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Abstract

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable

COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most

severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death

data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of

individuals that have been infected, the number of individuals that are currently infectious and the time-varying

reproduction number (the average number of secondary infections caused by an infected person). We used changes

in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on

the rate of transmission of SARS-CoV-2. On 1st June, we estimated that Rt was only below one in 23 states. We

also estimated that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation

between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model

forecasts of deaths with low error and good coverage of our credible intervals.
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1 Introduction

The first death caused by COVID-19 in the United States is currently believed to have occurred in Santa Clara

County, California on the 6th February [1]. Throughout March 2020, US state governments implemented a variety

of non-pharmaceutical interventions (NPIs), such as school closures and stay-at-home orders, to limit the spread of

SARS-CoV-2 and ensure the number of severe COVID-19 cases did not exceed the capacity of the health system.

In April 2020, the number of deaths attributed to COVID-19 in the United States (US) surpassed that of Italy [2].

Courtemanche et al. [3] used an event-study model to determine that such NPIs were successful in reducing the

growth rate of COVID-19 cases across US counties. We similarly seek to estimate the impact of NPIs on COVID-

19 transmission, but through a semi-mechanistic Bayesian model that reflects the underlying process of disease

transmission and relies on mobility data released by companies such as Google [4].

Mobility measures revealed stark changes in behaviour following the large-scale government interventions in the first

stage of the epidemic, with individuals spending more time at home and correspondingly less time at work, at leisure

centres, shopping, and on public transit [4, 5]. As states continued to ease the stringency of their NPIs in the

end of June, policy decisions relied on the interaction between mobility and NPIs and their subsequent impact on

transmission, alongside other measures to track and curtail SARS-CoV-2 transmission.

We introduced a new Bayesian statistical framework for estimating the rate of transmission and attack rates for

COVID-19 in Flaxman et al. [6]. In that paper, we inferred the time-varying reproduction number, Rt, or the

average number of people an infected person will infect over time. We calculated the number of new infections through

combining previous infections with the generation interval (the distribution of times between infections) and chose the

number of deaths to be a function of the number of infections and the infection fatality ratio (IFR). We estimated

the posterior probability of our parameters given the observed data, while incorporating prior uncertainty. This

made our approach empirically driven, whilst incorporating uncertainty. This approach has also been implemented

for Italy [7] and Brazil [8].

In this paper, we extend the Flaxman et al. [6] framework to model transmission in the US at the state level

and include reported cases in our model. We parameterise Rt as a function of several mobility types and include

an autoregressive term to capture changes in transmission that are decoupled from mobility, for example hand-

washing, social distancing and changes in transmission that are decoupled from mobility. We utilise partial pooling

of parameters, where information is shared across all states to leverage as much signal as possible, but individual

effects are also included for state and region-specific idiosyncrasies. In this paper, we infer plausible upper and lower

bounds (Bayesian credible interval summaries of our posterior distribution) of the total population that had been

infected by COVID-19 on 01 June 2020 (also called the cumulative attack rate or attack rate) and estimate the

effective number of individuals currently infectious given our generation distribution. We also present effect sizes

of the mobility covariates and make short term forecasts, which we compare with reality throughout June. Details

of the data sources and a technical description of our model are found in Sections 4 and 5 respectively. General

limitations of our approach are presented in the conclusions.
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2 Results

2.1 Infections

The percentage of the total population across the US infected by COVID-19 was 3.7% [3.4%-4.0%] on 01 June

2020. However, this low national average masked a stark heterogeneity across the states (Table 1). New York

and New Jersey had the highest estimated cumulative attack rates, of 15.9% [12.4%-19.9%] and 14.8% [11.2%-18.2%]

respectively, and Connecticut and Massachusetts both had cumulative attack rates over 10%. Conversely, other states

that have drawn attention for early outbreaks, such as California, Washington, and Florida, only had cumulative

attack rates of around 2% and states that were only in the early stages of their epidemics, like Maine, had estimated

cumulative attack rates of less than 1%.

Figure 1 shows the effective number of infectious individuals and the number of newly infected individuals on any

given day up until 01 June 2020 for each of the 8 regions in our model, which are based on US census regions (see

Appendix A for further descriptions of our groupings). The effective number of infectious individuals is calculated

using the generation time distribution, where individuals are weighted by how infectious they are over time, see

Section 5.2 for more information. The fully infectious average includes asymptotic and symptomatic individuals.

On 01 June 2020, we estimate that there were 41,100 [34,500-46,800] infectious individuals across the US, which

corresponds to 0.01% of the population. Table 1 shows estimates of the number of new infections across each states

on 01 June 2020. By this date, the estimated number infections were beginning to increase in the Pacific (Alaska,

California, Hawaii, Oregon and Washington) and Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New

Mexico, Utah and Wyoming) regions.

Our model includes a state-level parameter for the infection ascertainment ratio, IAR, which we define as the number

of reported cases divided by the true number of infections (including asymptomatic infections). We only estimate

this parameter from 11 May 2020 when more than 375,000 tests are done each day, see Appendix B for further

information. Column 3 of Table 1 shows the value of the infection ascertainment ratio in our model (see Section 5)

and varies significantly between state. We would not expect the infection ascertainment to be 100% because our

model includes asymptomatic individuals who may not know they have COVID-19. The mean value of this ratio

varies between 43% (Missouri) to 74% (Kansas and Tennessee), which suggests that states are doing very different

levels of testing.

2.2 Reproduction number

The mean estimate for Rt was below one in 23 states1 on 01 June 2020 and the 95% credible intervals did not exclude

one in any state (see Appendix C for Rts by state). Figure 2 depicts the geographical variation in the posterior

probability that Rt was less than 1. The closer a value is to 100%, the more certain we were that the reproduction

number was below 1, indicating that new infections were not increasing. The probability was less than 40% that

Rt < 1 in 20 states. There was substantial geographical clustering; most states in the Midwest and the South had

reproduction numbers that suggested that the epidemic was not under control. We include figures of Rt, infections

and deaths over time for each state in Appendix D.
145.10% of states
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Table 1: Posterior model estimates of percentage of total population ever infected, mean new infections per day over

week ending 01 June 2020, and infection ascertainment ratio as of 01 June 2020. We present the mean and the 95%

credible intervals in square brackets.

