
Supplementary Appendix

1. Two-Group Comparisons

Suppose that we record the occurrences of K types of events (e.g., SARS-CoV-2 infection,

COVID-19, severe COVID-19) for a total of n subjects. For k = 1, . . . , K and i = 1, . . . , n,

let Yki denote the number of the kth type of event experienced by the ith subject, and Tki

denote the corresponding follow-up time. For i = 1, . . . , n, let Xi indicate, by the values 1

versus 0, whether the ith subject receives vaccine or placebo. We assume that Yki follows a

Poisson distribution with mean µkTkir
Xi
k , where µk is the event rate (per unit time interval)

for placebo, and rk is the rate ratio (i.e., relative risk) between vaccine and placebo. The

vaccine efficacy on the kth type of event is defined by VEk = 1−rk, which is the proportionate

reduction in cases among the vaccinated persons.

The likelihood for (µk, rk) takes the form

n∏
i=1

(
µkTkir

Xi
k

)Yki exp
(
− µkTkirXi

k

)
.

The maximum likelihood estimator of rk is∑n
i=1 YkiXi/

∑n
i=1 TkiXi∑n

i=1 Yki(1−Xi)/
∑n

i=1 Tki(1−Xi)
.

The score statistic for testing the null hypothesis Hk : rk ≥ rk0, i.e., VEk ≤ 1− rk0, against

the alternative hypothesis that rk < rk0, i.e., VEk > 1− rk0, takes the form

Uk =
n∑
i=1

(Yki − µ̂kTkirXi
k0 )Xi,

where µ̂k =
∑n

i=1 Yki/
∑n

i=1 Tkir
Xi
k0 . For large n, the vector of score statistics (U1, . . . , UK) is

K-variate zero-mean normal with covariance matrix {Vkl; k, l = 1, . . . , K}, where

Vkl =
n∑
i=1

(Yki − µ̂kTkirXi
k0 )(Xi − m̂k)(Yli − µ̂lTlirXi

l0 )(Xi − m̂l),

and m̂k =
∑n

i=1 Tkir
Xi
k0Xi/

∑n
i=1 Tkir

Xi
k0 .

For k = 1, . . . , K, we test the null hypothesis Hk : rk ≥ rk0 by using the Z-score:

Zk = Uk/V
1/2
kk , which is standard normal under the null hypothesis. We propose to test the
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K null hypotheses, adjusting the critical value so as to control the overall type I error at α.

Specifically, we reject Hk if the observed value of Zk is less than the constant c that satisfies

the equation

Pr(Z1 > c, . . . , ZK > c) = 1− α,

where (Z1, . . . , ZK) is zero-meanK-variate normal with covariance matrix {ρkl; k, l = 1, . . . , K},

and ρkl = Vkl/(VkkVll)
1/2. We refer to this method as multiple testing.

To determine which types of events the vaccine is effective against, we adopt a sequential

testing procedure, which is more powerful than the above multiple testing method. Let z∗k

be the kth smallest observed value of the Zk’s, and let (Z∗1 , . . . , Z
∗
K) be a zero-mean K-

variate normal random vector with a covariance matrix obtained by rearranging the rows

and columns of {ρkl; k, l = 1, . . . , K} according to the order (z∗1 , . . . , z
∗
K). In addition, let

(H∗1 , . . . , H
∗
K) be the ordered sequence of the Hk’s according to the order (z∗1 , . . . , z

∗
K). Start-

ing with H∗1 , we reject H∗k (k = 1, . . . , K) if

Pr( min
k≤j≤K

Z∗j ≤ z∗k) ≤ α,

provided that H∗1 , . . . , H
∗
k−1 have been tested and rejected. It can be shown that the Type I

error probability of this procedure is α for any combination of the true Hk’s.
1

We also propose to test the global null hypothesis of no worthwhile vaccine benefit on

any endpoint, i.e., H0 : rk ≥ rk0 for all k = 1, . . . , K, by combining the evidence of the

vaccine effects on the K endpoints. Specifically, we form a new test statistic by summing

the K score statistics and dividing the sum by its standard error:

S =

∑K
k=1 Uk(∑K

k=1

∑K
l=1 Vkl

)1/2 .
We refer to S as the combined score test, which is standard normal under H0.

