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List of abbreviations
ALP Alkaline Phosphatase
ALT Alanine Aminotransferase
ANGPOC Anion gap
AST Aspartate Aminotransferase
AUC Area under the curve
BA Basophils count (%)
BAT Basophils count
BEEPOC Actual Base Excess
BEPOC Base Excess
BICPOC Bicarbonates
BILD Direct Bilirubin
BILIN Indirect Bilirubin
BILT Total Bilirubin
BISPOC Standard Calculated Bicarbonates
BO2POC Bound O2 Maximum Concentration
CA Calcium
CAPOC Ionized Calcium (POC)
CASPOC Standard Ionized Calcium (POC)
CBC complete blood count
CK Creatine kinase
CLPOC Chloride (POC)
CO2POC Carbonic Anhydride (pCO2)
CREA Creatinine
CRP C-reactive Protein
CT computed tomography 
CTOPOC Total Oxygen
ED emergency department
EO Eosinophils count (%)
EOT Eosinophils count
FCOPOC Carboxyhemoglobin
FG Fibrinogen
FIOPOC Inspired Oxygen Fraction
FO2POC Oxyhemoglobin / Total Hemoglobin
GGT Gamma Glutamyltransferase
GLU Glucose
GLUEM
O Glucose Blood Gas

HCT Hematocrit
HCTPOC Hematocrit (POC)
HGB Hemoglobin
HHBPOC Deoxyhemoglobin
IL6 Interleukin 6
IOG Istituto Ortopedico Galeazzi
K Potassium

Page 9 of 44

https://mc.manuscriptcentral.com/cclm

Clinical Chemistry and Laboratory Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.20205070doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20205070
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Review Only

3

KNN k-nearest neighbors
KPOC Potassium (POC)
LATPOC Lactate (POC)
LDH Lactate Dehydrogenase
LR logistic regression
LY Lymphocytes count (%)
LYT Lymphocytes count
MCH Mean Corpuscolar Hemoglobin
MCHC Mean Corpuscolar Hemoglobin Concentration
MCV Average Globular Volume
METPOC Methemoglobin
ML machine learning
MO Monocytes count (%)
MOT Monocytes count
MPV Average Platelet Volume
NA Sodium
NAPOC Sodium (POC)
NB Naive Bayes
NE Neutrophils count (%)
NET Neutrophils count
NPV Negative predictive Value
OFIPOC Inspired O2 / O2 ratio
OSR Ospedale San Raffaele
PCR Polymerase Chain Reaction
PHPOC pH
PLT Platelets
PO2POC Oxygen (pO2)
PPTR Activated partial thromboplastin time ( R )
PPV positive predictive value
PROBNP NT-proB-type Natriuretic Peptide
PTINR Prothrombin Time (INR)
rRT-PCR reverse transcription polymerase chain reaction 
RBC Red Blood Cells
RDW Erythrocyte distribution width
RF random forest
ROC receiver operating characteristic 
RT-PCR reverse transcriptase–PCR 
SO2POC O2 Saturation
SVM support vector machine
THBPOC Total Oxyhemoglobin
TROPOT Troponin T
UREA Urea
WBC White blood cells
XDP D-Dimer
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1 Abstract
2 Background The rRT-PCR test, the current gold standard for the detection of coronavirus disease (COVID-19), 

3 presents with known shortcomings, such as long turnaround time, potential shortage of reagents, false-negative 

4 rates around 15–20%, and expensive equipment. The hematochemical values of routine blood exams could 

5 represent a faster and less expensive alternative.

6 Methods Three different training data set of hematochemical values from 1,624 patients (52% COVID-19 

7 positive), admitted at San Raphael Hospital (OSR) from February to May 2020, were used for developing machine 

8 learning (ML) models: the complete OSR dataset (72 features: complete blood count (CBC), biochemical, 

9 coagulation, hemogasanalysis and CO-Oxymetry values, age, sex and specific symptoms at triage) and two sub-

10 datasets (COVID-specific and CBC dataset, 32 and 21 features respectively). 58 cases (50% COVID-19 positive) 

11 from another hospital, and 54 negative patients collected in 2018 at OSR, were used for internal-external and 

12 external validation.

13 Results We developed five ML models: for the complete OSR dataset, the area under the receiver operating 

14 characteristic curve (AUC) for the algorithms ranged from 0.83 to 0.90; for the COVID-specific dataset from 0.83 

15 to 0.87; and for the CBC dataset from 0.74 to 0.86. The validations also achieved good results: respectively, AUC 

16 from 0.75 to 0.78; and specificity from 0.92 to 0.96.

