.73 32.57 

B2 F INCONCLUSIVE Undetermined 39.46 32.5 

B3 A NEG Undetermined Undetermined 32.45 

B3 B NEG Undetermined Undetermined 32.51 

B3 C NEG Undetermined Undetermined 32.37 

B3 D NEG Undetermined Undetermined 32.88 

B3 E NEG Undetermined Undetermined 31.97 

B3 F NEG Undetermined Undetermined 33.08 

B4 A NEG Undetermined Undetermined 31.31 

B4 B POS 23.46 25 30.38 

B4 C NEG Undetermined Undetermined 32.72 

B4 D NEG Undetermined Undetermined 32.26 

B4 E POS 23.52 24.98 30.63 

B4 F NEG Undetermined Undetermined 32.65 

B5 A POS 28.68 30.06 30.56 

B5 B POS 31.23 33.89 31.51 
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B5 C NEG Undetermined Undetermined 31.92 

B5 D POS 27.17 28.71 31.3 

B5 E NEG Undetermined Undetermined 32.12 

B5 F NEG Undetermined Undetermined 30.86 

B6 A POS 32.09 32.96 30.56 

B6 B POS 30.3 32.43 30.22 

B6 C INVALID Undetermined Undetermined Undetermined 

B6 D NEG Undetermined Undetermined 31.76 

B6 E POS 32.86 30.42 32.41 

B6 F NEG Undetermined Undetermined 32.17 

B7 A POS 22.44 22.61 31.35 

B7 B POS 25.52 27.41 31.98 

B7 C POS 29.26 29.22 31.37 

B7 D NEG Undetermined Undetermined 32.12 

B7 E POS 25.09 26.34 31.28 

B7 F INCONCLUSIVE Undetermined 35.75 31.71 

B8 A NEG Undetermined Undetermined 30.74 

B8 B NEG Undetermined Undetermined 31.59 

B8 C INCONCLUSIVE Undetermined 33.89 32.4 

B8 D POS 17.85 18.76 31.24 

B8 E POS 17.71 18.18 30.57 

B8 F POS 24.73 25.65 31.05 

B9 A POS 22.44 22.76 31.27 

B9 B POS 21.17 21.96 32 

B9 C NEG Undetermined Undetermined 32.88 

B9 D NEG Undetermined Undetermined 32.04 

B9 E NEG Undetermined Undetermined 31.93 

B9 F POS 32.67 34.41 32.69 

B10 A POS 23.36 23.73 30.19 

B10 B NEG Undetermined Undetermined 31.94 

B10 C NEG Undetermined Undetermined 32.56 

B10 D POS 27.69 26.08 32 

B10 E POS 23.34 24.5 32.56 
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B10 F POS 27.15 25.63 31.56 

Prevalence P2 POS 21.68 23.21 32.06 

Prevalence P3 POS 33.31 34.66 32.95 

Prevalence P6 POS 22.49 23.25 31.85 

Prevalence P7 POS 20.39 21.43 31.51 

Prevalence P12 POS 23.54 24.93 30.93 

Prevalence P16 POS 21.46 23.02 31.97 

Prevalence P18 POS 19.55 19.63 31.24 

Prevalence P22 POS 22.22 23.61 31.42 

Prevalence P23 POS 34.54 35.93 32.34 

Prevalence P25 INCONCLUSIVE Undetermined 36.76 32.39 

Prevalence P26 POS 31.53 33.14 32.49 

Prevalence P28 NEG Undetermined Undetermined 31.93 

Prevalence P29 POS 21.2 22.61 31.64 

Prevalence P30 NEG Undetermined Undetermined 34.92 

Prevalence P35 POS 21.65 22.79 32.19 

Prevalence P37 POS 26.83 28.97 32.36 

Prevalence P38 POS 25.26 26.24 31.01 

Prevalence P40 POS 18.35 19.65 32.31 

Prevalence P48 POS 33.09 34.09 32.79 

 1033 
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