State % of total population infected Estimated mean new
infections per day over week

ending 01 June 2020

Infection ascertainment ratio

Alabama 1.8% [1.4%-2.3%] 1,065 [300-2,400] 59% [35%-80%]

Alaska 0.1% [0.0%-0.2%] 20 [0-100] 69% [46%-88%]

Arizona 1.6% [1.2%-2.0%] 1,003 [400-1,800] 55% [35%-81%]

Arkansas 0.7% [0.5%-1.0%] 451 [100-900] 66% [45%-86%]

California 1.5% [1.1%-1.9%] 4,863 [2,100-10,600] 59% [37%-80%]

Colorado 3.2% [2.6%-4.1%] 674 [200-1,400] 54% [33%-79%]

Connecticut 11.4% [9.1%-14.5%] 520 [200-1,200] 53% [32%-78%]

Delaware 4.4% [3.4%-5.6%] 153 [0-300] 68% [45%-87%]

District of Columbia 9.7% [7.6%-12.3%] 134 [0-300] 60% [39%-83%]

Florida 1.2% [0.9%-1.5%] 1,350 [600-2,700] 61% [39%-83%]

Georgia 2.7% [2.1%-3.4%] 1,528 [600-3,600] 46% [25%-70%]

Hawaii 0.1% [0.0%-0.3%] 2 [0-100] 69% [49%-89%]

Idaho 0.6% [0.4%-0.9%] 47 [0-100] 70% [48%-88%]

Illinois 5.2% [4.1%-6.5%] 2,198 [800-4,500] 63% [40%-84%]

Indiana 3.8% [3.1%-4.9%] 779 [300-1,700] 61% [36%-82%]

Iowa 2.3% [1.7%-2.8%] 542 [200-1,100] 58% [36%-81%]

Kansas 1.1% [0.8%-1.4%] 189 [0-400] 74% [58%-91%]

Kentucky 1.2% [0.9%-1.6%] 359 [100-800] 58% [36%-81%]

Louisiana 7.1% [5.7%-9.0%] 660 [300-1,400] 63% [38%-86%]

Maine 0.7% [0.5%-1.0%] 78 [0-200] 64% [42%-85%]

Maryland 5.5% [4.3%-6.7%] 1,675 [600-3,200] 60% [38%-83%]

Massachusetts 11.2% [9.0%-14.0%] 3,387 [1,300-7,000] 43% [23%-68%]

Michigan 5.8% [4.5%-7.2%] 641 [200-1,500] 54% [30%-76%]

Minnesota 2.6% [1.9%-3.2%] 1,110 [400-2,400] 57% [36%-80%]

Mississippi 3.1% [2.5%-4.1%] 687 [300-1,600] 48% [27%-73%]

Missouri 1.5% [1.1%-1.9%] 504 [200-1,100] 43% [24%-69%]

Montana 0.2% [0.0%-0.3%] 11 [0-100] 71% [47%-87%]

Nebraska 1.5% [1.2%-2.0%] 379 [100-900] 73% [53%-90%]

Nevada 1.8% [1.4%-2.3%] 197 [0-400] 62% [40%-84%]

New Hampshire 2.0% [1.5%-2.6%] 152 [0-400] 54% [30%-78%]

New Jersey 14.8% [11.2%-18.2%] 1,493 [500-3,200] 52% [31%-79%]

New Mexico 2.0% [1.6%-2.6%] 176 [0-400] 61% [36%-81%]

New York 15.9% [12.4%-19.9%] 2,056 [800-4,200] 59% [37%-81%]

North Carolina 1.3% [1.0%-1.7%] 1,859 [800-4,100] 56% [34%-78%]

North Dakota 1.2% [0.8%-1.7%] 49 [0-200] 71% [47%-88%]

Ohio 2.1% [1.7%-2.7%] 1,141 [400-2,700] 48% [28%-75%]

Oklahoma 1.1% [0.8%-1.4%] 117 [0-300] 66% [43%-85%]

Oregon 0.4% [0.3%-0.6%] 85 [0-200] 72% [50%-89%]

Pennsylvania 4.4% [3.4%-5.5%] 1,310 [400-2,600] 51% [28%-78%]

Rhode Island 7.5% [5.8%-9.4%] 246 [0-700] 51% [27%-74%]

South Carolina 1.3% [0.9%-1.8%] 743 [200-1,400] 51% [30%-78%]

South Dakota 1.1% [0.7%-1.5%] 110 [0-300] 69% [48%-87%]

Tennessee 0.8% [0.6%-1.1%] 406 [100-800] 74% [54%-90%]

Texas 0.9% [0.7%-1.2%] 2,208 [1,000-4,400] 65% [44%-86%]

Utah 0.8% [0.6%-1.1%] 420 [100-800] 66% [45%-86%]

Vermont 0.9% [0.5%-1.3%] 6 [0-100] 69% [46%-87%]

Virginia 2.3% [1.8%-2.9%] 1,879 [800-3,900] 62% [40%-83%]

Washington 1.8% [1.4%-2.3%] 533 [200-1,200] 62% [38%-83%]

West Virginia 0.5% [0.3%-0.7%] 70 [0-200] 65% [43%-86%]

Wisconsin 1.3% [1.0%-1.7%] 846 [300-1,900] 61% [37%-80%]

Wyoming 0.3% [0.1%-0.6%] 15 [0-100] 65% [39%-85%]

National 3.7% [3.4%-4.0%] 41,100 [34,500-46,800]
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Figure 1: Daily estimates of the number of infectious (those still able to transmit) individuals (light purple, 95%

credible interval(CI), dark purple 50% CI) and newly infected individuals (light blue, 95% CI, dark blue: 50% CI).
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Probability Rt < 1

x < 20%

20% ≤  x < 40%

40% ≤  x < 60%

60% ≤  x < 80%

x ≥ 80%

Figure 2: Estimates of the probability that the time-varying reproduction number Rt is less than one in each state.

These values are an average over the week ending 01 June 2020. This plot shows the certainty that the rate of

transmission is under control.

2.3 Model effect sizes

We find that decreases in the overall average number of visits to different places had a significant effect on reducing

transmission. If mobility stopped entirely (100% reduction in average mobility) then Rt would be reduced by 55.1%

[26.5% - 77.0%]. The country effect size estimates are given in Figure 3, with regional and state-level effects given

in Appendix E. However, in the US, the average mobility covariate never approached a 100% reduction, and only

about half the states had reductions below 50% of the baseline. We define the baseline as the pre-epidemic mobility

for each state [4]. As an example, consider the largest reduction observed, -62% of the baseline (Minnesota on 12

April 2020). The effect on Rt was a reduction of 37% [16% - 56%] from the country level effect.

Increased time spent in residences also reduced transmission; if time spent in residences increased to 100% of the

baseline, Rt would be reduced by 15.3% [-27.5% - 54.6%]. Time spent in residences increased by 20% or more from

the baseline in 36 states. As an example, consider the largest reduction observed, a 33% increase from the baseline

(New Jersey on 10 April 2020). The effect on Rt from this was a reduction of 5% [-10% - 20%] in New Jersey from

the country level effect.

Average mobility and residential mobility are no doubt correlated—when people spend less time in public spaces,

captured by our average mobility metric, they conversely spend more time at home. Due to this collinearity, our

model is unable to distinguish between the independent contributions of these covariates, with most of the effect

assigned to the average mobility coefficient, due to its greater explanatory power. As a check that our overall findings

were not biased by this collinearity, we verified that the posterior estimates of these coefficients was not correlated.
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Figure 3: Country level covariate effect sizes assuming mobility stopped entirely (100% reduction in average mobility)

and residential mobility was increased fully (100% increase in residential mobility): Average mobility combines “retail

& recreation”, “grocery & pharmacy”, “workplaces”.

