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S1. Estimating travel times to the closest ARMC 

 

Fig S1.1. Raster inputs to estimate travel times to the closest ARMC for 

Madagascar. 

(A) Friction surface of travel speeds (in minutes per meter) at an ~ 1x1 km scale. (B) 

Population estimates resampled to the same friction surface. 
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Fig S1.2. Raw patient reported and driving travel time data. 

(A) Distribution of travel times estimated at the grid cell level and reported by patients 

for each commune where patient data were available from the Moramanga ARMC. (B) 

Reported driving times between locations, with the color corresponding to the total 

driving time and the size of the line showing the direction of travel (narrow to wide ~ 

origin to destination). Paths are bezier curves from origin to destination, and do not 

show actual paths driven. 

  



 5 

 

Fig S1.3. Reported modes of transport used compared to reported travel times for 

patients reporting to the Moramanga ARMC. 
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Fig S1.4. Observed estimates of travel times (commune means of patient reported 

travel times and driving times between point locations). 

Predicted by (A) Distance (km) (Euclidean distance between origin and destination for 

driving times and distance from the commune centroid to the Moramanga ARMC for 

commune means) (B) Travel time estimates and (C) Travel time estimates weighted by 

population (for commune means only). 
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Table S1.1. R2 values from linear models with estimated access metrics predicting 

either driving times or commune means of patient reported travel times. 

Predictor 

Driving 

times 

Commune mean of patient reported travel 

times 

Weighted travel times (hrs) NA 0.433 

Unweighted travel times 

(hrs) 

0.347 0.290 

Distance (km) 0.368 0.093 
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Fig S1.5. Estimates of mean travel times weighted by population at the (A) District 

(B) Commune scale. 
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S2. Estimating bite incidence 

Vial demand was simulated under simplified assumptions of PEP administration and 

adherence [1], based on patients reported randomly across the year. During this period, 

the Thai Red Cross Intradermal regimen was used across Madagascar, with 0.2 mL 

administered per patient completing doses on days 0, 3, 7, and 28. Vials can be shared 

within a day between two patients, resulting in 0.1ml wastage per vial shared, plus any 

additional wastage from unused doses discarded at the end of the day. We estimate vial 

estimates as the midpoint estimate if all patients complete 3 vs. 4 doses. As clinic 

submission of forms was highly variable from 2014-2017 (Fig S2.2A), we compared 

estimated demand to the total vials provisioned across this four year period comparing 

different thresholds for correcting for periods of no form submission (i.e, designating 

periods of 1, 5, 10, 15, and 30 consecutive days with zero submitted records as 

missing, compared to no correction). 

Estimates of vial demand based on uncorrected bite patient numbers were generally 

lower than the number of vials provisioned for those clinics with substantial under-

submission of forms (Fig S2.2B). Correcting patient numbers for under-submission 

resulted in estimates of vial demand closer to the provisioned vials for most clinics (Fig 

S2.2C, Table S2.1). 
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Fig S2.1. Catchment assignments by travel time. 

(A) Catchments as assigned by closest clinic for the majority of the population within a 

commune (polygon fill) or within a district (polygon outline). Admin units where the fill 

and border colors do not match show places where assigned catchments differ at the 

district vs commune scale. (B) Distribution of the proportion of the population in a given 

administrative unit (district or commune) served by the catchment assigned. (C) The 

proportion of bites reported to each clinic which originated from a district within the 

assigned catchment. The vertical line indicates the proportion of bites from within the 

assigned catchment for the Moramanga data (~90%).  
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Fig S2.2. Estimating undersubmission of patient forms. 

(A) The daily time series of the number of forms submitted by each clinic, with periods 

of time where no forms were submitted for >= 15 days excluded (in white). (B) 

Estimates for the proportion of forms submitted for each clinic (points are the estimate 

for each year) calculated as the # of days in a year which were not excluded based on 

the criteria of 15 consecutive days of non-submission/365. (C) The difference between 

log(estimated) and log(observed) vials provisioned for the period of 2013 - 2017 for 

each clinic correcting for under-submission (squares) using the 15 day cut-off show in A 

and B, vs. not correcting for under-submission (circles). We did not have data on vials 

provisioned for IPM.  
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Table S2.1. Root mean squared error (MSE) between observed vials provisioned 

and estimated by the different consecutive day threshold for correcting for 

periods of no form submission, with the minimum root MSE in bold. 

