
PVP1–The People’s Ventilator Project: A fully
open, low-cost, pressure-controlled ventilator
Julienne LaChancea, Tom J. Zajdela, Manuel Schottdorfb, Jonny L. Saundersc, Sophie Dvalid, Chase Marshalle, Lorenzo

Seirupf, Daniel A. Nottermang, and Daniel J. Cohena

aDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
bPrinceton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA

cDepartment of Psychology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403
dDepartment of Physics, Princeton University, Princeton, NJ 08544, USA

gDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
eRailPod, Inc., Boston, MA 02127, USA

fNew York ISO, Rensselaer, NY 12144, USA

We present a fully open ventilator platform–The People’s Ven-
tilator: PVP1– with complete documentation and detailed build
instructions, and a DIY cost of $1,300 USD. Here, we validate
PVP1 against key performance criteria specified in the U.S.
Food and Drug Administration’s Emergency Use Authorization
for Ventilators. Notably, PVP1 performs well over a wide range
of test conditions and has been demonstrated to perform stably
for a minimum of 72,000 breath cycles over three days with a
mechanical test lung. As an open project, PVP1 can enable both
future educational, academic, and clinical developments in the
ventilator space.

ventilator | COVID | ARDS | medical device
Correspondence: danielcohen@princeton.edu

Introduction
Access to software and hardware. Key resources for the
People’s Ventilator Project (PVP1) are available online

• Source Code and Community
• Documentation
• PyPi - pip install pvp

Ventilator needs in the 21st century. The global COVID-
19 pandemic has highlighted the need for a low-cost,
rapidly-deployable ventilator solution for the current and
future pandemics. While safe and robust ventilation tech-
nology exists in the commercial sector, there exist a small
number of suppliers who have been unable to meet the ex-
treme demands for ventilators during a pandemic. Moreover,
the specialized and proprietary equipment developed by
medical device manufacturers can be prohibitively expensive
and inaccessible in low-resource areas (1). Moreover,
ventilation as a technology is needed globally beyond
pandemics for applications spanning neonatal intensive
care, surgical anaesthesia, life support, and general respira-
tory treatments. Hence there is a clear need for a broader
range of solutions, both for research and clinical applications.

In response to these challenges, we present a fully open-
source, rapid-deploy ventilator design with minimal
reliance on specialized medical devices and manufacturing
equipment. The People’s Ventilator Project (PVP1) is a
pressure-controlled, fully automatic mechanical ventilator

that can be built for less than $1,300 by a single person in
few days, requiring neither specialized tools nor specialist
knowledge. As a point of reference, the lower-end average
market values of open ventilators (such as the freely-released
Puritan Bennett 560 (Medtronic, Inc.) (2) or the Mechanical
Ventilator Milano (Elemaster, Inc.) (3)) cost approximately
$10,000. PVP1’s parts were selected for widespread avail-
ability, and its modular software was designed to support
component substitutions and extensions to new ventilation
modes, thereby increasing global access to critical-care
ventilation technology.

Open source medical technology can improve the capability
and access to medical technology as a whole in several ways:
(1) enabling faster device innovation with lower costs (4);
(2) increasing economic value, with associated public ben-
efits, compared to traditional proprietary development (5);
(3) facilitating external review and inspection by avoiding
black-box hardware and software designs, and (4) providing
a benchmark for innovation towards next-generation technol-
ogy such as smart ventilators (6). Finally, the open source ap-
proach can make these problems more accessible to academic
researchers, thereby greatly expanding the ability to train stu-
dents in approaching such problems as well as encouraging
unconventional approaches. While many pandemic ventilator
projects began as open-source initiatives, these often transi-
tioned to a closed format due to the strong structural and reg-
ulatory incentives to enter into industrial partnerships. Our
goal with PVP1 was to provide a completely open build guide
and software platform for a functional, pressure-controlled
ventilator designed for FDA Emergency Use Authorization
standards.

Design Philosophy and System Capabilities. PVP1 is an
automated ventilator that natively supports pressure-control
ventilation (PCV), spontaneous inhalation monitoring ven-
tilation (SIMV), and key alarms specified by regulatory
agencies (e.g. high airway pressure, etc.). Pressure control
was chosen over volume control because it is known to be
safer (7) with respect to barotrauma risk, and SIMV was
implemented because it increases the range of patients and
conditions for which PVP1 can be used. Summarized in Fig.
1A, PVP1 operates as a computer-controlled, timed-cycle

et al. | bioRχiv | October 3, 2020 | 1–S3

https://github.com/CohenLabPrinceton/pvp
https://www.peoplesvent.org/
https://pypi.org/project/pvp/


ventilator that requires only medical air and the patient-side
respiratory tubing to be operated. To date, PVP1 has been set
up three times by two different teams and run continuously
for over 300 hours with no alarms or failures noted (repre-
sentative data from a physical test-lung shown in Fig. 1D).

PVP1 was designed from the ground up to actually be a fully
open source and transparent ventilation system, and as such
we have made the entirety of our source code, electronics,
bill-of-materials, complete CAD assembly, testing results,
and relevant schematics open to the public (Fig. 1B). PVP1
follows the best practices for open projects (8): (i) trans-
parent and public communication on our github repository,
(ii) standardized and automated tests of individual modules
and the full system with complete coverage using Travis CI
(9), (iii) merger of pull requests only after passed tests and
independent code review, (iv) high-level hardware and build
documentation, and API-level documentation generated
from docstrings and (v) PVP1 made accessible via pip and
the Python Package Index which allows anyone to easily
install, run, and experiment with the software.

We feel strongly that open design should include justification
of design decisions and should be able to serve as a teaching
and learning tool. As such, our Supporting Information here
and our full documentation not only enable someone to build
PVP1, but to learn why and how we chose each key compo-
nent. Based on independent validation from collaborators,
following our guidelines will lead to a functional ventilator
in less than 3 days of hands-on-work. To further mitigate
risk and expedite exploration and evaluation of the PVP1
platform, we provide the ability to run a complete simulation
of the PVP1 system on any computer.

PVP1 was specifically designed for the constraints of a pan-
demic such as COVID-19, and special care was chosen to
specify reliable, commercial, off-the-shelf components out-
side of the traditional ventilator or scientific supply chains.
All components are available globally from general hardware
suppliers anthe chosen parts did not experience supply chain
disruptions due to COVID during the period of development.
The internal layout and chassis design are also sufficiently
modular and simple to allow PVP1 to be adapted to a given
clinical context without altering function. Modular and well-
documented code facilitates simple adaptation of the system
to different hardware. Finally, we hope PVP1 can either di-
rectly or indirectly improve access to ventilators even beyond
the COVID-19 pandemic, while also offering a reliable and
open research platform for further ventilator development.

Prior art and PVP1 Operation. The scientific community
has mounted a powerful response to multiple facets of
COVID-19, including numerous exciting ventilator projects,
many of which leverage earlier designs developed to combat
prior respiratory pandemics such as SARS and H1N1(1).
In designing PVP1 we sought to learn from the challenges
and limitations noted in prior studies while also providing
a fully open source, transparent project. There are two

key ventilator designs that received early FDA Emergency
Use Authorizations–The University of Minnesota Venti-
lator (12), and the Mechanical Ventilator Milano (3). To
handle production and FDA EUA approval, both projects
eventually shifted manufacturer-of-record status to major
companies–Boston Scientific, and Elemaster, respectively.
Other academic projects such as the Vent4Us/PezGlobo ven-
tilator (Stanford/University of Utah/University of Delaware)
(13) have merged over time and also incorporated a variety
of commercial backers. Still other projects such as the MIT
E-Vent bag-valve ventilator design have remained open
(www.emergency-vent.mit.edu) A more comprehensive
discussion of numerous ventilator projects can be found in
(1), where it is highlighted that the most successful projects
have necessarily become less open due to constraints from
industrial partners. Hence, a key goal with PVP1 was to
describe and demonstrate a fully functional and modular
ventilation platform that both highlights how effective a
minimal design can be and provides a fully open platform
for the broader community to leverage.