17 Conclusions ML can be applied to blood tests as both an adjunct and alternative method to rRT-PCR for the fast 

18 and cost-effective identification of COVID-19-positive patients. This is especially useful in developing countries, 

19 or in countries facing an increase in contagions.
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1 Introduction
2 To date, at eight months post-outbreak, the coronavirus disease (COVID-19) caused by the SARS-CoV-2 

3 coronavirus has infected more than 20 million people and has resulted in approximately one million deaths 

4 worldwide. To manage this unprecedented pandemic emergency, the early identification of patients and of 

5 infectious people is extremely important due to the fact that this disease, unlike others caused by coronaviruses 

6 (e.g. SARS, MERS), can coexist in a host organism without causing any symptoms, or it can produce very mild 

7 and non-characteristic symptoms in—nevertheless—infectious subjects (1). To identify SARS-CoV-2 infections, 

8 the instrument of choice, or the gold standard, is the molecular test performed using the reverse polymerase chain 

9 reaction (PCR) or the reverse transcriptase–PCR (RT-PCR) technique. However, the execution of the test is time-

10 consuming (at no less than 4–5 hours under optimal conditions), requires the use of special equipment and reagents, 

11 the involvement of specialized and trained personnel for the collection of the samples, and relies on the proper 

12 genetic conservation of the RNA sequences that are selected for annealing the primers (2). In addition, for these 

13 pre-analytical vulnerabilities (3), the RT-PCR test’s accuracy, and especially its sensitivity (i.e. its ability to avoid 

14 false negatives), is far from ideal. A recently published article in the New England Journal of Medicine suggests 

15 that a reasonable estimate for the sensitivity of this test is 70% (4).

16 To improve our diagnostic capabilities, in order to contain the spread of the pandemic, the data science community 

17 has proposed several machine learning (ML) models, recently reviewed in (5). Most of these models are based on 

18 computed tomography (CT) scans or chest x-rays (5–9). Despite the reported promising results, some concerns 

19 have been raised regarding these and other works, especially in regard to solutions based on chest x-rays, which 

20 have been associated with high rates of false-negative results (10). On the other hand, solutions based on CT 

21 imaging, although accurate, are affected by the characteristics of this modality: CTs are costly, time-consuming, 

22 and require specialized equipment; thus, approaches based on this imaging technique cannot reasonably be applied 

23 for screening exams. Although various clinical studies (11–13) have highlighted how blood test-based diagnostics 

24 might provide an effective and low-cost alternative for the early detection of COVID-19 cases, relatively few ML 

25 models have been applied to hematological parameters (14–18). 

26 To overcome the above limitations, and following a successful feasibility study performed on a smaller dataset 

27 (19), we developed different classification models by applying ML techniques to blood-test results that are 

28 generally available in clinical practice within minutes (under emergency conditions, at even less than 15 minutes) 

29 and are only a fraction of the cost of the RT-PCR test and CT imaging (i.e. a few euros). As we will show, routine 

30 blood tests can be exploited by our method to diagnose COVID-19 patients in low-resource settings, in particular, 

31 where there is a shortage of RT-PCR reagents, such as during a pandemic peak. On the other hand, the developed 

32 method can also be used as a complement to the RT-PCR test in order to increase the sensitivity of the latter or to 
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1 provide its interpreters a sort of pre-test probability to compute NPV and PPV. Furthermore, the rapid blood-test 

2 results could be a valuable—although non-conclusive—indication for the early identification of COVID-19 

3 patients, resulting in their better management/isolation while waiting for the gold standard results.

4

5 Methods

6 In this section, we describe the datasets and statistical methods used to train and validate the ML models. The 

7 reporting follows the TRIPOD Guideline for Model Development and Validation (20). The study protocol 

8 (BIGDATA-COVID19) was approved by the Institutional Ethical Review Board in agreement with the World 

9 Medical Association Declaration of Helsinki. 

10 Data Description

11 OSR dataset

12 The main dataset used for this study (the OSR dataset) consisted of routine blood-test results performed on 1,925 

13 patients on admission to the ED at the San Raffaele Hospital (OSR) from February 19, 2020, to May 31, 2020. In 

14 order to control for potentially confounding pathologies and other sources of bias, such as insufficient data 

15 availability, in ML development, 301 (15.6%) patients, admitted between February and April, were excluded from 

16 further analysis. All patients admitted during May 2020, on the other hand, were considered for the study, to have 

17 a balanced number of patients also from the late portions of the time frame considered. 

18 For each case, COVID-19 positivity was determined based on the result of the molecular test for SARS-CoV-2 

19 performed by RT-PCR on nasopharyngeal swabs. On a set of 165 uncertain cases, we also used the result of chest 

20 radiography and x-rays to improve over the sensitivity of the RT-PCR test (21–24). Uncertain cases were identified 

21 through two different methods: either patients who resulted positive within 72 hours after a first negative test 

22 and were admitted as inpatients despite this test result; or patients who, despite having a negative test, had an 

23 hematochemical profile more similar to positive patients, as determined through multi-variate clustering based 

24 on a set of COVID-19 characteristic biomarkers (12) (AST, lymphocytes, calcium, LDH, PCR, WBC, XDP, 

25 Fibrinogen). Of the 165 uncertain cases, only 52 of them have been considered as positive after comparison with 

26 the radiologic gold standard, while the remaining 113 were considered as negative (having a double negative 

27 test from both the RT-PCR and the radiologic gold standard): this results in an estimate of 93% sensitivity of the 

28 RT-PCR with respect to the composite ground truth.
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1 Therefore, the OSR dataset consisted of a total of 1,624 cases: 786 of them received a positive diagnosis (48%) 

2 and 838 were negative cases (52%). 