2.4 Short term forecasts

We used our model to produce short term death forecasts. Figure 4 compares our forecasts for the three weeks after

01 June 2020 (blue line with shaded uncertainty intervals) with the recorded daily number of deaths during this

period (coral bars). As expected from our Rt values, deaths were noticeably declining in the Northeastern Corridor,

where Rt > 1, with particularly low error between our forecasts and reality in New York and Connecticut. In the

South, we forecast a flattening or slight increase of deaths, especially in Arkansas, Texas and Florida.

We investigated the numerical accuracy of our forecast using three metrics: mean absolute error, continuous ranked

probability score (CRPS) and coverage of credible intervals. We fitted our model to three end points: 1 May, 15 May

and 1 June and performed three week forecasts from each end point. We compared the metric scores with a log-linear

“null” model fit to 31 days of data prior to the three specified end points (see Appendix F for further information).

We find our model performs similarly to the null model (1 June) or better (15 May), however our model fit to 1 May

is worse than the null model because we only include cases after 11 May in our models. This suggests that including

cases improves the forecasting ability of our model and further justifies our inclusion of them. The coverage of our

credible intervals is good for all models, in particular our model and the null model fit to 1 June.

2.5 Model selection and sensitivity

Mobility data provided a proxy for the behavioural changes that occur in response to non-pharmaceutical interven-

tions. Appendix H shows the mobility trends for the 50 states and the District of Columbia up until 01 June 2020

(see Section 4 for a description of the mobility dimensions). The median correlation between the observed average
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Figure 4: Three week forecasts for model fitted up until 01 June 2020. The coral bars show the reported number

of deaths for the three weeks after 01 June 2020, and the blue line and ribbon show the mean and 95% CI for our

forecast estimates.
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mobility and the timing of the introduction of major NPIs (represented as step functions) was approximately 86%

(see Appendix I). We make no explicit causal link between NPIs and mobility because this relationship is plausibly

causally linked by other factors. The mobility trends data suggests that substantial early outbreak in New York

state may have led to substantial changes in mobility in nearby states, like Connecticut, prior to any mandated

interventions in those states, which supports including regions in our model. Including both mobility trends and the

timing of imposition and lifting of “stay-at-home” orders did not affect the estimated cumulative attack rates (see

Appendix J).

Mobility alone cannot fully capture how transmission evolves over time. In particular, it cannot capture the impact of

case-based interventions (such as testing and tracing) or behaviour changes (such as mask wearing or hand washing).

We use a second-order, weekly, autoregressive process to allow our changes in transmission to be decoupled from

mobility. This autoregressive process is an additional term in our parametric equation for Rt and accounts for

residual effects by capturing a correlation structure where current Rt is correlated with previous weeks Rt. This

means that our forecasts were equally good whatever combination of mobility covariates were used because this term

could capture the unexplained behaviour. The learnt random effects from this process are shown in Appendix K for

all states. We show the contributions to Rt from the mobility and autoregressive terms in Figure 19 for three example

states. The autoregressive term increases Rt before lockdown in New York, which could be explained by behaviour

such as panic buying. In contrast, the autoregressive term reduces Rt in Montana and could reflect behavioural

changes such as hand-washing and self isolation, which can reduce transmission with maintained mobility levels. The

autoregressive term remains mostly constant in Washington and suggests that mobility is sufficient to capture the

behaviour there.

3 Discussion

We developed a Bayesian semi-mechanistic modelling approach to investigate the impact of NPIs on the spread of

SARS-CoV-2 in the United States through changes in mobility. Our model relies on death data from the start of the

epidemic and recently reported case data to inform our predictions. This enabled us to estimate a realistic infection

ascertainment ratio for the three weeks before 01 June 2020 for each state, which could help inform policy as to where

testing may be lacking. The mean value of this ratio varies between 43% (Missouri) to 74% (Kansas and Tennessee).

Our epidemiological grounded mechanistic model links unobserved infections to reported cases and deaths, all within

a principled Bayesian statistical framework. This is a significant advancement over curve-fitting models fit directly

to reported cases.

Our model suggests that although initial reductions in the daily infections had plateaued in most states by 01 June

2020, the reservoir of infectious individuals still remained large with approximately 0.01% of the population being

infectious on that date. Despite this, the cumulative attack rate across the US still remained low. We found our

attack rate for New York was in line with those from recent serological studies [9]. There is now evidence that mild

infection is able to lead to robust immunity (via T cells) but potentially not induce antibody production, which

are detected in serosurveys [10]. Therefore, serosurveys might underestimate exposure, particularly in mild cases,

and our model may provide an alternative way to measure population exposure. Our cumulative attack rates are,

however, sensitive to the assumed values of infection fatality rate (IFR). We account for each individual state’s age

structure, and further adjust for contact mixing patterns [11], but age specific modelling may be necessary to capture
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potential changes in the demographics of cases in states such as Texas, Florida and South Carolina where there is

evidence that younger people than were infected at the start of the epidemic are being infected [12, 13].

We estimated that 23 states had a posterior mean reproduction number Rt below one on 01 June 2020 and in no

states were we more than 95% confident that Rt was below one. We compared our estimates with predictions made by

rt.live [14] who use a method that fits the most likely Rt curve to the daily new daily cases (see Appendix L). Overall,

our estimates were weakly correlated (ρ = 0.42) with both of us estimating Rt > 1 in 23 states (red points) including

Montana and Alaska. However, the rt.live estimates are slightly more pessimistic because they predict Rt > 1 in 10

states where we predict Rt < 1 (blue points). In contrast we predict Rt > 1 in 5 states where they predict Rt < 1

(green points). Both sets of reproduction numbers strongly implied that the US epidemic was not under control in

many states, and that in the presence of continued migration and the loosening of interventions seen in June, increased

infections were to be expected with high probability. We found that state with high reproduction numbers on 01

June 2020 were geographically clustered in the west and south US, whilst the states that had suffered high COVID-

19 mortality (such as the Northeast Corridor) in the early phase of the epidemic had lower reproduction numbers.

After the period covered by this study, reported cases began to increase in the US, and 7 states (Arizona, Arkansas,

California, North Carolina, South Carolina, Tennessee and Texas) had recorded higher levels of hospitalisations in

early July than before [15, 16]. This suggests our estimates that Rt was not less than one were accurate. More

recent estimates of Rt, the number of infections, and the number of people currently infectious are presented on our

website2.

Our three week forecasts of daily deaths were highly accurate, confirming the predictive validity of our modelling

approach, despite our having kept mobility constant during our forecasts. These forecasts, alongside our Rt values,

show that the epidemic was not under control at the end of May. The accuracy of our forecasts varied during the

epidemic and could be due to our assumption that mobility is kept constant over these three weeks. Our forecast

would perform worse in weeks where mobility was significantly different to the last week of our model fit. When

we include cases in our model, we are able to get similar results to a simple “null” model whilst also being about

to estimate effect sizes of different mobility trends. We also compared our cumulative death forecasts with those

presented by Friedman et al. [17]. Friedman et al. compared the median absolute percentage error (MAPE) for SEIR

and dynamic growth rate types of models for models fit to some point in June. Unlike those models, we find the

MAPE of our cumulative death forecasts did not increase significantly over time and our 3 week median cumulative

death MAPE across all states (9.9%) was similar to the US estimate from Friedman et al. (4.1-8.6), see Appendix G

for more information.