To accomplish this, PVP1 follows key FDA EUA design
criteria by automating the classic Manley ventilator design
(1, 10). The PVP1 schematic is shown in Figure 1A: the
O2/air mixture is supplied to the system via a hospital gas
blender, and the patient breath cycle is actively controlled via
a proportional valve on the inspiratory limb and a solenoid
valve with mechanical PEEP valve on the expiratory limb.
Our approach integrates an embedded system (Raspberry Pi)
supporting Pressure Controlled Ventilation (PCV), compre-
hensive monitoring of key alarm conditions, spontaneous
breath detection (SIMV) and an intuitive touch-screen inter-
face for clinician control. To use PVP1, the clinician pro-
grams a desired peak airway pressure (PIP), sets a manual
PEEP-valve to establish expiratory pressure, and sets a target
respiratory rate or I:E ratio. Convenient modifications to rise
time and breath effort can be performed in real-time by the
clinician. Core labeling specifications of PVP1 as required
by the FDA EUA are presented in Table 1.

Results
Here, we present demonstrations and validations of how
PVP1 performs key ventilatory processes. For clarity, we
will first present results of using PVP1 (Core Performance),
followed by a more detailed discussion of how PVP1 was
designed at the hardware and software level. A com-
plete description of the design process can be found at
https://peoplesvent.org.

Core Performance.

Normal Operating Behavior. First, we evaluated the longterm
stability and performance of PVP1 by performing standard
pressure-controlled ventilation more than 70,000 contiguous
cycles over a period of 3 days (Fig. 2). All testing was
performed using a high-grade test lung (Quicklung, Ingmar
Medical) that offered the ability to tune compliance (C) and

2 | bioRχiv et al. | PVP1 - The People’s Ventilator Project

https://github.com/CohenLabPrinceton/pvp
https://pypi.org/project/pvp/
https://www.peoplesvent.org/
https://www.peoplesvent.org/


A B

C

Complete Design Files

Fig. 1. A system overview of the People’s Ventilator Project. A) overview of respiratory circuit. B) A snapshot of the online documentation demonstrating a complete web-portal
optimized for sharing documentation and build instructions. PVP1 Bill of Materials is highlighted. C) The assembled device.

Parameter Range Comments: tested range, theoretical performance, notes
RR (BPM) 10-40* 12-20 tested based on ISO test tables; higher is feasible
TV (mL) 200-500* *Pressure controlled ventilation does not explicitly set TV; we validated resultant TV under PC as within the FDA EUA targets.
Flow Rate (L/min) 0-100L/m Valve specifications; maximum needed for testing was 85 L/m
PIP (cm H20) 15-60 Tested up to 35 cm H20 during normal operation; safety hardware and alarms can support up to 60 cm H20 as per FDA EUA guidelines.
PEEP (cm H20) 5-25 Validated PEEP range using approved commercial PEEP valves
I:E Ratios 1:1-1:3 Tested based on ISO 80601-2-80:2018 test tables
Available Ventilation Modes PCV, SIMV Modular system can be adapted for CPAP or non-invasive-modes at the software level.
Air Source Hospital air Rated for 50 psi, pre-blended oxygen/medical air mix.
Alarms See Supplement High/low airway pressure, hyper/hypoventilation, obstruction, low FiO2, PEEP not met, Disconnect/high leakage, Technical Alarms
Display variables N/A Airway pressure, expiratory flow, FiO2. Derived quantities: actual PIP, PEEP, VTE
Set variables N/A Target PIP, Target PEEP, Flow adjustment, Respiratory Rate, I:E ratio (or inspiratory time)

Table 1. PVP1 Specifications

ramp PIP plateau Exhalation PEEP period

Inspiratory time Expiratory timeInspiratory time

Stable performance over 3 continuous days

Fig. 2. Overlaid pressure control breath cycle waveforms for airway pressure and
flow out over 70,000+ cycles. Test settings: compliance C=20 mL/cm H2O, airway
resistance R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O.

resistance (R) to meet FDA EUA test specifications (C=[5,20,
50] mL cm H2O; R=[5,20,50] cm H2O/L/s). Figure 2 shows
pressure control performance for midpoint settings: C=20
mL/cm H2O, R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5
cm H2O. PIP is reached within a 300 ms ramp period, then
holds for the PIP plateau with minimal fluctuation of airway
pressure for the remainder of the inspiratory cycle (blue).
One the expiratory valve opens, exhalation begins and expi-
ratory flow is measured (orange) as the airway pressure drops
to PEEP and remains there for the rest of the PEEP period.

Individual patient variation means that a one-size-fits all ap-
proach to pressure-controlled ventilation can have problems,
and fine-tuning of key parameters such as the rise time (how
quickly the ventilator reaches PIP) can allow more tailored
ventilation. PVP1 supports such adjustment through a flow
adjustment setting available to the clinician. This flow adjust-
ment setting allows the user to increase the maximum flow
rate during the ramp cycle to inflate lungs with higher com-
pliance. The flow setting can be readily changed from the

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 3



Demonstration of flow adjustment Spontaneous Breath Capability High Pressure Alarm Demonstration

Correction response

spontaneous 
breath

new cycle phase

A B C
Manual compression

Fig. 3. Demonstration of waveform tuning via flow adjustment. If necessary, the operator can increase the flow setting through the system GUI to decrease the pressure
ramp time. Test settings: compliance C=20 mL/cm H2O, airway resistance R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O.

GUI and the control system immediately adapts to the user’s
input. An example of this flow adjustment is shown in Fig-
ure 3A for four breath cycles. While all cycles reach PIP, the
latter two have a higher mean airway pressure, which may be
more desirable under certain conditions than the lower mean
airway pressure of the former two.

Breath detection validation. A key feature of modern ventila-
tors is to support spontaneous breath delivery should a non-
anaesthetized patient try to breathe. Such patient-initiated
breaths during the expiratory phase cause a sharp and tran-
sient drop in PEEP, and PVP1 can be set to detect these and
trigger initiation of a new pressure-controlled breath cycle.
We tested this functionality by triggering numerous breaths
out of phase with the intended inspiratory cycle, using a de-
vice (QuickTrigger, IngMar Medical, Pittsburgh, PA) to mo-
mentarily open the test lung during PEEP and simulate this
transient drop of pressure (Figure 3B).

Alarm response demonstration. Reliable and rapid alarm re-
sponses are a necessary feature of automated ventilators,
and one of the most critical alarms (’high priority’ in FDA
EUA guidelines) for pressure control ventilation is the High-
Airway-Pressure-Alarm (HAPA). According to peformance
standards, the ventilator must detect abnormally high airway
pressure must be detected and corrected within 2 breath cy-
cles. In PVP1, the HAPA alarm can detect and respond to
elevated airway pressure within 500 ms, while also throwing
a high priority visual and audible alarm (Figure 3C).

EUA ISO Standard Tests. The FDA EUA guidelines lay
out standardized tests required for all pressure controlled
ventilation (see ISO 80601-20-80-2018). We performed
this battery of tests (with the exception of those requiring
controlled leak rates) and present the results in Figures 4
and 5. These tests cover an array of conditions, and more
difficult test cases involve a high airway pressure coupled
with a low lung compliance (case nos. 8 and 9 in Figure 5).
Under these conditions, f the inspiratory flow rate during
the ramp phase is too high, the high airway resistance will
produce a transient spike in airway pressure which can
greatly overshoot the PIP value. For this reason, the system
uses a low initial flow setting and allows the clinican to
increase the flow rate if necessary (as in Figure 3A).

The PVP1 integrates expiratory flow to monitor the tidal
volume, which is not directly set in pressure controlled

ventilation, but is an important parameter to ensure sufficient
oxygen is delivered to the lungs. Of the test conditions in
the ISO standard, four that we tested intended a nominal
delivered tidal volume of 500 mL, three intended 300 mL,
and one intended 200 mL. For most cases, the estimated
tidal volume has a tight spread clustered within 20% of the
intended value (see Figure 6).

The choice of items to display was done in close in-
teraction with clinicians. Specifically, we chose to dis-
play VTE, Mean-airway-pressure (MAP), Peak-inspiratory-
pressure (PIP), Positive end-expiratory pressure (PEEP), but
the modular design of the GUI allows users to easily config-
ure a different set of display and control values.