3 As covariate features, for each case, the patient’s age and gender, the presence of COVID-19 related 

4 symptomatology at admission (dyspnea, pneumonia, pyrexia, sore throat, influenza, cough, pharyngitis, bronchitis, 

5 generalized illness), and a set of 69 hematochemical values from laboratory tests were considered. The list of the 

6 analytes and instruments are reported in Table 1. The laboratory blood tests were performed according to the 

7 International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) recommendations (25). 

8 The demographic and clinical characteristics of the two different groups of COVID-19 patients are summarized in 

9 Figure 1 and Figure 2.

10 The missing data rate for each of the examined features is reported in Table 1. In order to reduce the bias due to 

11 imputation, we discarded all the features with a missing data rate greater than 75%. Thus, among the 1,624 cases 

12 in the OSR dataset, 1,189 (73%) cases had at least 75% of the attributes; while 1,324 (82%) cases had complete 

13 data for the CBC features.

14 From the complete OSR dataset, we obtained two other datasets by selecting two relevant subsets of the features 

15 (thus, the three datasets share the same set of patients):

16 1 A dataset consisting of the 34 features under the column header “COVID-specific features” (see Table 1), 

17 denoted as the COVID-specific dataset.

18 2 A dataset consisting of the 21 features under the column header “CBC features” (see Table 1), denoted as 

19 the CBC dataset.

20 External datasets

21 In addition to the previously described datasets, all obtained from the OSR dataset, we considered two external 

22 datasets for the internal–external validation and for the external validation of the models. 

23 The first dataset, the Istituto Ortopedico Galeazzi (IOG) dataset, was obtained from blood samples collected at the 

24 ED of the IOG of Milan between March 5, 2020, and May 26, 2020, and encompassed the parameters under the 

25 “COVID-specific features” column header (see Table 1). Notably, this hospital specializes in the diagnosis and 

26 treatment of musculoskeletal disorders and was not considered a destination of choice during the acute phase of 

27 the pandemic in the Milan area. Therefore, the patients were presumably of a different severity and were admitted 

28 for other reasons than pulmonary conditions with respect to OSR. The IOG dataset consisted of a total of 58 cases, 

29 29 with negative swab results and 29 with positive swab results, and with the same features as the COVID-specific 

30 dataset. For the IOG and OSR, different instruments were used for the CBC and biochemical parameters; in 

31 particular, the iSysmex XN-2000 system was used instead of the Sysmex XE 2100 system for CBC counts and the 
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1 Atellica® CH Analyzer (Siemens Healthineers) was used instead of the Roche COBAS 6000 system for the 

2 biochemical parameters.

3 The second dataset (the 2018 dataset) was obtained from blood samples collected at the OSR in November 2018 

4 from 54 randomly chosen patients. These were obviously negative for COVID-19: 20 (37%) of them were 

5 specifically chosen to act as confounding cases, as they exhibited pneumonia-like symptoms. 

6 Machine Learning Experimental Design

7 We implemented a four-step pipeline for ML model development encompassing imputation, data normalization, 

8 feature selection, and classification. The data analysis pipeline was implemented in Python (version 3.7), using 

9 the numpy (version 1.19), pandas (version 1.1) and scikit-learn (version 0.23) libraries. For imputation, the 

10 multivariate k-nearest neighbors algorithm was used (26), with k = 5. For feature-selection, the recursive feature-

11 elimination algorithm was used (27). The optimal features to select were determined through hyper-parameter 

12 optimization. For classification we evaluated five different algorithms: Random Forest (RF) , naive Bayes (NB), 

13 logistic regression (LR), support vector machine (SVM) , and k-nearest neighbors (KNN). We specifically 

14 evaluated these algorithms as all have been shown to achieve state-of-the-art performance on tabular data (28) 

15 and, at least to some degree (for example using feature-attribution methods), interpretable (29). The hyper-

16 parameters of the different classification algorithms are reported in Suppl. Table 1. All hyper-parameters were 

17 optimized automatically using a grid search approach.

18 In regard to model selection, training and evaluation, we performed a two-step procedure to minimize the risk of 

19 over-fitting: first, the dataset was split into a training set (80% of the instances) and a hold-out test set (20% of the 

20 instances), using a stratified procedure; second, hyper-parameter optimization was performed (on the training set) 

21 through 5-fold stratified cross-validation grid search and using AUC as reference measure; third, the models were 

22 trained and calibrated on the whole training set; finally, the calibrated models were evaluated on the hold-out test 

23 set in terms of accuracy, sensitivity, specificity, AUC, and the Brier score (30) (a standard metric to measure the 

24 models’ calibration, with a lower score being better). In all stages of model development, the randomization was 

25 controlled in order to ensure repeatability of the experiments.