Consecutive day threshold Root MSE 

1 2346.37517191271 

5 1038.44934372057 

10 1015.87959359572 

15 1006.81658615554 

30 1063.38849847279 

No correction 1658.47789086068 
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S3. Modeling reported bite incidence 

We used a weakly informative prior for the intercept of the models centered around the 

mean of the bite incidence for the given dataset with a standard deviation of 10. For the 

covariate terms, we centered the priors around zero with a standard deviation of 10. For 

the variance terms (𝜎0 and 𝜎𝑒), we set uniform priors (𝑢𝑛𝑖𝑓(0,5)). We calculated the 

Deviance Information Criterion (DIC, a metric of model fit to data) for each candidate 

model as well as the maximum potential scale reduction factors (psrf) for each covariate 

and the multivariate psrf for the whole model (both are metrics of model convergence, 

where values < 1.1 are indicative of convergence, Table S3.1) [2]. 

To test how well our models predicted the data, we sampled parameter estimates from 

the posterior distribution for each model to generate predictions to compare to data. In 

addition, we used the models to predict out-of-fit data (i.e. estimates from models fitted 

to the national data were used to predict the Moramanga data, and estimates from 

models fitted to the Moramanga data were used to predict the national data). Finally, to 

check how correcting for incomplete submission of forms affected our modeling results, 

we fitted our final models to the raw data uncorrected for submission (i.e. assuming 

forms were completely reported resulting in lower estimates of bite incidence) and with 

a lower cut-off (7 days, resulting in higher estimates of under-submission of forms). 
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Fig S3.1. Correlation between travel time in hours (the average weighted by the 

population) and population size of administrative units at the district and 

commune scale. 
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Table S3.1. DIC and convergence estimates (maximum potential scale reduction 

factor and multivariate psrf, values < 1.1 indicate convergence) for all models. 

For the column pop effect, addPop = models with population size as additional 

covariate, onlyPop = models with population as only covariate, flatPop = models with 

population as offset in model. For the intercept type: random = random intercept by 

catchment, fixed = a single fixed intercept was estimated). The Overdispersion column 

indicates whether an overdispersion parameter was estimated (yes) or not (no).  

Dataset Scale 

Pop 

effect 

Interce

pt type 

Overdispersi

on DIC 

Max 

psrf 

Multivariat

e psrf 

Moramang

a 

Commun

e 

flatPop fixed no 10.664 1.00

1 

1 

Moramang

a 

Commun

e 

onlyPo

p 

fixed no 12.122 1.00

1 

1 

Moramang

a 

Commun

e 

flatPo

p 

fixed yes 2.721 1.06

2 

1.017 

Moramang

a 

Commun

e 

addPo

p 

fixed no 8.425 1.01

1 

1.003 

National Commun

e 

addPo

p 

fixed no 119.91

7 

1.00

2 

1.001 

National Commun

e 

onlyPo

p 

random no 144.38

3 

1.00

1 

1.001 

National Commun

e 

onlyPo

p 

fixed no 213.41

5 

1 1 

National Commun

e 

flatPop random no 41.936 1.00

1 

1.001 

National Commun

e 

addPo

p 

random no 50.287 1.00

1 

1.001 

National Commun flatPo fixed yes 6.784 1.02 1.008 
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e p 8 

National Commun

e 

flatPop random yes 6.793 1.39

3 

1.102 

National Commun

e 

flatPop fixed no 89.813 1.00

1 

1 

National District flatPop fixed no 113.71

5 

1.00

1 

1 

National District addPo

p 

fixed no 124.95

7 

1.00

1 

1 

National District onlyPo

p 

random no 126.17

6 

1.00

2 

1.001 

National District onlyPo

p 

fixed no 189.10

5 

1.00

1 

1 

National District flatPop random no 59.12 1.00

1 

1.001 

National District flatPo

p 

fixed yes 6.781 1.32

4 

1.087 

National District flatPop random yes 6.783 1.12

2 

1.069 

National District addPo

p 

random no 61.133 1.00

4 

1.001 
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Fig S3.2. Prediction to data used to fit each model. 