Hardware design. The device components were selected to
enable a minimalistic and relatively low-cost ventilator de-
sign, to avoid supply chain limitations, and to facilitate rapid
and easy assembly. Most parts in our system are not medical-
specific devices, and those that are specialized components
are readily available and standardized across ventilator plat-
forms, such as standard respiratory circuits and HEPA fil-
ters. We are providing a complete assembly of the device,
including 3D-printable components, as well as justifications
for selecting all actuators and sensors in the sections below,
as guidance to those who cannot source an exact match to
components used here. Readers may refer to the system
schematic in Figure 7A.

Hospital gas blender. At the inlet to the system, we as-
sume the presence of a commercial-off-the-shelf (COTS) gas
blender. These devices mix air from U.S. standard medical
air and O2 as supplied at the hospital wall at a pressure of
around 50 psig. The device outlet fitting may vary, but we
assume a male O2 DISS fitting (NIST standard). In field hos-
pitals, compressed air and O2 cylinders may be utilized in
conjunction with a gas blender, or a low-cost Venturi-based
gas blender. We additionally assume that the oxygen con-
centration of gas supplied by the blender can be manually
adjusted. Users will be able to monitor the oxygen concen-
tration level in real-time on the device GUI.

Fittings and 3D printed adapters. Standardized fittings were
selected whenever possible to ease part sourcing in the event
that engineers replicating the system need to swap out a com-

4 | bioRχiv et al. | PVP1 - The People’s Ventilator Project



Fig. 4. Performance results of the ISO 80601-2-80-2018 pressure controlled ventilator standard tests with an intended delivered tidal volume of 500 mL. For each configuration
the following parameters are listed: the test number (from table 201.105 in the ISO standard), the compliance (C, mL/cm H2O), linear resistance (R, cm H2O/L/s), respiratory
frequency (f, breaths/min), peak inspiratory pressure (PIP, cm H2O), positive end-expiratory pressure (PEEP, cm H2O), and flow adjustment setting. PIP is reached in every
test condition except for case 2, which is approximately 2.4 cm H2O below the set point.

ponent, possibly as the result of sourcing constraints within
their local geographic area. Many fittings are American na-
tional pipe thread (NPT) standard, or conform to the respira-
tory circuit tubing standards (15mm I.D./22 mm O.D.). To
reduce system complexity and sourcing requirements of spe-
cialized adapters, a number of connectors, brackets, and man-
ifold are provided as 3D printable parts. All 3D printed com-
ponents were print-tested on multiple 3D printers, including
consumer-level devices produced by MakerBot, FlashForge,
and Creality3D.

Pressure regulator. The fixed pressure regulator near the in-
let of the system functions to step down the pressure supplied
to the proportional valve to a safe and consistent set level of
50 psi. It is essential to preventing the over-pressurization of
the system in the event of a pressure spike, eases the real-time
control task, and ensures that downstream valves are operat-
ing within the acceptable range of flow conditions.

Proportional valve. The proportional valve is the first of two
actuated components in the system. It enables regulation of
the gas flow to the patient via the PID control framework, de-

scribed in a following section. A proportional valve upstream
of the respiratory circuit enables the controller to modify the
inspiratory time, and does not present wear limitations like
pinch-valves and other analogous flow-control devices. The
normally closed configuration was selected to prevent over-
pressurization of the lungs in the event of system failure.

Sensors. The system includes an oxygen sensor for monitor-
ing oxygen concentration of the blended gas supplied to the
patient, a pressure sensor located proximally to the patient
mouth along the respiratory circuit, and a spirometer, con-
sisting of a plastic housing (D-Lite, GE Healthcare) with an
attached differential pressure sensor, to measure flow. Indi-
vidual sensor selection will be described in more detail in a
following section. The oxygen sensor read-out is used to ad-
just the manual gas blender and to trigger alarm states in the
event of deviations from a setpoint. The proximal location
of the primary pressure sensor was selected due to the choice
of a pressure-based control strategy, specifically to ensure the
most accurate pressure readings with respect to the patient’s
lungs. Flow estimates from the single expiratory flow sensor

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 5



Fig. 5. Performance results of the ISO 80601-2-80-2018 pressure controlled ventilator standard tests with an intended delivered tidal volume of 300 mL. For each configuration
the following parameters are listed: the test number (from table 201.105 in the ISO standard), the compliance (C, mL/cm H2O), linear resistance (R, cm H2O/L/s), respiratory
frequency (breaths/min), peak inspiratory pressure (PIP, cm H2O), positive end-expiratory pressure (PEEP, cm H2O), and flow adjustment setting. PIP is reached in every
test condition.

Fig. 6. Tidal volume performance for the ISO 80601-2-80-2018 pressure controlled
ventilator standard tests, averaged across 30 breath cycles for each condition.

are not directly used in the pressure-based control scheme,
but enable the device to trigger appropriate alarm states in or-
der to avoid deviations from the tidal volume of gas leaving
the lungs during expiration. The device does not currently
monitor gas temperature and humidity due to the use of an
HME rather than a heated humidification system.

Pressure relief. A critical safety component is the pressure
relief valve (alternatively called the "pressure release valve",
or "pressure safety valve"). The proportional valve is con-

trolled to ensure that the pressure of the gas supplied to the
patient never rises above a set maximum level. The relief
valve acts as a backup safety mechanism and opens if the
pressure exceeds a safe level, thereby dumping excess gas
to atmosphere. Thus, the relief valve in this system is located
between the proportional valve and the patient respiratory cir-
cuit. The pressure relief valve we source cracks at 1 psi (∼70
cm H2O).

Anti-suffocation check valve. A standard ventilator check
valve (alternatively called a "one-way valve") is used as a
secondary safety component in-line between the proportional
valve and the patient respiratory circuit. The check valve
is oriented such that air can be pulled into the system in
the event of system failure, but that air cannot flow outward
through the valve. A standard respiratory circuit check valve
is used because it is a low-cost, readily sourced device with
low cracking pressure and sufficiently high valve flow coeffi-
cient (Cv).

Bacterial filters. A medical-grade electrostatic filter is placed
on either end of the respiratory circuit. These function as

6 | bioRχiv et al. | PVP1 - The People’s Ventilator Project



protection against contamination of device internals and sur-
roundings by pathogens and reduces the probability of the
patient developing a hospital-acquired infection. The elec-
trostatic filter presents low resistance to flow in the airway.

Standard respiratory circuit. The breathing circuit which
connects the patient to the device is a standard respiratory
circuit: the flexible, corrugated plastic tubing used in com-
mercial ICU ventilators. Because this system assumes the
use of an HME to maintain humidity levels of gas supplied to
the patient, specialized heated tubing is not required.

HME. A Heat and Moisture Exchanger is placed proximal to
the patient. This is used to passively humidify and warm air
inspired by the patient. HMEs are the standard solution in the
absence of a heated humidifier. While we evaluated the use
of an HME/F which integrates a bacteriological/viral filter,
use of an HME/F increased flow resistance and compromised
pressure control.

Pressure sampling filter. Proximal airway pressure is sam-
pled at a pressure port near the wye adapter, and measured
by a pressure sensor on the sensor PCB. To protect the sensor
and internals of the ventilator, an additional 0.2 micron bacte-
rial/viral filter is placed in-line between the proximal airway
sampling port and the pressure sensor. This is also a standard
approach in many commercial ventilators.

Expiratory solenoid. The expiratory solenoid is the second of
two actuated components in the system. When this valve is
open, air bypasses the lungs, thereby enabling the lungs to
de-pressurize upon expiration. When the valve is closed, the
lungs may inflate or hold a fixed pressure, according to the
control applied to the proportional valve. The expiratory flow
control components must be selected to have a sufficiently
high valve flow coefficient (Cv) to prevent obstruction upon
expiration. This valve is also selected to be normally open,
to enable the patient to expire in the event of system failure.

Manual PEEP valve. The PEEP valve is a component which
maintains the positive end-expiratory pressure (PEEP) of the
system above atmospheric pressure to promote gas exchange
to the lungs. A typical COTS PEEP valve is a spring-based
relief valve which exhausts when pressure within the airway
exceeds a fixed limit. This limit is manually adjusted via
compression of the spring. Various low-cost alternatives to a
COTS mechanical PEEP valve exist, including the use of a
simple water column, in the event that PEEP valves become
challenging to source. We additionally provide a 3D print-
able PEEP valve alternative which utilizes a thin membrane,
rather than a spring, to maintain PEEP.