26 For each model class, we considered two versions: a standard one, and the three-way version (a model that abstains 

27 from prediction when the confidence score is below 75%) (31). For each of these two versions, the model selection, 

28 training and evaluation pipeline was implemented for each of the three datasets mentioned above (the OSR dataset, 

29 COVID-specific dataset, and CBC dataset).

30 The IOG dataset and the 2018 dataset were used, respectively, for the internal–external and external validation of 

31 the models developed for the COVID-specific dataset and the CBC dataset.
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1 The internal–external validation procedure—the purpose of which was to evaluate the models’ ability to generalize 

2 to a new setting when provided with a limited quantity of new data—was implemented using a bootstrap-based 

3 approach (see Supplementary Materials - Implementation of the Internal-External Validation).

4 The external validation procedure—the purpose of which was to test both the specificity of the developed models 

5 and their ability to identify potential suspect cases—was implemented by training the best models found for the 

6 COVID-specific dataset (respectively, the CBC dataset) on the combined dataset that also consisted of the IOG 

7 dataset and then evaluating the trained models against the 2018 dataset.

8 The combined dataset consisting of the COVID-specific (respectively, the CBC dataset) and the IOG datasets were 

9 also used to evaluate the sensitivity and specificity for symptomatic and asymptomatic patients separately: in this 

10 case, the models were retrained after deletion of the Suspect feature (to avoid bias) and the re-trained models were 

11 then evaluated on symptomatic and asymptomatic patients (both from the test set) separately.

12

13 Results

14 The results of the ML models on the three datasets (OSR, COVID-specific, CBC) are reported in Table 2.

15

16 The receiver operating characteristic (ROC) curves of the best model (in terms of the highest AUC) for each of 

17 the three datasets is reported in Figure 3. The ROC curves for all models (on each of the three datasets) are reported 

18 in Suppl. Figures 1, 2 and 3. The feature importance scores—which were computed in order to enable the 

19 interpretability of the developed models— are reported in Figure 4 and in Suppl. Figure 13 for the best model of 

20 each of the three datasets. The positive predictive value (PPV)-sensitivity curves are reported in Suppl. Figures 4, 

21 5 and 6, while the calibration curves are reported in Suppl. Figures 7, 8, and 9, and the PPV/NPV prevalence 

22 curves are reported in Suppl. Figures 10, 11 and 12.

23

24 The results for the internal–external validation and the external validation (specificity only) procedures are 

25 reported in Table 3. In this table we highlight the results of the models that obtained the best performance in the 

26 internal validation (KNN for the COVID-specific dataset; and both KNN and RF for the CBC dataset). 

27 Specifically, in the first 4 columns we report the results of the internal-external validation (in terms of accuracy, 

28 sensitivity, specificity and AUC), while in the last column we report the results of the external validation (in terms 
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1 of specificity). In Table 3, we also report on the performance of the models for asymptomatic patients and 

2 symptomatic patients, as described in the Methods section.

3

4 Discussion

5 The unprecedented worldwide public health emergency caused by the COVID-19 pandemic has motivated 

6 different research groups to develop ML applications with the aim of automating—at least partially—the diagnosis 

7 or screening of COVID-19. 

8 Nonetheless, only a few studies have focused on the development of ML models based on routine blood exams. 

9 Formica et al.(13) developed a CBC-based ML model, reporting 83% sensitivity and 82% specificity; however, 

10 the analysis was based on a small sample (171 patients) collected in a limited time frame (between March 7 and 

11 March 19, 2020). Banerjee et al. (32) applied ML methods to a public dataset of CBC data encompassing 598 

12 cases of which only 39 cases were COVID-19 positive; the authors report good specificity (91%) but very low 

13 sensitivity (43%), thus making the proposed model unsuitable for early detection tasks. Further, this work presents 

14 some major limitations affecting replicability and generalizability, as the authors do not provide any information 

15 regarding how the values of the considered features were measured (analytical instruments, analytical principle, 

16 and units of measurement). Avila et al. (33) used the same dataset considered in (32) to develop a Bayesian model, 

17 reporting 76.7% sensitivity and specificity. Notably, the authors report a number of complete instances (510) 

18 which is different from that reported in (32). Joshi et al. (34) developed a logistic regression model trained using 

19 CBC data on a dataset of 380 cases, reporting good sensitivity (93%) but low specificity (43%). 

20 More in general, a recent critical survey (5) raised some concerns about these and other evaluated studies  (most 

21 of which have not yet undergone peer-review), noting the possibility of high rates of bias and over-fitting, and 

22 little compliance with reporting and replication guidelines (18).

23 Finally, a recent study Yang et al. (35), considered the development of a Gradient Boosting model on a set of 3,356 

24 patients (42% COVID-19 positive) using a set of 27 parameters encompassing both blood count and biochemical 

25 parameters, achieving 0.85 AUC, and also reporting a comparable result (AUC 0.84) for validation on an external 

26 dataset. This work can be viewed as similar but complementary with respect to the results that we report, both in 

27 terms of considered features and used laboratory instrumentation (the authors used the UniCel DXH 800 analyzer 

28 for the CBC features, and Siemens ADVIA XPT analyzers for biochemical parameters). Indeed, compared with 

29 the parameters considered in this study, the authors of (35) considered albumin, total protein, magnesium, ferritin 

30 and globulin; but lacked a set of parameters (some of which known to be significantly altered in COVID-19 

31 patients), such as creatinine (CREA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), Gamma-
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1 glutamyl transferase (GGT), Creatin-kinase (CK), Potassium (K), Interleukin 6 (IL6), NT-proB-type Natriuretic 

2 Peptide (ProBNP), total (BilT) and direct (BilD) Bilirubin, all coagulation tests, hemogasanalysis and CO-

3 Oxymetry parameters. We think that this complementarity in the two studies could lend support to the usefulness 

4 of blood tests as an alternative approach for COVID-19 diagnosis. 