Our model uses mobility to predict SARS-COV2 transmission. We find that the timings that non-pharmaceutical

interventions were implemented was strongly correlated to changes in mobility. This is similar to findings in Abouk

and Heydari [5] who find that statewide stay-at-home orders had the strongest causal impact on reducing social

interaction and that these orders significantly increase the presence of individuals at home by about six fold (our

“residential mobility trend”). This supports our choice of using mobility instead of the timings of NPIs in this study

instead of the times of interventions as in Flaxman et al. [6]. We find that magnitude of the reductions in average

mobility, and the resulting increases in residential mobility, are important in determining the size of reduction in Rt.

This agrees with Wang et al. [18] who use a stochastic age- and risk-structured susceptible-exposed-asymptomatic-

symptomatic-hospitalized-recovered (SEAYHR) model to considered the effect of various levels of social distancing.
2https://mrc-ide.github.io/covid19usa/
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They found that social distancing measures, which reduced non-household contacts by <50%, would not prevent a

healthcare crisis and that only their 75% and 90% contact reduction scenarios were projected to enable metropolitan

areas to remain within health care levels.

While mobility, or social distancing measures, will explain a large amount of the trend in Rt, there is likely to be

substantial residual variation from other behavioural changes such as mask wearing and hand-washing. We accounted

for this residual variation through a second order, weekly, autoregressive process. This stochastic process captures

changes in Rt reflected in the data, but is unable to attribute these changes to other determinants of transmission or

interventions. We pool parameters in our model to leverage as much signal in our data as possible and to reflect the

conjoined nature of some states, in particular in the Northeastern Corridor. While this sharing can potentially lead

to over or under estimation of effect sizes, it also means that a consistent signal for all states can be estimated before

that signal is presented in an individual state with little data, such as Alaska and Hawaii. Pooling also increases the

robustness of our models to under reporting and time lags [6, 7, 8].

4 Data

Our model uses daily real-time state-level aggregated data published by New York Times (NYT) [19] for New York

State and John Hopkins University (JHU) [2] for the remaining states. We include 105,006 deaths in our model up

until 1 June and 479,422 cases from 11 May to 1 June. Age specific population counts were drawn from the U.S.

Census Bureau in 2018 [20] to estimate state-specific infection fatality ratio reflective of the population age structure.

The timing of NPIs were collated by the University of Washington [21]. We used Google’s COVID-19 Community

Mobility Report [4], which provides data on movement in the US by states and highlights the percent change in visits

to:

• Grocery & pharmacy: Mobility trends for places like grocery markets, food warehouses, farmers markets,

speciality food shops, drug stores, and pharmacies.

• Parks: Mobility trends for places like local parks, national parks, public beaches, marinas, dog parks, plazas,

and public gardens.

• Transit stations: Mobility trends for places like public transport hubs such as subway, bus, and train stations.

• Retail & recreation: Mobility trends for places like restaurants, cafes, shopping centres, theme parks, museums,

libraries, and movie theatres.

• Residential:Mobility trends for places of residence.

• Workplaces: Mobility trends for places of work.

The residential data includes length of stay at different places compared to a baseline, whereas the other mobility

trends are based on number of visits to a certain place. These trends are therefore relative, i.e. mobility of -20%

means that, compared to normal circumstances individuals are engaging in a given activity 20% less.
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5 Methods

Flaxman et al. [6] introduced a Bayesian model for estimating the transmission intensity and attack rate (percentage

of the population that has been infected) from COVID-19 from the reported number of deaths. This framework used

the time-varying reproduction number Rt to inform a latent function for infections, and then these infections, together

with probabilistic lags, were calibrated against observed deaths. Observed deaths, while still susceptible to under

reporting and delays, comprise a more consistent time series than the reported number of confirmed cases, which

are susceptible to changes in the probability of ascertainment over the course of the epidemic as testing strategies

changed. Our model code is available on GitHub3.

We adapted the original Bayesian semi-mechanistic model of the infection cycle to all the states in the US and

the District of Columbia to infer the reproduction number over time (Rt), plausible upper and lower bounds (95%

Bayesian credible intervals) of the total populations infected (attack rates) and the number of people currently

infected on 01 June 2020. In this paper, we also include the reported number of cases after 11 May 2020, see

Appendix B. This reflects the point in time when over 375,000 tests were being done each day across the US. We

include this in our likelihood but do not use them to calculate transmission directly. We parametrise Rt as a function

of Google mobility data and include an autoregressive term to capture non-mobility driven behaviour. We fit our

model jointly to COVID-19 data from all states to assess the attack rates and number of people who were currently

infected. Finally, we use our model to forecast for 3 weeks from 01 June 2020 and compare our estimates of deaths

to those recorded in the US for each state. We assume mobility remains constant at the previous value of mobility

on the same day the previous week in our forecasts and the autoregressive term remains constant.

5.1 Model specifics

The true number of infected individuals, i, is modelled using a discrete renewal process. We specify a generation

distribution g with density g(τ) as:

g ∼ Gamma(6.5, 0.62). (1)

Given the generation distribution, the number of infections it,m on a given day t, and state m, is given by the

following discrete convolution function:

it,m = St,mRt,m

t−1∑
τ=0

iτ,mgt−τ , (2)

St,m = 1−
∑t−1
j=0 ij,m

Nm
,

where the generation distribution is discretised by gs =
∫ s+0.5

s−0.5
g(τ)dτ for s = 2, 3, ..., and g1 =

∫ 1.5

0
g(τ)dτ . The

population of state m is denoted by Nm. We include the adjustment factor St,m to account for the number of

susceptible individuals left in the population.

Both deaths and cases are observed in our model. We define daily deaths, Dt,m, for days t ∈ {1, . . . , n} and states

m ∈ {1, . . . ,M}. These daily deaths are modelled using a positive real-valued function dt,m = E[Dt,m] that represents

the expected number of deaths attributed to COVID-19. The daily deaths Dt,m are assumed to follow a negative

binomial distribution with mean dt,m and variance dt,m +
d2t,m
ψ1

, where ψ1 follows a positive half normal distribution,

3https://github.com/ImperialCollegeLondon/covid19model
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i.e.

Dt,m ∼ Negative Binomial

(
dt,m, dt,m +

d2t,m
ψ1

)
, t = 1, . . . , n (3)

ψ1 ∼ N+(0, 5). (4)

Here, N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ. We say that X follows a positive

half normal distribution N+(0, σ) if X ∼ |Y |, where Y ∼ N (0, σ).