Actuator Selection. When planning actuator selection,
it was necessary to consider the placement of the valves
within the larger system. Initially, we anticipated sourcing
a proportional valve to operate at very low pressures (0-50
cm H20) and sufficiently high flow (over 120 LPM) of
gas within the airway. However, a low-pressure, high-flow
regime proportional valve is far more expensive than a

proportional valve which operates within high-pressure
(~50 psi), high-flow regimes. Thus, we designed the device
such that the proportional valve would admit gas within the
high-pressure regime and regulate air flow to the patient
from the inspiratory airway limb.

Conceivably, it is possible to control the air flow to the pa-
tient with the proportional valve alone. However, we couple
this actuator with a solenoid and PEEP valve to ensure ro-
bust control during PIP (peak inspiratory pressure) and PEEP
hold, and to minimize the loss of O2-blended gas to the at-
mosphere, particularly during PIP hold.

Proportional valve sourcing. Despite designing the system
such that the proportional valve could be sourced for opera-
tion within a normal inlet pressure regime (~50 psi), it was
necessary to search for a valve with a high enough valve
flow coefficient (Cv) to admit sufficient gas to the patient.
We sourced an SMC PVQ31-5G-23-01N valve with stain-
less steel body in the normally-closed configuration. This
valve has a port size of 1/8" (Rc) and has previously been
used in respiratory applications (reference?). Although the
manufacturer does not supply Cv estimates, we empirically
determined that this valve is able to flow sufficiently for the
application (see Methods).

Expiratory solenoid sourcing. When sourcing the expiratory
solenoid, it was necessary to choose a device with a suffi-
ciently high valve flow coefficient (Cv) which could still ac-
tuate quickly enough to enable robust control of the gas flow.
A reduced Cv in this portion of the circuit would restrict the
ability of the patient to exhale. Initially, a number of con-
trol valves were sourced for their rapid switching speeds and
empirically tested, as Cv estimates are often not provided by
valve manufacturers. Ultimately, however, we selected a pro-
cess valve in lieu of a control valve to ensure the device would
flow sufficiently well, and the choice of valve did not present
problems when implementing the control strategy. The SMC
VXZ250HGB solenoid valve in the normally-open configu-
ration was selected. The valve in particular was sourced par-
tially due to its large port size (3/4" NPT). If an analogous
solenoid with rapid switching speed and large Cv cannot be
sourced, engineers replicating our device may consider the
use of pneumatically actuated valves driven from air routed
from a take-off downstream of the pressure regulator.

Manual PEEP valve sourcing. The PEEP valve is one of
the few medical-specific COTS components in the device.
The system configuration assumes the use of any ventilator-
specific PEEP valve (Teleflex, CareFusion, etc.) coupled
with an adapter to the standard 22 mm respiratory circuit tub-
ing. In anticipation of potential supply chain limitations, as
noted previously, we additionally provide the CAD models
of a 3D printable PEEP valve.

Sensor Selection. We selected a minimal set of sensors
with analog outputs to keep the system design sufficiently
adaptable. If there were a part shortage for a specific pres-

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 7



sure sensor, for example, any readily available pressure sen-
sor with an analog output could be substituted into the sys-
tem following a simple adjustment in calibration in the con-
troller. Our system uses three sensors: an oxygen sensor, an
airway pressure sensor, and a flow sensor with availability
for a fourth addition, all interfaced with the Raspberry Pi via
a 4-channel ADC (Adafruit ADS1115) through an I2C con-
nection.

Oxygen sensor. We selected an electrochemical oxygen sen-
sor (Sensironics SS-12A) designed for the range of FiO2 used
for standard ventilation and in other medical devices. The
cell is self-powered, generating a small DC voltage (13-16
mV) that is linearly proportional to oxygen concentration.
The output signal is amplified by an instrumentation ampli-
fier interfacing the sensor with the Raspberry Pi controller
(see Electronics Design section). This sensor is a wear part
with a lifespan of ~6 years under operation at ambient air;
therefore under continuous ventilator operation with oxygen-
enriched gas, it will need to be replaced more frequently.
This part can be replaced with any other medical O2 sen-
sor provided calibration is performed given that these parts
are typically sold as raw sensors, with a 3-pin molex inter-
face. Moreover, the sensor we specify is compatible with
a range of medical O2 sensors, including the Analytical In-
dustries PSR-11-917-M or the Puritan Bennett 4-072214-00,
so we anticipate abundant sourcing options. The linearity of
this sensor is ≤ 2% and the repeatability is ±1% volume O2
at 100% O2 applied for 5 minutes.

Pressure sensor (airway). We selected a pressure sensor with
a few key characteristics in mind: 1) the sensor had to be
compatible with the 5V supply of the Raspberry Pi, 2) the
sensor’s input pressure range had conform to the range of
pressures possible in our device (up to 70 cm H2O, the pres-
sure relief valve’s cutoff), and 3) the sensor’s response time
had to be sufficiently fast. We selected the amplified middle
pressure sensor from Amphenol (1 PSI-D-4V), which was
readily available, with a measurement range up to 70 cm H2O
and an analog output voltage span of 4 V. Moreover, the de-
cision to utilize an analog sensor is convenient for engineers
replicating the design, as new analog sensors can be swapped
in without extensive code and electronics modifications, as in
the case of I2C devices which require modifications to hard-
ware addresses. Other pressure sensors from this Amphenol
line can be used as replacements if necessary. The linearity
of this sensor is ± 0.5% f.s., with 1% span shift across 5°C
to 50°C.

Spirometer. Because flow measurement is essential for mea-
suring tidal volume during pressure-controlled ventilation,
medical flow sensor availability was extremely limited dur-
ing the early stages of the 2020 COVID-19 pandemic, and
supply is still an issue. For that reason, we looked for inex-
pensive, more easily sourced spirometers to use in our sys-
tem. We used the GE D-Lite spirometer, which is a mass-
produced part and has been used in hospitals for nearly 30
years. The D-Lite sensor is inserted in-line with the flow of

gas on the expiratory limb, and two ports are used to measure
the differential pressure drop resulting from flow through a
narrow physical restriction. The third pressure-measurement
port on the D-Lite is blocked by a male Luer cap, but this
could be used as a backup pressure measurement port if de-
sired. An Amphenol 5 INCH-D2-P4V-MINI was selected to
measure the differential pressure across the two D-Lite take-
offs. As with the primary (absolute) pressure sensor, this sen-
sor was selected to conform to the voltage range of the Rasp-
berry Pi, operate within a small pressure range, and have a
sufficiently fast response time (partially as a function of the
analog-to-digital converter). Also, this analog sensor can be
readily replaced with a similar analog sensor without sub-
stantial code/electronics modifications. The linearity of this
sensor is ± 0.5% (maximum 0.25%) f.s., with 1% span shift
across 5°C to 50°C.

Electronics Design. The components of the PVP1 are
coordinated by a Raspberry Pi 4 board, which runs the
graphical user interface, administers the alarm system,
monitors sensor values, and sends actuation commands to
the valves (Figure 7). We elected to use a single Rasp-
berry Pi rather than a computer connected to a dedicated
microcontroller to minimize design complexity and to unify
PVP1’s software in flexible, extensible, high-level Python
modules. Dedicated microcontrollers are typically used
because they run a single program without interruption,
but they typically require ventilation control logic to be
written in low-level C, and add an additional point of failure
and inflexibility in the communication API between the
computer and microcontroller. By taking advantage of the
Raspberry Pi’s multiple processing cores and designing
interfaces to a low-level hardware control daemon, PVP1 is
capable of controlling ventilation at well below the latency
of its hardware.

The main power to the systems is supplied by a DIN
rail-mounted 150W 24V supply, which drives the inspiratory
valve (4W) and expiratory valves (13W). This voltage
is converted to 5V by a switched mode PCB-mounted
regulated to power the Raspberry Pi and sensors. This power
is transmitted across the PCBs through the stacked headers
when required.

The core electrical system consists of two modular board
’hats’, a sensor board and an actuator board, that stack onto
the Raspberry Pi via 40-pin stackable headers (Figure 7B).
The modularity of this system enables individual boards to
be revised or modified to adapt to component substitutions if
required.