5 To overcome the limitations of the above models, we applied the ML methodology to routine blood examination 

6 outcomes, which are usually available for inpatients and for patients admitted to the ED in shorter time frames and 

7 at much lower cost than both molecular tests and radiological exams. In this endeavor, we addressed three subtasks: 

8 1) detecting COVID-19 from a full battery of hematochemical tests, commonly collected from suspected 

9 respiratory tract disease patients (OSR dataset); 2) detecting COVID-19 from only a restricted subset of parameters 

10 known to be altered in COVID-19 patients (COVID-specific dataset); and 3) detecting COVID-19 from a very 

11 small subset of hematological parameters (CBC and the WBC differential) representing the basic routine blood 

12 examinations, usually also available in low-resource settings (CBC dataset). For each of the datasets described 

13 above, we applied five different models that were selected from among those that are more frequently adopted in 

14 medical ML. 

15 These models achieve COVID-19 detection in different ways and exhibit good performance, although they are 

16 associated with different sensitivities and specificities. This makes them good candidates for embedding in an 

17 online service (which we are currently developing) in which doctors can specify their preferences (with respect to 

18 greater sensitivity, greater specificity, or a balanced performance (36) and needs according to their diagnostic 

19 purpose (i.e., screening, triage, or a secondary diagnosis), and thus gain an indication from the optimal model. In 

20 addition, the users can decide whether they want an indication from the system—irrespective of the confidence in 

21 the advice given—or if they would prefer only to be advised about high-confidence indications, as the three-way 

22 approach allows for. This approach was specifically developed to mitigate the risk of automation bias and the odds 

23 of machine-induced errors (31).

24 With respect to the patterns used to discriminate between positive and negative cases, the ML models identified, 

25 as the most predictive features, those parameters that are known to be significantly altered in COVID-19 patients 

26 (5,37-38) (see Figure 4 and Suppl. Figure 13). For instance, when applied to the OSR and COVID-specific datasets, 

27 the models identify lactate dehydrogenase (LDH), AST, C-reactive protein (CRP), and calcium as the most 

28 important features, while all the models also reported WBC and its corresponding differential as important. Also 

29 the patients’ age was reported by the models to be a significant predictor, which is consistent with the literature 

30 (5), where it was also found to be a significant predictor not only for prognostic, but also for diagnostic tasks. 

31 Notably, fibrinogen and cross-linked fibrin degradation products (XDPs), known to be associated with COVID-

32 19 severity (39), were also considered by the model as being among the most important features when applied to 

33 the OSR dataset.

Page 18 of 44

https://mc.manuscriptcentral.com/cclm

Clinical Chemistry and Laboratory Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.20205070doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20205070
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Review Only

9

1 With respect to the calibration of the developed models, the good internal calibration of the models can be 

2 confirmed by the calibration curves in Suppl. Figures 7–9.

3 As can be seen in Table 3, the internal–external validation and the external validation procedures also achieved 

4 good results. In this respect, it is important to note that the validation procedures involved blood tests performed 

5 on different types of analytical instrumentation for the clinical chemistry tests (Siemens instead of Roche), 

6 although the CBC standardization was less problematic than the other tests. For this reason, as ML models exhibit 

7 poor performance when considering out-of-distribution samples (40), the goal of the internal–external validation 

8 process was to assess the capability of the models to generalize across different settings. All of the models showed 

9 good performance and, more specifically, good specificity. The models achieved good performances in 

10 symptomatic patients (with both the sensitivity and specificity at approximately 80%) and they performed even 

11 better in terms of specificity in asymptomatic patients (100% specificity), although the sensitivity was as low as 

12 50% (see Table 3). Nevertheless, considering that the developed ML-based tests were based on low-cost and rapid 

13 blood-test examinations, the reported values can be considered good enough, specifically in regard to screening 

14 (16).

15 The external validation procedure also achieved very good results (at around 95% for all models in the standard 

16 version), but it should be noted that this only relates to COVID-19-negative patients, and hence, to specificity. 

17 Notably, in the external validation process, all five patients for which the models failed had symptoms that were 

18 compatible with COVID-19 disease. 