We link our observed deaths mechanistically to transmission as in Flaxman et al. [6]. We use a previously estimated

COVID-19 infection fatality ratio (IFR, probability of death given infection) together with a distribution of times

from infection to death π. Details of this calculation can be found in [22, 23]. From the above, every region has a

specific mean infection fatality ratio ifrm (see Appendix M). To incorporate the uncertainty inherent in this estimate

we allow the ifrm for every state to have additional noise around the mean. Specifically we assume

ifr∗m ∼ ifrm ·N(1, 0.1). (5)

We believe a large-scale contact survey similar to polymod [11] has not been collated for the USA, so we assume the

contact patterns are similar to those in the UK. We conducted a sensitivity analysis, shown in Appendix M, and

found that the IFR calculated using the contact matrices of other European countries lay within the posterior of

ifr∗m.

Using estimated epidemiological information from previous studies, we assume the distribution of times from infection

to death π (infection-to-death) to be the convolution of an infection-to-onset distribution (π′) [23] and an onset-to-

death distribution [22]:

π ∼ Gamma(5.1, 0.86) + Gamma(17.8, 0.45). (6)

The expected number of deaths dt,m, on a given day t, for state m is given by the following discrete sum:

dt,m = ifr∗m

t−1∑
τ=0

iτ,mπt−τ , (7)

where iτ,m is the number of new infections on day τ in state m and where, similar to the generation distribution, π

is discretized via πs =
∫ s+0.5

s−0.5
π(τ)dτ for s = 2, 3, ..., and π1 =

∫ 1.5

0
π(τ)dτ , where π(τ) is the density of π.

For every state m, we also observe daily cases Ct,m after tc = 11 May 2020. Similar to daily deaths, daily cases are

modelled using a positive real-valued function c̄t,m = E[Ct,m] that represents the expected number of symptomatic

and asymptomatic cases. Again, the daily cases Ct,m are assumed to follow a negative binomial distribution but with

mean ct,m and variance ct,m +
c2t,m
ψ2

, where ψ2 follows a positive half normal distribution, i.e.

Ct,m ∼ Negative Binomial

(
ct,m, ct,m +

c2t,m
ψ2

)
, t = tc, . . . , n, (8)

ψ2 ∼ N+(0, 5). (9)

As before, we assume the distribution of times from infection to becoming a case π′ (infection-to-onset) to be

π′ ∼ Gamma(5.1, 0.86). (10)
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We add in a new link between our observed daily cases and our estimated daily infections. We use our model to

estimate an infection ascertainment ratio (iarm) for each state m, which is defined as the number of reported cases

divided by the true number of infections (including both symtomatic and asymptomatic infections). This follows a

Beta distribution, specifically um ∼ Beta(12, 5).

The expected number of cases ct,m, on a given day t, for state m is given by the following discrete sum:

ct,m = iarm

t−1∑
τ=0

iτ,mπ
′
t−τ , (11)

where, again, cτ,m is the number of new infections on day τ in state m and where π′ is discretized via π′
s =∫ s+0.5

s−0.5
π′(τ)dτ for s = 2, 3, ..., and π′

1 =
∫ 1.5

0
π′(τ)dτ , where π′(τ) is the density of π′.

We parametrise Rt,m as a linear function of the relative change in time spent and number of visits (from a baseline)

Rt,m = R0,m · f

−

 2∑
k=1

Xt,m,kαk

−
2∑
l=1

Yt,m,lα
region
r(m),l − Zt,mα

state
m − εm,wm(t)

 , (12)

where f(x) = 2 exp(x)/(1+exp(x)) is twice the inverse logit function. Xt,m,k are covariates that have the same effect

for all states, Yt,m,l is a covariate that has region-specific effects, r(m) ∈ {1, . . . , R} is the region a state is in (see

Figure 15), Zt,m is a covariate that has a state-specific effect and εm,wm(t) is a weekly AR(2) process, centred around

0, that captures variation between states that is not explained by the covariates.

The prior distribution for R0,m[24] was chosen to be

R0,m ∼ N (3.28, κ) with κ ∼ N+(0, 0.5), (13)

where κ is the same among all states.

In the analysis of this paper we chose the following covariates: Xt,m,1 = Maverage
t,m , Xt,m,2 = M residential

t,m , Yt,m,1 = 1

(an intercept), Yt,m,2 = Maverage
t,m and Zt,m = Maverage

t,m , where the mobility variables are from [4] and defined as

follows (all are encoded so that 0 is the baseline and 1 is a full reduction of the mobility in this dimension):

• Maverage
t,m is an average of retail and recreation, groceries and pharmacies, and workplaces. An average is taken

as these dimensions are strongly collinear.

• M residential
t,m are the mobility trends for places of residences.

We include regional, as well as state level parameters, in our model to encapsulate the connected nature of states.

This was particularly important in the Northeasten corridor where residents in New Jersey and Connecticut regularly

commuted into New York, the early epicenter of the US epidemic (see Appendix A for a map of the regions). Regions

are based on US Census Divisions, modified to account for coordination between groups of state governments [25].

We assume that seeding of new infections begins 30 days before the day after a state has cumulatively observed 10

deaths. From this date, we seed our model with 6 sequential days of an equal number of infections: i1,m = · · · =

i6,m ∼ Exponential( 1τ ), where τ ∼ Exponential(0.03). These seed infections are inferred in our Bayesian posterior

distribution.

The weekly, state-specific effect is modelled as a weekly AR(2) process, centred around 0 with stationary standard

deviation σw that, in every state, starts on the first day of its seeding of infections, i.e. 30 days before a total of 10
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cumulative deaths have been observed in this state. The AR(2) process starts with ε1,m ∼ N (0, σ∗
w),

εw,m ∼ N (ρ1εw−1,m + ρ2εw−2,m, σ
∗
w) for m = 2, 3, 4, . . . (14)

with independent priors on ρ1 and ρ2 that are normal distributions conditioned to be in [0, 1]; the prior for ρ1 is a

N (0.8, .05) distribution conditioned to be in [0, 1] and the prior for ρ2 is a N (0.1, .05) distribution, conditioned to be

in [0, 1]. The prior for σw, the standard deviation of the stationary distribution of εw is chosen as σw ∼ N+(0, .2).

The standard deviation of the weekly updates to achieve this standard deviation of the stationary distribution is

σ∗
w = σw

√
1− ρ21 − ρ22 − 2ρ21ρ2/(1− ρ2). The conversion from days to weeks is encoded in wm(t). Every 7 days, wm

is incremented, i.e. we set wm(t) = b(t − tstart
m )/7c + 1, where tstart

m is the first day of seeding. We keep the AR(2)

process constant over the last 7 days of observations since this is less informed by data due to the lags and also over

the forecast period.

The prior distribution for the shared coefficients were chosen to be

αk ∼ N (0, 0.5), k = 1, . . . , 3, (15)

and the prior distribution for the pooled coefficients were chosen to be

αregion
r,l ∼ N (0, γr), r = 1, . . . , R, l = 1, 2, with γr ∼ N+(0, 0.5), (16)

αstate
m ∼ N (0, γs),m = 1, . . . ,M with γs ∼ N+(0, 0.5). (17)

We estimated parameters jointly for all states in a single hierarchical model. Fitting was done in the probabilistic

programming language Stan[26] using an adaptive Hamiltonian Monte Carlo (HMC) sampler.