Actuator Board. The purpose of the actuator board is twofold:

1. regulate the 24V power supply to 5V (CUI Inc
PDQE15-Q24-S5-D DC-DC converter)

2. interface the Raspberry Pi with the inspiratory and ex-
piratory valves through an array of solenoid drivers
(ULN2003A Darlington transistor array)

8 | bioRχiv et al. | PVP1 - The People’s Ventilator Project



A B

Fig. 7. Overview of PVP1 electronics. A) Block diagram. System power is supplied by AC through an uninterruptible power supply (UPS) regulated to 24 VDC by a switched-
mode power supply, to be used to drive the valves. This DC is further regulated to 5 VDC to supply power to the Raspberry Pi and associated sensors. The sensor PCB
coordinates the inputs of the pressure and oxygen sensors. The actuator PCB amplifies control signals from the Pi to drive the valve solenoids. I/O is provided by a 7"
touchscreen and an alarm speaker. B) Photograph of the modular system electronics. Two modular PCB ’hats’ stack onto the Raspberry Pi via 40-pin stackable headers: the
sensor PCB and the actuator PCB.

Sensor Board. The sensor board interfaces four analog output
sensors with the Raspberry Pi via I2C commands to a 12-bit
4-channel ADC (Adafruit ADS1015).

1. an airway pressure sensor (Amphenol 1 PSI-D-4V-
MINI)

2. a differential pressure sensor (Amphenol 5 INCH-D2-
P4V-MINI) to report the expiratory flow rate through a
D-Lite spirometer

3. an oxygen sensor (Sensiron SS-12A) whose 13 mV
differential output signal is amplified 250-fold by an
instrumentation amplifier (Texas Instruments INA126)

4. a fourth auxiliary slot for an additional analog output
sensor (unused)

A set of additional header pins allows for digital output sen-
sors (such as the Sensiron SFM3300 flow sensor) to be inter-
faced with the Pi directly if desired.
Detailed schematics and board design files are included in the
supplement.

Software design. The software was modularly designed to
facilitate future adaptation to new hardware configurations
and ventilation modes. We carefully designed APIs for
each of the modules to a) make them easily inspected and
configured and b) make it clear to future developers how to
adapt the system to their needs. The software has complete
API-level documentation, making it so no part of the system
is a black box.

All software development was done on GitHub, including
a continuous-integration and automated testing suite with
≈ 97% code coverage and thorough code reviews of the core
routines. All code was tested in parallel with the automated
testing suite and on the physical device itself. The source

code is publicly available on our GitHub repository, from
which we also compile the documentation.

Software Architecture. The software is divided into two
independent GUI and controller processes (Figure 8). The
GUI process provides an interface to control and monitor
ventilation, and the controller process handles the ventilation
logic and interfaces with the hardware. Inter-process com-
munication is mediated by a coordinator module via xml-rpc.
Several ’common’ modules facilitate system configuration
and constitute the inter-process API. We designed the API
around a unified, configurable values module that allow
the GUI and controller to be reconfigured while also ensuring
system robustness and simplicity.

The multiprocess model has several key advantages over the
single-process model:

1. Robustness: Since the GUI and controller are inde-
pendent, a failing process can be restarted without in-
terrupting the other.

2. Efficiency: Both processes can operate on their own
processor core, allowing the controller to do rapid con-
trol operations without being interrupted by slower
GUI operations.

3. Flexibility: Because the rapid controller process is
separate from the slower GUI process, our system uses
a single low-cost computer rather than a computer and
an additional dedicated microprocessor. By using a
single computer we were able to write the entire pro-
gram in a single, high-level programming language and
avoid the complexity induced by needing to design a
separate controller firmware in low-level C. As such, it
is easier to develop additional controller modules, GUI
widgets, and hardware interfaces to implement differ-

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 9

https://github.com/CohenLabPrinceton/pvp
https://github.com/CohenLabPrinceton/PVP
https://pvp.readthedocs.io/en/latest/


ent ventilation modes and hardware configurations in
the future.

General software considerations. Across all software mod-
ules, we made sure to have a well-defined startup/stop
sequence, to store all relevant raw data and measure the
aging of components:

PVP1 should only be started, and stopped, using the provided
user interface. Hard termination of the code, i.e. without
allowing any more CPU time for executing commands,
might freeze the valves in position, conceivably damaging
the lung. It is therefore imperative to set valves into a safe
positions, specifically, closing the inspiratory valve, to open
the expiratory valve and thereby to relieve the system of any
residual pressure and protect against future pressure-buildup.
The same code has to be executed if any Exception occurs.

PVP1 continuously logs raw data into compressed hdf5 files.
Pressure, the key variable of the controller, is sampled and
stored at the speed of the controller main loop, while flow is
only monitored during exhalation when the expiratory valve
is open, and oxygen-concentration is measured every five
seconds (see controller). In addition, we keep a log of events,
as alarms and derived quantities and continuously produce
human-readable logs as plain text that log overall program
state and progress.

As hardware components age (e.g. the oxygen sensor and
the valves), it is critical for the software to measure the time
when it was first activated, and not just the number of breath
cycles performed. To this end, the software stores a set of
varbiables upon first activation, in the file prefs.json
including the time of first start.

Core-load of the entire software package was ≈ 60%, and
≈ 40% for the two processes, and ≈ 15% for pigpiod, the
demon that performs communication with the periphery.
PVP1 thus puts the Pi’s ARM Cortex-A72 CPU with its
four processor cores under only a mild load. Memory load
was about 20% or 200 MB. The Raspberry Pi allows CPU
frequency scaling, which enables the operating system to
scale the CPU frequency up or down depending on demand.
The governor, which regulates this scaling, was set to
performance to deactivate this feature. In addition, stand-by
and screensaver were deactivated.

Hardware I/O. The low-level firmware code is designed to
be modular and makes extensive use of inheritance such
that generic classes can be re-used for different applications,
e.g. switching out a sensor, valve or ADC. In many cases,
adapting the code to accommodate a new device requires
re-writing a few lines of code.

We implement a hardware abstraction layer (HAL) to
simplify the interaction between the controller and the
firmware code so that all the complexity of the firmware

Fig. 8. Overview of the software architecture. The user interface (UI) is controlled
by a UI thread, that communicates with a second, faster, thread that implements
the PID logic, by xml-rpc. The control loop is connected to hardware via the hard-
ware abstraction layer (HAL). Both threads check for alarms; lower priority in the UI
thread, and high priority in the controller thread, like HAPA (high airway pressure
alert). The stack of cards illustrates a shared alarm-manager, which intelligently
manages alarms, but keeping track of the various types, and sorting by importance.
The individual processes add to this stack.

code is hidden from the engineers who are developing the
controls. Additionally, reconfiguration of the hardware is
accomplished easily from the perspective of higher-level
users due to the use of hardware config files.

For all communications over the GPIO pins of the Raspberry
Pi, including sensor/ADC readings and valve control, we
utilize the pigpio daemon (11). The pigpiod is a standalone
interface which runs in its own process and is written in C.
It is significantly faster than the default GPIO libraries and
provides additional features like hardware-generated PWM
signals. The pigpio Python library provides Python bindings
for inter-process communication with the pigpio daemon.

Sensor reads require communication with pigpiod daemon
which shares a single thread with the controller module. Fu-
ture developers should strongly consider modifying the back-
end firmware in order to guarantee time-outs on communi-
cations. The sensors reading may occur in its own process
such that the sensors are continuously sampled, with time-
outs enabling the coordinator to re-start the daemon when-
ever it finds the daemon unresponsive.

Controller Module. Control into a breathing cycle was
accomplished with a hybrid system of state and PID control.
During inspiration, we actively control pressure using a
PID cycle to set the inspiratory valve. Expiration was
then instantiated by closing the inpiratory, and opening the
expiratory valve to passively release PIP pressure as fast as
possible. After reaching PEEP, we opened the inspiratory
valve slightly to sustain PEEP using the aforementioned
manually operated PEEP-valve and to sustain a gentle flow
of air through the system.