19 As hinted at above, the outputs from our models can be used in different scenarios. They could be used together 

20 and combined with the molecular test to obtain a compound test with higher accuracy, and, most importantly, 

21 higher sensitivity regarding suspected cases, thus allowing for the identification of a larger number of COVID-19-

22 positive patients so that they can be isolated and treated in a timely manner. Indeed, we can see in Table 3 that the 

23 sensitivity in symptomatic patients is adequate for this type of use. In the same vein, the models’ outputs could be 

24 used while waiting for the results from other tests, allowing for the timely and prudent management of suspected 

25 COVID patients, or in screening and pool-testing scenarios (41) where low accuracy is not a critical problem if a 

26 test such as a CBC can be performed frequently (42). In Table 3 we can see that the model that was defined based 

27 on the smallest dataset (the CBC dataset) reaches 100% specificity in asymptomatic patients. Consequently, we 

28 are planning to use our model for epidemiological purposes on the blood donor population to estimate the 

29 prevalence of the condition in the asymptomatic population. On the other hand, the scenarios in which the results 

30 from our models replace those of the molecular tests address an emergency need, especially if the time to obtain 

31 the molecular test results is too long (due to a high demand for such tests in an outbreak area), if there is a shortage 

32 of materials (swabs or reagents) for any supply problem, or in poor health contexts or in contexts where there are 

33 serious structural deficiencies (such as in some developing countries or in a geographical area that is, in the 
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1 meantime, affected by other socio-sanitary and humanitarian emergencies). In these situations where resources are 

2 limited and population-wide testing cannot be performed, CBC-based scores may help to pre-evaluate patients and 

3 activate COVID-19-specific pathways and molecular testing for patients with high scores independent of symptom 

4 severity. In the presence of suspected COVID-19 cases and high scores, logistical management can promptly 

5 activate isolation procedures (43).

6

7 Conclusion

8 All things considered, the ML models that we presented in this article achieved a performance that is comparable, 

9 although inferior, to RT-PCR (4), which is the current gold standard for COVID-19 diagnosis. Nevertheless, 

10 although our models are less accurate, they aim to be an additional tool available among those that, being much 

11 faster and cheaper than the current diagnostic reference tests, can be used for the screening of whole populations. 

12 This use can facilitate the shift in testing strategy that, grounding on a faster, although less accurate, identification 

13 of infected individuals, is said to have a positive potential in slowing the virus' spread and contributing for the safe 

14 reopening of schools and workplaces (44).

15
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1 Figure captions
2
3 Figure 1. Demographic feature (gender and age) distributions for positive and negative cases. The blue and orange 
4 areas correspond to negative and positive cases, respectively.
5
6 Figure 2. Violin plots depicting the distributions of eight relevant features in the OSR dataset (selected for their 
7 predictivity toward COVID-19). The blue and orange areas correspond to negative and positive cases, respectively.

8
9 Figure 3. Receiver operating characteristic curves for the best models (in terms of AUC), for each of the three 

10 considered datasets (OSR, COVID-specific, CBC). For the CBC dataset we report the ROC curve for both RF and 
11 KNN as they had equal AUC (see Table 2).

12

13 Figure 4. Feature importance scores for the random forest algorithm trained using the OSR dataset (on the left) 
14 and the k-nearest neighbors’ algorithm trained using the COVID-specific dataset (on the right).

15
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Figure 1. Demographic feature (gender and age) distributions for positive and negative cases. The blue and 
orange areas correspond to negative and positive cases, respectively 
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Figure 2. Violin plots depicting the distributions of eight relevant features in the OSR dataset (selected for 
their predictivity toward COVID-19). The blue and orange areas correspond to negative and positive cases, 

respectively. 
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Figure 3. Receiver operating characteristic curves for the best models (in terms of AUC), for each of the 
three considered datasets (OSR, COVID-specific, CBC). For the CBC dataset we report the ROC curve for 

both RF and KNN as they had equal AUC (see Table 2). 
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Figure 4. Feature importance scores for the random forest algorithm trained using the OSR dataset (on the 
left) and the k-nearest neighbors’ algorithm trained using the COVID-specific dataset (on the right). 
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. Table 1. Complete list of the analyzed features in the OSR dataset.

Category Instrument / 
sample Parameter Acronym Unit of 

Measure

COVID-
specific 
features

CBC 
features

Missing 
rate (%)

White blood cells WBC 10^9/L X X 2.4

Red Blood Cells RBC 10^12/L X X 3.6

Hemoglobin HGB g/dL X X 2.4

Hematocrit HCT % X X 2.4

Average Globular Volume MCV fL X X 3.6

Mean Corpuscolar 
Hemoglobin

MCH pg/Cell X X 3.6

Mean Corpuscolar 
Hemoglobin Concentration

MCHC g Hb/dL X X 2.4

Erythrocyte distribution 
width

RDW CV% X X 3.7

Platelets PLT 10^9/L X X 3.6

Average Platelet Volume MPV fL X X 5.9

Neutrophils count (%) NE % X X 18.9

Lymphocytes count (%) LY % X X 15.2

Monocytes count (%) MO % X X 15.2

Eosinophils count (%) EO % X X 15.2

Basophils count (%) BA % X X 15.2

Neutrophils count NET 10^9/L X X 15.2

Lymphocytes count LYT 10^9/L X X 15.2

Monocytes count MOT 10^9/L X X 18.9

Eosinophils count EOT 10^9/L X X 15.2

H
em

at
ol

og
ic

al

Sy
sm

ex
 X

E 
21

00
 / 

w
ho

le
 b

lo
od

Basophils count BAT 10^9/L X X 18.9

Prothrombin Time (INR) PTINR INR 31.0

C
oa

gu
la

t
io

n

ST
A

 - 
R

 
M

A
X

/ 
Pl

as
m

a 
sa

m
pl

e

Activated partial 
thromboplastin time ( R )