5.2 Generated quantities

The effective number of infectious individuals, i∗, on a given day considers how infectious a previously infected

individual is on a given day and includes both asymptotic and symptomatic individuals. It is calculated by first

re-scaling the generation distribution by its maximum, i.e. g∗τ = gτ
maxt gt

. Based on (2), the number of infectious

individuals is then calculated from the number of previously infected individuals, c, using the following:

i∗t,m =
t−1∑
τ=0

iτ,mg
∗
t−τ , (18)

where it,m is the number of new infections on day t in state m.
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A Model regions

We choose 8 regions in our model, see Figure 5. These regions are based on US Census Divisions, modified to account

for coordination between groups of state, see Section 5 for more information.
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Figure 5: Map showing the 8 regions in our model. Great Lakes - Illinois Indiana, Michigan, Minnesota, Ohio

and Wisconsin; Great Plains - Iowa, Kansas, Missouri, Nebraska, North Dakota and South Dakota; Mountain -

Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah and Wyoming; Northeast Corridor - Connecticut,

Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont; Pacific -

Alaska, California, Hawaii, Oregon and Washington; South Atlantic - Delaware, District of Columbia, Florida,

Georgia, Maryland, North Carolina, South Carolina, Virginia and West Virginia; Southern Appalachia - Alabama,

Kentucky, Mississippi and Tennessee; TOLA - Arkansas, Louisiana, Oklahoma, Texas.

B Ratio of reported cases to estimated infections

We compare the weekly moving average of the percentage of reported cases to mean estimated infections for the

time period of the model. We use the same model formulation without cases here to illustrate two points. First, the

percentage is small initially, which is why we do not use cases in the model until 11 May 2020. Second, sufficient

tests are being done towards the end of May so they are informative to our model and we can estimate an infection

ascertainment ratio, see Section 5 for further details. Percentages may be greater than 100% when our model

estimates fewer cases than were reported. This occurs in states with little data.
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Figure 6: Weekly moving average of the percentage of reported cases to mean estimated infections for the time period

of the model.

C State-level Rt values

Figure 7 shows the value of Rt at two points during the epidemic. The first time point is for the week centered on

the date on which each state implemented any emergency decree order such as State of Emergency, Public Health

Emergency, and Public Health Disaster declarations. The second is for the week ending on 01 June 2020.
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Figure 7: State-level estimates of Rt=EmergencyDecree and the average Rt over the week ending 01 June 2020. The

colours indicate regional grouping as shown in Figure 5. We do not include estimates of Rt=EmergencyDecree for

Alaska, Hawaii, Montana, North Dakota, South Dakota, Utah, West Virgina and Wyoming as Emergency Decree

was declared in these states before we start modelling these states.

D Model predictions for all states

State-level estimates of infections, deaths and Rt. Left: daily number of deaths, brown bars are reported deaths,

blue bands are predicted deaths, dark blue 50% credible interval (CI), light blue 95% CI. Middle: daily number of

infections, brown bars are reported infections, blue bands are predicted infections, CIs are same as left. The number

of daily infections estimated by our model drops immediately after an intervention, as we assume that all infected

people become immediately less infectious through the intervention. Afterwards, if the Rt is above 1, the number

of infections will start growing again. Right: time-varying reproduction number Rt dark green 50% CI, light green

95% CI. Icons are interventions shown at the time they occurred.
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E Effect sizes

We plot estimates of the posterior mean effect sizes and 95% credible intervals for each mobility category. The

relative % reduction in Rt metric is interpreted as follows: the larger the percentage, the more Rt decreases, meaning

the disease spreads less; a 100% relative reduction ends disease transmissibility entirely. The smaller the percentage,

the less effect the covariate has on transmissibility. A 0% relative reduction has no effect on Rt and thus no effect

on the transmissibility of the disease, while a negative percent reduction implies an increase in transmissibility.
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Figure 8: Regional average mobility covariate effect size plots assuming mobility stopped entirely (100% reduction

in average mobility).
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Figure 9: Regional intercept covariate effect size plots.
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Figure 10: State-level covariate effect size plots assuming mobility stopped entirely (100% reduction in average

mobility).

F Forecast evaluation

We evaluate three-week ahead model forecasts (days t ∈ {T + 1, . . . , T + 21}) for our model using two metrics. The

first metric is the mean absolute error (MAE), which is given by

MAEt,m =
1

S

S∑
s=1

|ŷst,m − yt,m| , t = T + 1, . . . , T + 21 , (19)

where ŷ1t,m, . . . , ŷSt,m are S posterior predictive samples of daily deaths on day t in country m and yt,m is the observed

value of the corresponding quantity. The continuous ranked probability score (CRPS) is a generalisation of MAE to

probabilistic forecasts and can be estimated using Gneiting and Raftery [27]

CRPSt,m =
1

S

S∑
s=1

|ŷst,m − yt,m| − 1

2S2

S∑
j=1

S∑
k=1

|ŷjt,m − ŷkt,m| , t = T + 1, . . . , T + 21 . (20)
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Figure 11: MAE and CRPS 21 day forecast estimates for three models fit until 1 May, 15 May and 1 June. The blue

ICL model refers to our model and the coral bars refer to the null model.

Figure 11 shows the mean MAE and CRPS for three different forecast periods across all time points and states. In

addition to the forecast results shown in Section 2.4, we also fit our model up to 1 May and 15 May and show the

error in our 21 day forecasts. We compare these forecasts to a simple log-linear “null” model fit to the 31 days of

death data prior to the end dates of our model runs (1 May, 15 May and 1 June) to evaluate our predictions. We

find the MAE and CRPS error were different for models fit up to different dates. Our model fit to 1 May performs

worse than the ”null” model because this model only includes deaths (we only include cases in our model after 11

May, see Appendix B. Our model performs similarly (1 June) or better than the null model (15 May) in both MAE

and CRPS. We include a state-level break down of MAE in Figure 12 and CRPS in Figure 13.

The forecasts were also evaluated using the mean coverage of their 95% and 50% credible intervals. If model

uncertainty is well-calibrated then the observed quantities will fall outside of the 95% credible intervals 5% of the

time and 50% of the time for the 50% credible intervals. Recent work has highlighted that other prominent models

do not meet this criterion, which suggests that their uncertainty estimates are not well-calibrated [28]. The mean

coverage of the 95% credible interval in a time period starting at time t0 with length L is given by

1

L

t0+1+L∑
t=t0+1

1

(
yt,m ∈

[
p2.5({ŷst,m}Ss=1), p97.5({ŷst,m}Ss=1)

])
, (21)

where 1(·) is the indicator function and pz({ŷst,m}Ss=1) is the z-th percentile of the samples on day t in country m.