Active control during inspiration was constructed around a
single PID-style control loop. Pressure values were measured
proximal to the patient, and communicated to the Raspberry
PI using I2C. The Raspberry Pi compared this value against

10 | bioRχiv et al. | PVP1 - The People’s Ventilator Project



a user-provided target, and from that estimated proportional,
derivative, and integral errors. Control coefficients were
optimized manually on physical hardware by tuning against
the set of EUA test conditions. The control-signal was then
sent to the inspiratory and expiratory valves which caused a
change in air-flow within ≈ 40 ms (related to the inductive
load of the valve) (c.f. Figs. S3 and S4), while we ensure that
the primary control loop ran at considerably higher speeds
than this delay (see Methods).

We also allow the user to adjust flow through the system,
by controlling PIP_TIME which is a multiplier for the PID
coefficients. For lungs with higher compliance, more air is
required to inflate to comparable pressures. As this assess-
ment requires experience, we left the control of maximum
flow rate to the clinician. During the primary control loop,
pressure values have to be read as fast as possible. As the
principal bottleneck is the communication with hardware,
we chose to only read pressure values during inspiration.
Flow out of the lung and oxygen concentrations are therefore
only measured during expiration, where pressure and flow-
readings alternate, and a single oxygen reading is obtained
every five seconds.

In addition to pressure control, our software continuously
monitors for autonomous breaths, high airway pressure,
and general system status. Autonomous breathing was
detected by transient pressure drops below PEEP. A detected
breath triggered a new breath cycle. High airway pressure
is defined as exceeding a threshold pressure for a minimum
time (as to not be triggered by a cough). This triggers an
alarm, and an immediate release of air to drop pressure
to PEEP. The Controller also assesses whether numerical
values are reasonable and updating over time (ie. the sensor
hasn’t gotten stuck). If this is not the case, it raises an
technical alarm. All alarms are collected and maintained
by an intelligent alarm manager, that provides the UI with
the alarms to display in order of their importance. Note that
such smart designs, while not universally adopted, will be
standard in the next generation of mechanical ventilators (6).

Measuring the expiratory flow, F (t) is sufficient to estimate
VTE. To this end, we first estimated a baseline flow through
the system, but not the lung (this is flow to sustain PEEP,
see Control-section above). This was done by calculating a
histogram of values in F (t) during expiration in a moving
window, and applying a rank-filter to these numbers to define
the baseline flow F0(t). We then integrated the difference
over the expiration window T to obtain

VTE =
∫ T

0
dtF (t)−F0(t).

GUI Design. The GUI was designed to semantically segment
system control, ventilation control, sensor monitoring,
and alarm status while maintaining a unified syntax of
interaction (Figure 9). We attempted to design the GUI so
that it was intuitive enough to use without documentation by

clearly separating and labeling the sections of the interface,
providing few, clear points of control and interaction, and
giving the user informative prompts to guide their use.

The GUI makes global system status clearly intelligible
from across the room by using a uniform language of "alarm
cards" (Fig. 9C) and color codes that indicate the severity
and source of alarms to allow medical professionals to
identify and address them as soon as possible. Alarm limits
are displayed graphically next to the control widget and
overlaid on relevant waveform plots (Fig. 9E, F) so values
approaching a limit are clearly visible in either modality.
The alarm system and sound design are described further in
the supplemental materials (C).

Ventilation controls and sensor monitors (Fig. 9D, F) are dis-
played using a single widget class which makes them visu-
ally distinct but behave identically when setting alarm lim-
its, displaying values, etc. These value display widgets sup-
port setting ventilation controls using the mouse/touchcreen
(with a slider), keyboard, or by recording and averaging re-
cent sensor values (Fig. 9G, H, I). All components of the
GUI are modular and generated programmatically from the
shared values module, which allows monitored and con-
trolled values to be trivially reconfigured for different hard-
ware configurations and ventilation modes while keeping a
consistent API between the GUI and controller. The GUI also
incorporates key considerations from the EUA, such as pro-
tection against accidental change and warnings against dan-
gerous settings.

Discussion
As described, PVP1 is a flexible, stable, and fully open plat-
form for pressure controlled ventilation for a total cost of
1300 USD for low-volume production. With our combina-
tion of documentation, automated software tests, and modu-
lar design, this project is fully open source and offers anyone
a state-of-the-art platform for exploring mechanical ventila-
tion. Again, all necessary documentation and code are pro-
vided at the project website (peoplesvent.org). In the remain-
der of this section, we will discuss key areas for improvement
and performance notes worth bearing in mind for those con-
sidering PVP1 for different use-cases.

Overall Performance Assessment. PVP1 has demon-
strated sustained operation over at least 70,000 continuous
cycles without failure while maintaining stable ventilatory
performance using a default test condition from the EUA test
table.

PVP1 reaches PIP, and required VTE for key EUA tests, only
deviating from the target PIP by 9% when ventilating with
very high airway resistances (50 cmH2O/L/S; a challenging
case for any ventilator). These are uncommon patient condi-
tions and PVP1 performs even better in all other test cases.
Future improvements to better compensate for challenging
patient conditions could involve updates to the proportional

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 11

https://www.peoplesvent.org


GUI v1

A B C

D

E F

G
H

I

Fig. 9. PVP1 GUI Design: The PVP1 GUI is composed of modular components to provide a uniform interaction syntax but also allow reconfiguration for different ventilation
modes and hardware configurations. The GUI is broadly segmented into three columns: system monitoring components on the left (A, D), waveform plots of sensor values in
the center (E), and ventilation controls on the right (F). A control panel (A) controls and displays basic system operating status. To prevent accidental changes, controls are
locked (B) by default (but are unlocked in this figure). Beneath the control panel, a series of widgets in a "Monitor" column (D) display the values of sensors that are not used
to control ventilation. The same widgets are to populate the rightmost "Control" column (F) to set the operating parameters of the ventilator. Ventilator control settings can
be input with the touchscreen or mouse (with a slider, G), with the keyboard (in a text-entry box, I), or by recording recent sensor values (with a "record" button, H). By using
a unified system of components across the whole interface, we can accomodate diverse hardware configurations (eg. rather than setting a computer-controlled PEEP in the
interface, we use a mechanically controlled PEEP valve and set alarm thresholds by recording sensed values) and alarm conditions (VTE is a derived sensor value rather
than a control value, but needs to have patient-calibrated alarm thresholds) while maintaining a consistent interaction syntax. Alarm thresholds are automatically calculated
as some multiple of the set value (eg. a HAPA alarm is 115% of set PIP). Alarm thresholds are represented numerically and graphically in both the relevant control widget
and waveform plot (red horizontal lines in E and F). Alarms are displayed as "Alarm Cards" (C) color coded and ordered by alarm severity. Color codes are also reflected in
the relevant displayed parameter (eg. yellow displayed VTE value in D to match the low-severity LOW VTE alarm in C), allowing clinicians to quickly identify and attend to the
cause of an alarm. Screenshot of actual GUI running PVP’s built in stimulation mode.

valve to allow for finer control over flow, as well as more
advanced control schemes to better modulate overshoot.

Future Development Goals. PVP is intended to be a con-
tinually, communally developed project. PVP1 is released
as a minimal implementation of a safe, invasive ventilator
capable of Pressure Controlled Ventilation with spontaneous
breath detection. There are, of course, many ways that the
software and hardware design can be improved. Indeed its
continual improvement is the point: we have developed and
documented the system such that it is not a static design, but
can be modified and improved as a general-purpose ventila-
tion platform. We welcome programmers and users to submit
issues to discuss bugs and needed developments, and submit
their own improvements via pull requests.

Ventilation Modes. Modifications made purely at the soft-
ware level would allow PVP1 to additionally support com-
plete Pressure Supported Ventilation (PSV, for spontaneously
breathing patients) as well as Non-Invasive Ventilation (such
as Continuous Positive Airway Pressure, CPAP). At the hard-
ware level, a valuable upgrade would be to incorporate an
inspiratory flow sensor which would further open the possi-
bility of Volume Controlled Ventilation and allow for the use
of inspiratory flow for improved PSV. As PVP1 is inherently
modular, these features can be added both to the open code
base and to the assembly with little complication.