2. Interim Analyses

Suppose that we perform interim analyses at times t1 < t2 < . . . < tM . Let Uk(t) be the

score statistic Uk based on the data collected up to time t. Write U(t) =
∑K

k=1 Uk(t). By
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the multivariate central limit theorem, the random vector {U(t1), . . . , U(tM)} is M -variate

normal. Under the Poisson assumption, for s > t, the covariance between Uk(s) and Ul(t) is

equal to the covariance between Uk(t) and Ul(t). If follows that the covariance between U(s)

and U(t) is equal to the variance of U(t). Because of this independent increment property,

all standard methods for interim analyses, such as group sequential tests and stochastic

curtailment,2−5 are applicable to the combined test, as well as the individual tests.

3. Simulation Studies

We assigned 27,000 subjects to vaccine or placebo at a ratio of 1:1. For each subject in

the placebo group, we generated the time from randomization to infection, the time from

infection to disease, and the time from disease to severe disease from the exponential dis-

tributions (Fig. 1) with means ξλ1, ξλ2, and ξλ3, respectively, where ξ is a subject-specific

random effect that has a gamma distribution with mean 1 and variance 0.5. In the first set of

simulation studies, we generated the follow-up time from the Uniform (120,180) distribution.

We chose λ1, λ2, and λ3 to yield event proportions of 1% for infection, 0.6% for disease, and

0.12% for severe disease over the 6-month follow-up period. For each subject in the vaccine

group, we generated the three event times and the follow-up time in the above manner but

chose λ1, λ2, and λ3 to yield the desired values of VEI , VED, and VES. To assess statistical

power, we set VED to 0.6, VEI to 0.4, 0.5, 0.55 or 0.6, and VES to 0.6, 0.7, 0.8 or 0.9.

In the second set of simulation studies, we generated the follow-up time from the Uniform

(300,360) distribution and chose the event proportions of 2% for infection, 1.2% for disease,

and 0.24% for severe disease over the 12-month follow-up period. We set VED to 0.3, VEI

to 0.1, 0.2, 0.25 or 0.3, and VES to 0.3, 0.4, 0.5 or 0.6.

We evaluated a total of 12 methods: (1) Z1 alone; (2) Z2 alone; (3) Z3 alone; (4) combining

U1 and U2; (5) combining U2 and U3; (6) combining U1, U2, and U3; (7) multiple testing with

Z1 and Z2; (8) multiple testing with Z2 and Z3; (9) multiple testing with Z1, Z2, and Z3;

(10) Bonferroni correction for Z1 and Z2; (11) Bonferroni correction for Z2 and Z3; and (12)

Bonferroni correction for Z1, Z2, and Z3. For each method, we performed a one-sided test
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with the nominal significance level of 2.5% for the null hypothesis that the vaccine efficacy

is at most 0.3 in the first set of simulation studies and is at most zero in the second set

of simulation studies. We estimated the power for the 12 methods by simulating 100,000

datasets for each of the 16 combinations of VEI , VED, and VES. We considered Z2 alone

the benchmark since most vaccine trials have adopted COVID-19 as the primary endpoint.

We implemented the Poisson regression approach described in the previous section, as

well as a Cox regression analog.1,6 The results of the two approaches are almost identical.

Here, we report only the Poisson regression results. Poisson regression has clear advantages

over Cox regression because it is computationally simple and does not require knowing the

event time, but rather whether or not the subject has developed the event of interest by the

end of follow-up.

4. General Regression

We consider general Poisson regression, which can be used to perform point and interval

estimation, to compare multiple vaccines, and to accommodate baseline risk factors (e.g.,

age, gender, race, occupation, co-morbidities). As in Appendix 1, there are K types of

events and a total n study subjects. For k = 1, . . . , K and i = 1, . . . , n, let Yki denote the

number of the kth type of event experienced by the ith subject, Tki denote the corresponding

follow-up time, and Xki denote a set of covariates (i.e., vaccine indicators, baseline risk

factors). (We allow risk factors to depend on the event type.) We assume that Yki follows

a Poisson distribution with mean µkTkie
β′
kXki , where µk is the baseline event rate (per unit

time interval), and βk is a set of log relative risks.