The mean coverage of the 50% credible interval is

1

L

t0+1+L∑
t=t0+1

1

(
yt,m ∈

[
p25({ŷst,m}Ss=1), p75({ŷst,m}Ss=1)

])
. (22)

The coverage was calculated for each state individually and then the mean across all the 50 state and the District of

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.07.13.20152355doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152355
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hawaii

Texas Louisiana Florida

California Arizona New Mexico Oklahoma Arkansas Mississippi Alabama Georgia South Carolina

Nevada Utah Colorado Kansas Missouri Tennessee Kentucky West Virginia North Carolina Maryland

Oregon Idaho Wyoming Nebraska Iowa Illinois Indiana Ohio Virginia District of Columbia Delaware

Washington Montana North Dakota South Dakota Minnesota Wisconsin Michigan Pennsylvania New Jersey Rhode Island

New York Connecticut Massachusetts

Alaska Vermont New Hampshire Maine

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

1 
M

ay

15
 M

ay

1 
Ju

ne

0

5

10

15

0

10

20

30

0

100

200

300

400

0

10

20

30

0

10

20

30

0.0

0.5

1.0

1.5

0

50

100

150

0

100

200

300

0

5

10

15

20

25

0

50

100

150

0

100

200

300

0

200

400

600

0

25

50

75

100

125

0

50

100

150

0

30

60

90

120

0

20

40

60

80

0

100

200

300

0

20

40

60

0

20

40

60

80

0

50

100

150

0

100

200

300

0

5

10

0

10

20

30

0

5

10

15

20

0

100

200

0

2

4

6

8

0

10

20

30

40

0

100

200

0

25

50

75

100

0

20

40

60

0

5

10

15

20

0

20

40

0

20

40

60

0

20

40

60

0

3

6

9

0

5

10

15

20

0

20

40

60

80

0

5

10

15

20

0

3

6

9

0

20

40

60

0

20

40

60

0

5

10

15

0

2

4

6

8

0

2

4

6

0

10

20

0

10

20

30

0.0

2.5

5.0

7.5

0

1

2

3

4

0.0

2.5

5.0

7.5

10.0

0

25

50

75

100

0.0

0.2

0.4

0.6

P
eo

pl
e Model

ICL

Null

Figure 12: State level 21 day forecast mean absolute error estimates for three models fit until 1 May, 15 May and 1

June. The blue ICL model refers to our model and the coral bars refer to the null model.
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Figure 13: State level 21 day forecast CRPS estimates for three models fit until 1 May, 15 May and 1 June. The

blue ICL model refers to our model and the coral bars refer to the null model.
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Columbia was computed. Again these coverage probabilities were compared with the log-linear ”null” model.
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Figure 14: Coverage probabilities for 21 day forecasts for three models with data fit to 1 May, 15 May and 1 June.

The blue ICL model refers to our model and the coral bars refer to the null model.

These coverage results suggest that both the 95 and 50% credible intervals are well-calibrated for all the models but

best for our model and the null model fit to the 1 June. We hypothesise this is because they include more in data in

the forecast.

G Median absolute percent error

We compared the magnitude of our cumulative death median absolute percent error (MAPE) estimates from our

forecasts from 1 June given in Table 2 with global COVID-19 forecasts found in Friedman et al. [17]. This is not

a parameter we explicitly wanted to forecast but enabled us to compare with other models in literature. Friedman

et al.’s paper included both SEIR type models (IHME – MS SEIR [29], Youyang Gu [30], MIT - DELPHI [31] and

Imperial-LMIC [32]) and dynamic growth rate models (LANL-Growthrate [33]). The forecasts in Friedman et al. [17]

were not all fit to the same date range, but to some point in June and are only presented for the whole of the US

and not to each state specifically. Unlike the models compared by Friedman et al., the MAPE of our cumulative

death forecasts did not increase significantly over time. Our 3 week median cumulative death MAPE across all states

(9.9%) was similar to the US estimate from Friedman et al. (4.1-8.6 excluding the Imperial-LMIC model which was

not calibrated for high income settings and never meant to be used for the US), but the magnitude was slightly

higher in our forecasts for some states, in particular Alaska and Wyoming, which were the last two states to reach

10 cumulative deaths and so had the least data in our models.
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Table 2: State level 1 week, 2 week and 3 week median absolute percentage error (MAPE) from our cumulative death

forecasts fitted until 1 June.

State 1 week 2 weeks 3 weeks

Alabama 7.8% 8.1% 9.1%

Alaska 75.0% 66.7% 50.0%

Arizona 9.1% 13.5% 17.4%

Arkansas 9.7% 10.4% 13.7%

California 7.4% 8.4% 10.0%

Colorado 7.1% 7.1% 7.1%

Connecticut 7.4% 7.4% 7.4%

Delaware 8.3% 8.3% 8.3%

District of Columbia 8.6% 8.3% 8.4%

Florida 8.5% 10.3% 12.9%

Georgia 6.6% 8.8% 10.2%

Hawaii 29.4% 29.4% 29.4%

Idaho 15.5% 13.6% 14.4%

Illinois 8.4% 8.9% 9.9%

Indiana 8.6% 9.4% 10.8%

Iowa 8.6% 8.2% 7.9%

Kansas 11.7% 11.4% 11.2%

Kentucky 8.1% 8.0% 7.9%

Louisiana 7.7% 7.7% 8.1%

Maine 13.1% 11.9% 11.8%

Maryland 7.6% 7.7% 7.9%

Massachusetts 7.6% 7.6% 7.3%

Michigan 7.8% 7.7% 7.7%

Minnesota 8.9% 9.8% 9.7%

Mississippi 9.3% 9.4% 11.7%

Missouri 7.6% 8.2% 10.3%

Montana 33.3% 31.6% 33.3%

Nebraska 11.1% 10.4% 10.4%

Nevada 9.0% 8.8% 8.9%

New Hampshire 11.5% 15.3% 16.2%

New Jersey 8.1% 8.0% 8.0%

New Mexico 10.5% 12.7% 14.5%

New York 7.8% 7.9% 7.9%

North Carolina 8.2% 8.0% 8.2%

North Dakota 13.9% 13.5% 13.0%

Ohio 7.5% 8.2% 8.9%

Oklahoma 8.6% 8.3% 8.1%

Oregon 9.8% 11.1% 12.0%

Pennsylvania 8.1% 8.9% 9.4%

Rhode Island 8.3% 8.8% 10.6%

South Carolina 8.4% 8.6% 9.4%

South Dakota 17.2% 13.5% 13.8%

Tennessee 8.3% 8.0% 9.4%

Texas 6.9% 7.3% 9.2%

Utah 11.6% 10.8% 11.7%

Vermont 16.1% 16.1% 15.8%

Virginia 7.5% 7.7% 8.6%

Washington 7.3% 7.6% 8.3%

West Virginia 14.3% 13.6% 15.7%

Wisconsin 8.3% 8.2% 8.4%

Wyoming 33.3% 31.2% 33.3%

Median 8.5% 8.8% 9.9%
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H Mobility trends