Log of the observed bites against the log of predicted bites generated from sampling 

1000 independent draws from the posterior distributions for each parameter, with the 

points the mean of the predictions and the linerange the 95% prediction intervals. 

Columns are by the type of model intercept (either a fixed intercept or a random 

intercept by catchment) and rows are the type of model structure with respect to the 

population covariate (addPop = population size as additional covariate, onlyPop = 

population as only covariate, flatPop = population as offset in model). Colors show 

which data set was used for fitting and the scale of the model (Moramanga = 

Moramanga data with covariates at the commune level, Commune = National data with 

covariates at the commune level, District = National data with covariates at the district 

level). 
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Fig S3.3. Out of fit predictions to data. 

Log of the observed bites against the log of predicted bites for data not used to fit the 

model. Predictions were generated by sampling 1000 independent draws from the 

posterior distributions for each parameter, with the points the mean of the predictions 

and the linerange the 95% prediction intervals. The first two columns are the predictions 

from the commune and district model fitted to the national data for the Moramanga data 

with fixed and random intercepts. The third column are predictions from models fitted to 

the Moramanga data for the national data at the commune and district scale (only fixed 

intercept models). Rows are the type of model structure with respect to the population 

covariate and colors show which data set was used for fitting as per Fig S3.2.  
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Fig S3.4. Posterior estimates of parameters from models with travel time and 

population as an offset. 

Comparing models accounting for overdispersion (𝜎𝑒) compared to models with no 

overdispersion parameter (flatPop in Figs S3.2 & S3.3). For the Moramanga model, as 

data came from a single catchment, models with a random catchment effect (𝜎0) were 

not fitted. 
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Fig S3.5. Predicted relationship between travel times (in hours) and reported bite 

incidence per 100,000 persons. 

Generated from sampling 1000 independent draws from the posterior distributions for 

each parameter, with the line the mean of the predictions and the envelopes showing 

the 95% prediction intervals. Rows are by the type of model intercept (either a fixed 

intercept or a random intercept by catchment) and columns are whether the model 

estimated an overdispersion parameter. The points show the data used to fit the models 
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(the National dataset), as well as the Moramanga dataset. Note the different y-axis 

limits between the fixed and random intercept models.  

 

Fig S3.6. Posterior estimates of the catchment intercepts (𝜶 parameters, with 𝜷𝟎 

the estimated mean intercept) for models with and without an overdispersion 

parameter. 
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Fig S3.7. Predicted relationship between travel times (in hours) and reported bite 

incidence per 100,000 persons. 

For random intercept model without overdispersion vs. fixed intercept model with 

overdispersion, generated from sampling 1000 independent draws from the posterior 

distributions for each parameter, with the line the mean of the predictions and the 

envelopes showing the 95% prediction intervals. The points show the data used to fit 

the models (the National dataset), as well as the Moramanga dataset. 
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Fig S3.8. Posterior estimates for models with population as an offset and an 

overdispersion parameter. 

Columns show estimates from models fitted to the national dataset (1) corrected for 

both under-submission by correcting for periods of at least 7 days where zero patient 

forms were submitted, (2) correcting for periods of 15 days where zero patient forms 

were submitted, and (3) with the raw data not correcting for under-submission. 
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Fig S3.9. The estimated relationship between travel time in hours (x-axis) and 

mean annual bite incidence per 100,000 persons (y-axis). 

For models with population as an offset and an overdispersion parameter. Panels show 

predictions from models fitted to the national dataset 1) correcting for periods of at least 

7 days where zero patient forms were submitted (a less stringent cutoff resulting in 

lower estimates of the proportion of forms submitted and thus higher estimates of 

reported bite incidence), (2) correcting for periods of 15 days where zero patient forms 

where submitted, as presented in the main analysis, and (3) with the raw data not 

correcting for under-submission (resulting in lower estimates of reported bite incidence). 