The likelihood for (µk, βk) takes the form

n∏
i=1

(
µkTkie

β′
kXki

)Yki exp
(
− µkTkieβ

′
kXki

)
.

The profile-likelihood score function for βk is

Uk(βk) =
n∑
i=1

Yki
{
Xki −Xk(βk)

}
,
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where Xk(βk) =
∑n

i=1 Tkie
β′
kXkiXki/

∑n
i=1 Tkie

β′
kXki . We obtain the maximum likelihood

estimator for βk, denoted by β̂k, by solving the score equation Uk(βk) = 0 via the Newton-

Raphson algorithm. We then estimate µk by µ̂k =
∑n

i=1 Yki/
∑n

i=1 Tkie
β̂′
kXki .

For large n, the estimators β̂k (k = 1, . . . , K) are jointly normal with means βk (k =

1, . . . , K). In addition, the covariance matrix between β̂k and β̂l is A−1k VklAl, where Ak =

∂U(β̂k)/∂βk, and

Vkl =
n∑
i=1

(Yki − µ̂kTkieβ̂
′
kXki)(Yli − µ̂lTlieβ̂

′
lXli)

{
Xki −Xk(β̂k)

}{
Xli −X l(β̂l)

}′
.

Let ηk be the component of βk that corresponds to the vaccine effect on the kth endpoint.

We extract the maximum likelihood estimator η̂k from β̂k and extract the covariance matrix

of (η̂1, . . . , η̂K), denoted by Σ = {σkl; k, l = 1, . . . , K}, from the covariance matrices between

β̂k and β̂l (k, l = 1, . . . , K). For k = 1, . . . , K, we calculate the Z-score for testing the null

hypothesis Hk : ηk ≥ ηk0 by using the Z-score: Zk = (η̂k − ηk0)/σ1/2
kk . We can then use these

Z-scores for the multiple testing and sequential testing procedures described in Appendix 1.

Suppose that η1 = η2 = . . . = ηK = η. Then we can estimate η by the weighted linear

combination: η̂ =
∑K

k=1wkη̂k, where (w1, . . . , wK)′ = (e′Σ−1e)−1Σ−1e, and e = (1, . . . , 1)′.1

In addition, we test the global null hypothesis H0 : ηk ≥ ηk0 for all k = 1, . . . , K by the

standard-normal statistic:

S =

∑K
k=1wkη̂k(∑K

k=1

∑K
l=1wkwlσkl

)1/2 ,
which is analogous to the combined score test given at the end of Appendix 1. Although

the assumption of a common vaccine effect on the K endpoints may not hold, η̂ provides a

concise summarization of the vaccine effects, and S provides a valid test of overall vaccine

efficacy.

5



References

1. Wei LJ, Lin DY, Weissfeld L (1989). Regression analysis of multivariate incomplete

failure time data by modeling marginal distributions. J Am Stat Ass, 84: 1065-1073.

2. O’Brien PC, Fleming TR (1979). A multiple testing procedure for clinical trials. Bio-

metrics, 35: 549-556.

3. Lan KKG, DeMets DL (1983). Discrete sequential boundaries for clinical trials. Biometrika,

70: 659-663.

4. Lan KKG, Wittes J (1988). The B-value: a tool for monitoring data. Biometrics, 44:

579-585.

5. Jennison C, Turnbull BW (1999). Group Sequential Methods With Applications to

Clinical Trials. CRC Press.

6. Lin DY, Zeng D, Eron JJ (2020). Evaluating the efficacy of therapies in COVID-19

patients. Clinical Infectious Diseases, https://doi.org/10.1093/cid/ciaa1231.

6



Randomization SARS-CoV-2 
infection

Severe 
COVID-19COVID-19

Figure 1. A 4-state model for a Phase 3 vaccine trial. The time between two adjacent
events follows an exponential distribution, with different rates between vaccine and placebo
to achieve vaccine efficacy of VEI , VED, and VES for infection, disease, and severe disease,
respectively.

7