In Figure 15 we show the Google mobility trends [4] across the 50 states of the US and the District of Columbia. In

our model, we use the time spent at one’s residence and the number of visits to grocery stores, pharmacies, recreation

centres, and workplaces. Our regions are based on US Census Divisions, modified to account for coordination between

groups of state governments [25]. These trends are relative to a state-dependent baseline, which was calculated

shortly before the COVID-19 epidemic. For example, a value of −20% in the average trend means that individuals,

on average, are visiting 20% less shops, recreation places and workplaces than before the epidemic. We overlay the

timing of two major state-wide NPIs (stay at home and emergency decree) on Figure 15 (see [21] for details). We

note intuitive changes in mobility such as the spike on 11th and 12th April for Easter.
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Figure 15: Comparison of mobility data from Google with government interventions for the 50 states and the District

of Columbia. The solid lines show average mobility (across categories “retail & recreation”, “grocery & pharmacy”,

“workplaces”) and the dotted lines show “residential”. Intervention dates are indicated by shapes as shown in the

legend; see Section 4 for more information about the interventions implemented. There is a strong correlation between

the onset of interventions and reductions in mobility.

I Mobility regression analysis

In Figure 16 we regressed NPIs against average mobility. We parameterised NPIs as piece-wise constant functions that

are zero when the intervention has not been implemented and one when it has. We evaluated the correlation between
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the predictions from the linear model and the actual average mobility. We also lagged the timing of interventions

and investigate its impact on predicted correlation. We observed reduced correlation when lagging (forward and

backwards) the timing of NPIs, which suggested an immediate impact on mobility.
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Figure 16: Mobility regression analysis.

J Comparison of model attack rates with and without interventions in

the model

We show in Figure 17 that there is little difference between the attack rates for two models where we include the

”Stay at Home” intervention in our model as well and when we just use mobility. We, therefore, choose the mobility

only model to limit the numbers of parameters we are fitting.
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Figure 17: Mobility regression analysis.

K State-specific weekly effects

Our model includes a state-specific weekly effect εw,m (see equations 12, 14) for each week w in the epidemic period

for a state. As described in Section 5, we assign an autoregressive process with mean 0 as prior to this effect.

Figure 20 shows the posterior of this effect on the same scale as in Figure 3, that is, the percent reduction in Rt

with mobility variables held constant4. Values above 0 have the interpretation that the state-specific weekly effect

lowers the reproduction number Rt,m, i.e. transmission for week t and state m is lower than what is explained by the

mobility covariates.
4Draws from the posterior are transformed with 1 − f(−εm,wm(t)), where f(x) = 2 exp(x)/(1 + exp(x)) is twice the inverse logit

function.
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Figure 18: Percent reduction in Rt due to the weekly, state-level autoregressive effect.

In Figure 19, we compare the different terms contributing to Rt, as explained by equation (12), for three example

states. We choose New York, Montana and Washington for our vignettes because the autoregressive (purple) trend

behave differently in these states. In New York, the autoregressive term increases Rt before lockdown, which we

hypothesise corresponds to importations and new seeding events from Europe driving transmission. Then the autore-

gressive term decreases as social distancing, mask wearing and handwashing are implemented along side behavioural

changes. In contrast, the autoregressive term reduces Rt at the start in Montana and the mobility trends remain very

flat, adding some weight to the hypothesis of importations. This could reflect the low density of that state and the

correspondingly long distances between where people live, along with behavioural changes. The autoregressive term

remains mostly constant in Washington, in line with the states early and effective epidemic response, and suggests

that mobility is sufficient to capture the behaviour there.
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Figure 19: Comparison of different contributors to Rt for New York, Montana and Washington. Here we consider

all the contributions given in equation (12) - they grey solid line shows the posterior mean estimate of Rt and the

coloured lines show the contributions from the other terms. The colour denotes pooling level and the line type the

mobility type where appropriate. Note the inverse logit transformation means these terms are not additive and each

line, apart from the overall trend, is calculated by assuming all the other terms in equation (12) are zero.
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L Comparison of Rt estimations

We compare our Rt estimates on 01 June 2020 with estimates made by rt.live [14]. Overall, our estimates were

weakly correlated (ρ = 0.42)with both of us estimating Rt > 1 in 23 states (red points) including Montana and

Alaska. However, the rt.live estimates are slightly more pessimistic because they predict Rt > 1 in 10 states where

we predict Rt < 1 (blue points). In contrast we predict Rt > 1 in 5 states where they predict Rt < 1 (green points).
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Figure 20: Comparison of our and rt.live [14] Rt estimates. Colours are used to indicate groupings if each model

predicted Rt > 1. Standard 2 letter state codes are used as labels- Alabama AL, Alaska AK, Arizona AZ, Arkansas

AR, California CA, Colorado CO, District of Columbia DC, Connecticut CT, Delaware DE, Florida FL, Georgia GA,

Hawaii HI, Idaho ID, Illinois IL, Indiana IN, Iowa IA, Kansas KS, Kentucky KY, Louisiana LA, Maine ME, Maryland

MD, Massachusetts MA, Michigan MI, Minnesota MN, Mississippi MS, Missouri MO, Montana MT, Nebraska NE,

Nevada NV, New Hampshire NH, New Jersey NJ, New Mexico NM, New York NY, North Carolina NC, North

Dakota ND, Ohio OH, Oklahoma OK, Oregon OR, Pennsylvania PA, Rhode Island RI, South Carolina SC, South

Dakota SD, Tennessee TN, Texas TX, Utah UT, Vermont VT, Virginia VA, Washington WA, West Virginia WV,

Wisconsin WI and Wyoming WY.
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M Sensitivity analysis to infection fatality ratio

Geographic-specific contact surveys are important for calculating the weighted IFR values according to the methods

in [22, 23]. There is no large-scale cross-generational contact survey, similar to the polymod survey [11], implemented

in the USA. Therefore, it was important to understand if the model was robust to changes in the underlying contact

survey. We calculated the IFRs using three different contact matrices: UK, France and Netherlands. We believe

that the USA is culturally closest to that UK out of those countries we had contact matrices for, but also considered

France where we saw the greatest mixing of the elderly and the Netherlands which showed the average behaviour of

the European studies used in [23]. We found that the IFR, calculated for each state using the three contact matrices,

lay within the posterior of IFR in our model (Figure 21). We also noted that our results remained approximately

constant when using the IFR calculated from the three different contact matrices as the mean of the prior IFR in

out model, see Section 5.

Since we are using the same contact matrix across all the states, the differences in IFR are due to the population

demographics and not due to differential contacts. The low IFR in Texas and Utah reflects the younger population

there whereas the higher IFR in Florida and Maine is due to the older population. This is a limitation of our methods.
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Figure 21: Sensitivity analysis for IFR. The red, green and blue dots show the IFR values calculated according

to [22, 23] using the French, Dutch and and UK contact matrices respectively. The purple dot shows the mean of

our posterior estimates for the IFR run using the UK contact matrix estimate and the purple error shows the 95%

credible intervals of the distribution.
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