PPTR Ratio 31.5
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Fibrinogen FG mg/dL 70.2

D-Dimer XDP µg/mL 70.4

Glucose GLU mg/dL X 3.4

Creatinine CREA mg/dL X 2.4

Urea UREA mg/dL X 37.0

Direct Bilirubin BILD mg/dL 23.3

Indirect Bilirubin BILIN mg/dL 23.3

Total Bilirubin BILT mg/dL 25.3

Alanine 
Aminotransferase

ALT U/L X 3.1

Aspartate 
Aminotransferase

AST U/L X 3.2

Alkaline Phosphatase ALP U/L X 23.7

Gamma 
Glutamyltransferase

GGT U/L X 24.5

Lactate Dehydrogenase LDH U/L X 13.2

Creatine kinase CK U/L X 60.3

Sodium NA mmol/L X 3.9

Potassium K mmol/L X 2.7

Calcium CA mmol/L X 3.8

C-reactive Protein CRP mg/L X 5.5

NT-proB-type 
Natriuretic Peptide

PROBNP pg/mL 91.1

Troponin T TROPOT ng/L 62.8

B
io

ch
em

ic
al

C
ob

as
 6

00
0 

R
oc

he
/ s

er
um

 sa
m

pl
e

Interleukin 6 IL6 pg/mL 92.2

pH PHPOC U 18.5

Carbonic Anhydride 
(pCO2)

CO2POC mmHg 22.4

R
ap

id
po

in
t 

50
0 

(S
ie

m
en

s 
H

ea
lth

ca
re

)

H
em

og
as

an
al

y
si

s, 

ve
no

us
 b

lo
od

 
ga

s

Oxygen (pO2) PO2POC mmHg 22.4
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Bicarbonates BICPOC mmol/L 18.7

Standard Calculated 
Bicarbonates

BISPOC mmol/L 23.0

Base Excess BEPOC mmol/L 22.8

Actual Base Excess BEEPOC mmol/L 18.9

Hematocrit (POC) HCTPOC % 22.7

Total Oxyhemoglobin THBPOC g/dL 22.8

O2 Saturation SO2POC % 18.3

Oxyhemoglobin / Total 
Hemoglobin

FO2POC % 18.6

Carboxyhemoglobin FCOPOC % 18.8

Methemoglobin METPOC % 22.5

C
O

-O
xy

m
et

ry

Deoxyhemoglobin HHBPOC % 18.8

Bound O2 Maximum 
Concentration

BO2POC mL/dL 23.8

Total Oxygen CTOPOC mL/dL 20.9

Inspired Oxygen Fraction FIOPOC mL/dL 67.4

O
xy

ge
na

tio
n

Inspired O2 / O2 ratio OFIPOC ratio 64.0

Sodium (POC) NAPOC mmol/L 22.5

Potassium (POC) KPOC mmol/L 22.4

Chloride (POC) CLPOC mmol/L 22.7

Ionized Calcium (POC) CAPOC mmol/L 23.1

Standard Ionized 
Calcium (POC)

CASPOC mmol/L 23.2

Anion gap ANGPOC mmol/L 19.6

Glucose Blood Gas GLUEMO mg/dL 18.6

El
ec

tro
ly

te
s P

O
C

Lactate (POC) LATPOC mmol/L 18.5
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Age Age Years X X 0

Gender Sex Male/Female X X 0

A
dd

iti
on

al
 In

fo
rm

at
io

n

COVID-19 Suspect 
(Patient suffers from 
COVID-19 specific 
symptoms at triage)

Suspect Yes / No X X 0

Ta
rg

et COVID-19 positivity Target Positive/Negat
ive X X 0
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Table 2. Results for the models trained using the OSR dataset, the COVID-specific dataset and the complete 
blood count (CBC) dataset. The first value refers to the standard version, the second value to the three-way 
version. The last column reports on the coverage of this latter model; that is, the proportion of data for which 
the classifier makes a prediction with at least a 75% confidence score. 

Dataset Model Accuracy Sensitivity Specificity AUC Brier1
Coverage for the 

3-way version 
(75% confidence)