Predictions were generated from sampling 1000 independent draws from the posterior 

distributions for each parameter, with the line the mean of the predictions and the 

envelopes showing the 95% prediction intervals. The points show the data used to fit 

the models.  
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S4. Range of rabies exposure incidence in people 

 

Fig S4.1. Estimated exposures per 100,000 given a range of human to dog ratios 

(HDRs, x-axis) and annual dog rabies incidence (y axis). 

Assuming that each dog on average exposes 0.39 persons [3]. The black dashed lines 

show the range of human to dog ratios (HDRs) we use in the main analysis to estimate 

the range of human exposure incidence (where the red horizontal line and black dashed 

lines intersect). The grey dashed lines show the HDRs estimated from the Moramanga 

district from a recent study [4]. The cells with red outlines show the range of estimated 
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exposure incidence from a previous study of bite patients in Moramanga District [1]. 

 

 

Fig S4.2. Range of constrained scaling factors generated for district and 

commune population size 

Underlying rabies exposures either (A) decreases with increasing population size or (B) 

increases with increasing population size across a fixed range of exposure incidence 

(15.6 - 76 exposures/100k persons). Lines show the expected relationship, with points 
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showing where administrative units fall along this curve, and maps show how this 

results in variation in assumed exposure incidence spatially at the commune and district 

level.  

S5. Estimating the impact of expanding PEP provisioning to additional clinics 

 

Fig S5.1. Comparing metrics for ranking clinics for targeted expansion. 

We simulated expansion using three different ranking metrics: 1) reduction in mean 

travel times (green line) 2) the proportion of the population for which travel times were 

reduced (red dashed line) and 3) the proportion of the population for which travel times 

were reduced weighted by the reduction in travel times (pink dashed line). For each of 

these, we simulated burden using our decision tree framework (y axis is the mean of 

1000 simulations of annual deaths at the national level). The blue lines show 10 

simulations of randomly expanding access on reducing burden as a comparator. The 

panels show to the commune and district model of reported bite incidence.  
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Fig S5.2. Map of the location and at what step each clinic was added. 

The circles are each of the CSB II across the country sized by the resulting average 

reduction in burden (based on smoothed annual burden estimates from the commune 

model, see inset). The large white crosses show the location of the existing 31 ARMC in 

Madagascar and the smaller white crosses are the additional CSB II in the country 

which were added in the final step but not ranked.  
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Fig S5.3. Maps of how travel times change as clinics are added. 

(A) at the ~1 x 1 km grid cell (B) commune and (C) district scales. The columns are 

ordered by the number or clinics at each step: baseline (N = 31), + 83 (1 per district), + 

200, + 600, + 1406 (1 per commune), and max (+ 1696 clinics, all additional CSB IIs in 

the country). Grey pixels show the location of ARMC at each step. Commune and 

district values are the average grid cell travel times weighted by the population in each 

cell.  
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Fig S5.4. Shifts in key metrics as clinics are added. 

(A) travel times (hrs, x-axis is square root transformed), (B) bite incidence per 100,000 

persons and boxplots showing the median for communes and district models (colors).  
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Fig S5.5. Shifts in key metrics as clinics are added. 

(A) reporting, (B) death incidence per 100,000 persons for the commune and district 

models (colors) as clinics are added.  
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Fig S5.6. Shifts in key metrics as clinics are added. 

(A) catchment population size, (B) annual vial demand, and (C) daily throughput 

(i.e. average number of patients reporting each day) given estimates of bite incidence 

for the commune and district models (colors). For vial demand estimation, catchment 

population sizes are the same for each model as these populations are allocated at the 

grid cell level (i.e. population in a grid cell is allocated to the clinic catchment it is closest 

to in terms of travel times regardless of district or commune). All x-axes are log 

transformed.  
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Fig S5.7. Shifts in where bites are reported to as clinics are added for the 

commune model. 