I/O and Interfaces with other Systems. PVP1 is easy to
integrate into existing software. Our data logger already
supports export of all raw data into hdf5 and standard data
formats (MatLab’s .mat and comma-separated-values .csv).
A future version could automatically insert data into SQL-
tables to facilitate integration into a patient’s file. Similarly,
since our xml-rpc inter-process communication module op-
erates over a network socket, it is straightforward to extend
the software for centralized control or observation in hospital
settings. We designed the software with a central loop time
at least 10x faster than the valve-hardware delays. This can,
in theory, allow the software to correct for hardware delays,
and opens the door for future, improved control schemas.

Disclaimer
PVP1 is not a regulated or clinically validated medical de-
vice. We have not yet performed testing for safety or efficacy
on living organisms. All material described herein should
be used at your own risk and does not represent a medical
recommendation. PVP1 is currently recommended only for
research purposes.
This document is not connected to, endorsed by, or represen-
tative of the view of Princeton University. Neither the authors
nor Princeton University assume any liability or responsibil-
ity for any consequences, damages, or loss caused or alleged
to be caused directly or indirectly for any action or inaction
taken based on or made in reliance on the information or ma-

12 | bioRχiv et al. | PVP1 - The People’s Ventilator Project

https://github.com/CohenLabPrinceton/pvp/issues
https://github.com/CohenLabPrinceton/pvp/issues
https://github.com/CohenLabPrinceton/pvp/pulls


terial discussed herein.
PVP1 is under continuous development and the information
here may not be up to date, nor is any guarantee made as
such. Neither the authors nor Princeton University are liable
for any damage or loss related to the accuracy, completeness
or timeliness of any information describe or linked to from
this website.

License Agreement
©2020: You may redistribute and modify this document, and
related material, and make products using these under the
terms of the CERN-OHL-S v2 (https:/cern.ch/cern-ohl). This
source is distributed without any express or implied warranty,
including of merchantability, satisfactory quality or fitness
for a particular purpose. Please see the CERN-OHL-S v2
for applicable conditions.

Acknowledgements
This work was supported by Princeton University which pro-
vided funding and facilities. JLS is supported by NSF Gradu-
ate Research Fellowship No. 1309047. We would also like to
thank Grant Wallace, Zhenyu Song, Moritz Kütt and Philippe
Bourrianne for very valuable discussions and technical sup-
port. In addition, we would like to thank Elad Hazan and
Daniel Suo with the Google AI team at Princeton for testing
the quality of our build instructions. We would also like to
acknowledge the contribution of the open science community
as a whole, by providing guidelines, standards and tools.

Contributions
JL, CM, LS, DN, DJC conceptualized the project. DJC, JL,
JLS, MS, TJZ wrote and edited the manuscript. Hardware:
CM, JL, LS designed the hardware. TJZ designed the printed
circuit boards. Software: MS developed the ventilation con-
trol system, the simulator and contributed to the core library,
JLS developed the GUI, alarm system, and contributed to the
core library, LS, JL developed the hardware interface and ab-
straction layer, MS, JLS developed the modular software ar-
chitecture and automated tests. Testing: TJZ, MS, SD tested
the deployed system and validated performance. JLS de-
signed the alarm sounds, documentation website, and logo.
DN provided medical advice. DJC managed the project and
provided funding and resources.

References
1. Pearce JM. A review of open source ventilators for COVID-19 and future pandemics.

F1000Research 2020, 9:218
2. Medtronic’s Bennett 560 Ventilator https://www.medtronic.com/covidien/en-

us/products/mechanical-ventilation/puritan-bennett-560-ventilator.html
3. C. Galbiati, A. Abba, P. Agnes, P. Amaudruz, M. Arba et al. Mechanical Ventilator Milano

(MVM): A Novel Mechanical Ventilator Designed for Mass Scale Production in Response to
the COVID-19 Pandemic. https://arxiv.org/abs/2003.10405

4. G. Niezen, P. Eslambolchilar, H. Thimbleby: Open-source hardware for medical devices, BMJ
Innov 2(2):78-83 (2016). doi: 10.1136/bmjinnov-2015-000080.

5. Joshua M. Pearce: Quantifying the Value of Open Source Hard-ware Development, Modern
Economy Vol.6 No.1 (2015)

6. Robert M Kacmarek: The Mechanical Ventilator: Past, Present, and Future. Respiratory Care
August 2011, 56 (8) 1170-1180; DOI: https://doi.org/10.4187/respcare.01420

7. D. Nichols and S. Haranath: Pressure control ventilation, Critical care clinics 23(2):183-199
(2007).

8. E.g. https://opensource.guide/best-practices/
9. Travis CI: https://travis-ci.com/
10. R. W. Manley, A new mechanical ventilator. Anaesthesia, 16: 317-323 1961.

doi:10.1111/j.1365-2044.1961.tb13830.x
11. Instructions are available at http://abyz.me.uk/rpi/pigpio/
12. The University of Minnesota Ventilator, https://med.umn.edu/covid19Ventilator
13. S. Raymond et al. "A low-cost, rapidly scalable, emer-

gency use ventilator for the COVID-19 crisis", medrxiv 2020
https://www.medrxiv.org/content/10.1101/2020.09.23.20199877v1.full.pdf

et al. | PVP1 - The People’s Ventilator Project bioRχiv | 13



A Supplemental Materials and Methods

Supplemental Information

A. Supplemental Materials and Methods.

Calibration of the Flow Sensor. We calibrated the flow sen-
sor using a mass flow controller (Alicat Scientific, MCR-
100SLPM-D). The flow into the sensor was ramped up and
then down in step of constant flow ranging from 10 L/min to
100 L/min (Figure S1 blue).

Figure S1. Calibration of the Flow Sensor. Flow introduced in steps of 10 L/min
ranging from 10 L/min to 100 L/min. Blue points represent the flow measured by
the mass flow controller and orange points represent the voltage recorded from the
Dlite sensor.

At each step the flow was imposed for 10s and the voltage
from the sensor was recorded (Figure S1 orange). Data points
up to 5s after each jump and 1s before the next jump were
discarded. For the remaining 4s the voltage data points were
averaged to match the 10 Hz recording frequency of the mass
flow controller. Subsequently both the flow and the voltage
data was averaged at each step and used to calculate the cali-
bration curve in Figure S2.

Figure S2. Calibration Curve for the Flow Sensor. Measurements of the flow
as a function of the voltage recorded from the sensor. Turquoise points are the
averaged data from the calibration and the blue line is the fit V = 192.6F 1/1.91.

To find the calibration curve the data was fit to a function of
the form V = a ·F 1/k where the parameters were determined
to be a = 192.6 and k = 1.91.

The Speed of the Control Loop. To measure the speed of the
primary control loop, we saved the execution times of the
control during while PVP1 was running with a lung simula-
tor. The results are shown in Figure S3. Note the difference
between inspiration and expiration; expiration is consider-
ably slower, as additional sensor-reads for flow and oxygen
sensing are required The Raspberry pi allowed for the pri-
mary control loop to run with a median loop-time of the en-
tire software package of 6.6 ms during inspiration and 9.5 ms
during expiration.

Figure S3. Histograms of the software-loop-time. Measurements of the software
loop-time during inspiration (blue) and expiration (orange) over ca. 62h of breathing.
Median inspiration loop time is 6.6 ms, median expiration loop time is 9.5 ms. Notice
multiple peaks, depending on the addition of sensor readings, every one of which
contributes ≈ 2.5 ms. The mechanical valves are a factor of ≈ 5 slower than the
software .

Hardware delay characterization. To measure the delay of the
inspiratory valve itself, we sent 100 consecutive ‘open‘ and
‘close‘ -commands to the inspiratory valve, while monitoring
flow through the respiratory circuit.

Figure S4. Measurements of the delay caused by the inspiratory valve. At time
zero, the control signal to open the valve was sent and we monitored flow through
the system. The thin blue lines illustrate 100 consecutive individual trials, the drawn
blue line is the average, and the dashed line illustrates the control signal. 50% of
the maximum flow was reached after 32 ms, 90% were reached after 53 ms.

et al. | PVP1 - The People’s Ventilator Project bioRχiv | S1



Upon sending the control signal, flow increases with a de-
lay of ≈ 50 ms. This is shown in Figure S4. We attribute
this delay to the inductive load of the motor, and the finite
time required for the mechanical opening of the valve. Note
also, that this delay is considerably longer than the software-
loop-time, and thus constitutes the principle bottleneck of the
control system. This measurement was done with mild ad-
justments to the PVP1 software.