The circles show the clinic locations for each scenario, with size proportional to the 

annual average bites reported to that clinic. Lines show where the bites are reported 

from (commune centroid) also proportional to the number of bites. The polygon shading 

shows the commune level reported bite incidence.  
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Fig S5.8. Shifts in where bites are reported to as clinics are added for the district 

model. 

The circles show the clinic locations for each scenario, with size proportional to the 

annual average bites reported to that clinic. Lines show where the bites are reported 

from (commune centroid) also proportional to the number of bites. The polygon shading 

shows the district level reported bite incidence. 
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S6. Sensitivity of burden estimates to parameter assumptions 

Table S6.1. Range of parameters (upper 97.5% and lower 2.5% credible interval of 

posterior) used in models of bite incidence for the univariate sensitivity analyses. 

Parameter Description Commune model District model 

𝛽𝑡 Travel time effect -0.52 ‒ -0.32 -0.41 ‒ -0.24 

𝛽0 Model intercept -7.07 ‒ -6.39 -7.24 ‒ -6.44 

𝜎0 Overdispersion 0.76 ‒ 1.06 0.82 ‒ 1.15 
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Table S6.2. Range of parameters used in decision tree model for the univariate 

sensitivity analyses. 

Parameter Description Range Notes 

𝐸𝑖 Annual exposures per 100,000 persons 15 ‒ 110  

𝑝𝑟𝑎𝑏𝑖𝑑  Proportion of reported bites that are rabies exposures 0.2 ‒ 0.6  

𝜌𝑚𝑎𝑥 The maximum reporting possible for any location 0.8 ‒ 1  

𝑝𝑑𝑒𝑎𝑡ℎ The probability of death given a rabies exposure1 0.13 ‒ 0.2  

195% CI of estimate from [5] 
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Fig S6.1. Sensitivity analyses for baseline burden estimates. 

(A) Range of estimates of the estimate average deaths at the national level for range of 

parameter estimates (point shows the estimate presented in the main analyses and the 

ends show the upper and lower estimates for the parameter range) and (B) estimates 

for the predicted relationship between travel times and incidence of human rabies 

deaths across the same parameter ranges (line shows the estimate presented in the 

main analyses and the envelope shows the upper and lower estimates for the 

parameter range) for the two models (colors). See Table S6.1 & 2 for ranges used for 

each parameter. 
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Fig S6.2. Sensitivity analysis for PEP expansion. 

(A) Estimates of the maximum proportion reduction of deaths from the baseline for 

range of parameter estimates (point shows the estimate presented in the main analyses 

and the ends show the upper and lower estimates for the parameter range) and (B) 

estimates for how human rabies decreases proportional to the baseline as clinics are 

added for these same parameter ranges (line shows the mean estimate presented in 

the main analyses and the envelope shows the mean estimates for the parameters fixed 

at the upper and lower range) for the two models (colors). See Table S6.1 & 2 for 

ranges used for each parameter. 
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Fig S6.3. Sensitivity analysis for vial demand. 

(A) Estimates of the baseline vial demand for where each parameter was set to the 

upper and lower estimat of parameter estimates (point shows the estimate presented in 

the main analyses and the ends show the upper and lower estimates for the parameter 

range) and (B) estimates for how vial demand increases as clinics are added for these 

same parameter ranges (line shows the mean estimate presented in the main analyses 

and the envelope shows the mean estimates for the parameters fixed at the upper and 

lower range) for the two models (colors) for the two models (colors). See Table S6.1 & 2 

for ranges used for each parameter.  
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Fig S6.4. Sensitivity analysis for exposure scaling with population. 

Predicted relationship between (A) travel times and rabies death incidence per 100k 

persons and (B) the proportional reduction in deaths from the baseline as clinics are 

added for the district model vs. commune models (colors) with columns comparing the 

baseline (presented in main analyses) and assumptions of rabies exposure incidence 

increasing or decreasing with human population size (shapes). The points show the 

mean estimates from 1000 simulations and the line ranges show the 95% prediction 

intervals. 
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