B. Supported Alarms. We support the following EUA
alarms:

• Low Airway Pressure Alarm (LAPA) if target pres-
sures (PIP or PEEP) is not reached, see Fig. 9.

• High Airway Pressure Alarm (HAPA) if pressure ex-
ceeds a critical limit, see Fig. 9.

• Hypoventilation Alarm if measured VTE is smaller
than target, where target is defined in the first few
breath cycles

• Tidal Volume not met Alarm if VTE is too small or too
large.

• PEEP Alarm, if PEEP is not reached, see Fig. 9.

• Obstruction Alarm

• Disconnect / high leakage Alarm

• Oxygenation alarm, if the oxygen value deviates more
than 5% from setpoint.

• Technical Alarm: A general class of alarms that are
triggered whenever the software cannot work reliably.

C. Alarm Design. Alarms are implemented as con-
figurable Alarm_Rules coordinated by a centralized
Alarm_Manger. An alarm rule describes a) the
Conditions for triggering an alarm, and b) the behavior
and appearance of the alarm on the UI (Figure S5). Alarm
conditions are implemented as composable classes that can
accommodate complex triggering logic while remaining clear
and inspectable (Figure S5, Lines 5-23).
Alarm Display - We try to balance salience of high severity
alarms while minimizing unnecessary cognitive overhead by
representing them as Alarm_Cards within an Alarm_Bar
(Top of Figure 9). When no alarm is present, the bar is
invisible, but takes the color of the highest-priority active
alarm to give an unambiguous global status indicator. Alarm
cards ensure each type of alarm is only represented once,
allow individual control over dismissal/silencing of alarms,
and visually triage lower-priority alarms by keeping them
ordered by severity. The behavior of an alarm card is also
determined by its alarm rule (See caption of Figure S5), so
certain critical alarms aren’t missed but transient, lower-
severity alarms don’t clutter the interface. The color-code
of an alarm card is reflected in the widget that controls the
relevant parameter (eg. the yellow VTE value in Figure
9), allowing attending physicians to quickly determine the

Example Alarm Rule
1 Alarm_Rule(
2 name = LOW_PRESSURE,
3 latch = False,
4 persistent = False,
5 conditions = (
6 (
7 AlarmSeverity.LOW,
8 ValueCondition(
9 value_name = ValueName.PIP,

10 limit = LAPA_THRESHOLD_1,
11 mode = 'min')
12 ),
13 (
14 AlarmSeverity.MEDIUM,
15 ValueCondition(
16 value_name = ValueName.PIP,
17 limit = LAPA_THRESHOLD_2,
18 mode = 'min'
19 ) + \
20 CycleAlarmSeverityCondition(
21 alarm_type = LOW_PRESSURE,
22 severity = AlarmSeverity.LOW,
23 n_cycles = 2))
24 ))

Figure S5. Example Low Pressure Alarm Rule. An Alarm Rule defines the be-
havior of an alarm in the GUI and the conditions for raising the alarm. Alarms can
be latched (L3), where they cannot be visually dismissed until the alarm condi-
tion terminates or persistent (L4), where they will remain displayed until the
user manually dismisses them. These settings ensure attending physicians never
miss critical alarms, but are not overwhelmed with transient, low-severity alarms.
Complex sets of Conditions for raising alarms can be described while remaining
human-readable. This alarm has two severities (highlighted pink): a LOW severity
alarm (L7-11) is triggered when PIP falls below some LAPA_THRESHOLD, which is
escalated to a MEDIUM severity alarm (L14-23) if PIP falls below another threshold
and the LOW severity alarm has been active for 2 breath cycles. Note how multi-
ple conditions can be added (L19, literally with +) together, which allows triggering
conditions to depend on multiple values, the states of other alarms, time, etc. In
practice, rather than static alarm limits with a single value, all Condition values
are updated from control values with some transformation (eg. this threshold could
be kept at 15% below set PIP), but these dependencies have been omitted for
brevity.

source of alarms and how to correct them.

Alarm Sounds - We designed a set of alarm sounds (avail-
able in our repository) to be informative alert attending
physicians while avoiding alarm fatigue. Only a single alarm
sound is played at a time, and the alarm sound reflects the
highest severity active alarm and the duration it has been
active.

Alarm sounds are short (≈300ms) tone sequences, and sever-
ity of alarm is represented by pitch and the number of tones
in each sequence - ie. a low-severity alarm is a repeating
single low tone, and a high-severity alarm is a repeating
sequence that adds two higher tones. At alarm onset, alarm
sounds are low-pass filtered and have a lengthened attack and
decay to soften their presentation while the physician first
begins attending to the alarm condition. As alarms remain

S2 | bioRχiv et al. | PVP1 - The People’s Ventilator Project

https://github.com/CohenLabPrinceton/pvp/tree/master/pvp/external/audio


D Supplemental Hardware Information

on, the filter, attack, and decay of the tone smoothly decrease
to transition the sound to sharper, more urgent "clicks."

All sounds use brief (≈40ms), noncontinuous tones that are
silent for at least half of their duty cycle, leaving space for
conversation and other sound. We attempt to disambiguate
our alarms from other auditory alarms that could be present
in the room by underlaying a soft pneumatic "sucking" sound
synchronized to the tone sequences. Alarm sounds follow
the same persistence rules as the relevant alarm rule (Figure
S5, caption), reducing alarm fatigue by allowing transient,
low-priority alarms to automatically silence themselves.
Alarm sounds can also be muted entirely, or by dismissing
specific alarms ("Mute" and "X" buttons in alarm bar in
Figure 9, respectively) so they function to inform clinicians
about patient state and then get out of the way.

D. Supplemental Hardware Information.

PCB Design. Printed circuit board schematics and bills of
materials are presented here for the sensor PCB (Figure S7
and Table S1) and actuator PCB (Figure S6 and Table S2).
PCB layout files are available on the project web page.

Figure S6. Actuator PCB schematic.

Figure S7. Sensor PCB schematic.

Table S1. Sensor PCB bill of materials.

Ref Part Purpose
J1 40-pin stackable

RPi header
Connects board to RPi

J2 4-pin 2.54 mm
header

I2C connector if desired

J3 2-pin 2.54 mm
header

Connects ALRT pin
from ADS1115 to RPi if
needed

J4 3-pin 2.54 mm
header or 3 pin
fan extension ca-
ble

Connects board to oxy-
gen sensor

R1 330 Ohm resistor Sets gain for INA126
C1 10 uF; 25V Cap for TL7660
C2 10 uF; 25V Cap for TL7660
U1 TL7660; DIP8 Rail splitter for INA126
U2 INA126; DIP8 Instrumentation ampli-

fier for oxygen sensor
output

U3 Amphenol 5
INCH-D2-P4V-
MINI

Differential pressure
sensor (for flow mea-
surement)

U4 Adafruit
ADS1115

4x 12-bit ADC

U5 Amphenol 1 PSI-
D-4V-MINI

Airway pressure sensor

U6 Auxiliary analog output
sensor slot

Table S2. Actuator PCB bill of materials.

Ref Part Purpose
J2 2-pin screw

terminal; 5.08
mm pitch; PCB
mount

Connects to 24V supply

J3 2-pin screw
terminal; 5.08
mm pitch; PCB
mount

Connects to on/off expi-
ratory valve

J4 2-pin screw
terminal; 5.08
mm pitch; PCB
mount

Connects to inspiratory
valve; driven by PWM

J5 40-pin stackable
RPi header

Connects board to RPi

J6 2-pin 2.54 mm
header

Jumper between 5V and
Raspberry Pi

C1 100 uF; 16V 5V rail filter cap
C2 6.8 uF; 50V 24V rail filter cap
C3 6.8 uF; 50V 24V rail filter cap
U1 ULN2003A Darlington BJT array to

drive solenoids
U2 CUI PDQ15-

Q24-S5-D
24-to-5V DC-DC con-
verter

et al. | PVP1 - The People’s Ventilator Project bioRχiv | S3


	Supplemental Materials and Methods
	Supported Alarms
	Alarm Design
	Supplemental Hardware Information