Logistic Regression 0.86/0.92 0.88/0.95 0.84/0.90 0.86/0.95 0.13 0.76

Naive Bayes 0.85/0.87 0.82/0.83 0.88/0.90 0.85/0.91 0.12 0.94

KNN 0.83/0.89 0.76/0.82 0.90/0.95 0.83/0.90 0.12 0.72

Random Forest 0.88/0.932 0.86/0.92 0.91/0.94 0.90/0.94 0.10 0.70

OSR 
dataset

SVM 0.88/0.91 0.89/0.92 0.87/0.90 0.88/0.94 0.11 0.77

Logistic Regression 0.83/0.87 0.85/0.89 0.82/0.85 0.83/0.88 0.14 0.70

Naive Bayes 0.83/0.88 0.84/0.85 0.83/0.91 0.83/0.91 0.13 0.76

KNN 0.86/0.90 0.80/0.85 0.92/0.94 0.87/0.94 0.11 0.81

Random Forest 0.84/0.89 0.84/0.92 0.84/0.87 0.84/0.92 0.12 0.82

COVID –
specific 
dataset

SVM 0.86/0.87 0.83/0.83 0.89/0.91 0.86/0.93 0.12 0.74

Logistic Regression 0.74/0.80 0.70/0.78 0.79/0.83 0.74/0.85 0.18 0.60

Naive Bayes 0.78/0.83 0.74/0.79 0.82/0.87 0.78/0.88 0.16 0.69

KNN 0.86/0.90 0.82/0.84 0.89/0.95 0.86/0.89 0.13 0.76

Random Forest 0.83/0.90 0.84/0.92 0.82/0.87 0.86/0.91 0.13 0.68

CBC 
dataset

SVM 0.77/0.91 0.70/0.90 0.82/0.92 0.76/0.92 0.14 0.70

1 Brier score, the lower it is, the better it is.

2 The best value, for each score, is denoted in bold

Page 34 of 44

https://mc.manuscriptcentral.com/cclm

Clinical Chemistry and Laboratory Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.20205070doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20205070
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Review Only

Table 3. Results for the best models for the internal–external and external validation procedures. For each of 
the two features sets considered for the internal-external and external validation (namely, COVID-specific and 
CBC) we report the performances of the best models on the internal validation: namely, KNN for COVID-
specific; and both Random Forest and KNN for CBC. The first four columns report on the results on the 
internal-external validation, while the last column reports on the results of the external validation.

Dataset Accuracy Sensitivity Specificity AUC External Validation (specificity)

COVID specific dataset

(KNN)

0.78 0.74 0.81 0.78 0.94

CBC dataset (RF) 0.76 0.70 0.82 0.76 0.96

CBC dataset (KNN) 0.75 0.72 0.78 0.75 0.92
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Development, evaluation, and validation of machine learning 
models for COVID-19 detection based on routine blood tests 
Cabitza Federico1, Campagner Andrea2, Ferrari Davide3, Di Resta Chiara4, Ceriotti Daniele5, Sabetta 

Eleonora5, Colombini Alessandra2, De Vecchi Elena2, Banfi Giuseppe2, Locatelli Massimo5, Carobene Anna5 

 

SUPPLEMENTAL MATERIAL 
 

 

 Suppl. Table 1. Hyper-parameters of the machine learning models under consideration. 

Model Random  

Forest 

Naive Bayes Support Vector 
Machine 

Logistic 
Regression 

k-Nearest 
Neighbor 

Hyper-
parameters 

Number of 
estimators, 
Maximum tree 
depth, Split 
criterion, 
Maximum number 
of features 

/ Kernel, 
Maximum 
polynomial 
degree, Kernel 
coefficient, 
Regularization 
parameter 

Regularization 
penalty, 
Regularization 
parameter 

Distance 
weighting, 
Nearest 
Neighbor 
algorithm, 
Number of 
neighbors 
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Supplementary Figures 
 

 

Suppl. Figure 1. Receiver operating characteristic curves for the models trained using the OSR dataset. 

 

Suppl. Figure 2. Receiver operating characteristic curves for the models trained using the COVID-specific 
dataset. 
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Suppl. Figure 3. Receiver operating characteristic curves for the models trained using the CBC dataset. 

 

 

 

Suppl. Figure 4. Positive predictive value-sensitivity curves for the models trained using the OSR dataset. 

Page 38 of 44

https://mc.manuscriptcentral.com/cclm

Clinical Chemistry and Laboratory Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.20205070doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20205070
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Review Only

 

 

Suppl. Figure 5. Positive predictive value-sensitivity curves for the models trained using the COVID-specific 
dataset. 

 

 

Suppl. Figure 6. Positive predictive value-sensitivity curves for the models trained using the CBC dataset. 
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Suppl. Figure 7. Calibration curves for the models trained using the OSR dataset. 

 

Page 40 of 44

https://mc.manuscriptcentral.com/cclm

Clinical Chemistry and Laboratory Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.20205070doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20205070
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Review Only

 

Suppl. Figure 8. Calibration curves for the models trained using the COVID-specific dataset. 

 

 

Suppl. Figure 9. Calibration curves for the models trained using the CBC dataset. 
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Suppl. Figure 10. Positive predictive value/negative predictive value-prevalence curve for the random forest 
algorithm, trained using the OSR dataset. The points on the curves indicate the prevalence in the dataset. 
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Suppl. Figure 11. Positive predictive value/negative predictive value-prevalence curve for the k-nearest 
neighbors’ algorithm, trained using the COVID-specific dataset. The points on the curves indicate the 
prevalence in the dataset. 

 

Suppl. Figure 12. Positive predictive value/negative predictive value-prevalence curve for the random forest 
and k-nearest neighbors’ algorithms, trained using the CBC dataset. The points on the curves indicate the 
prevalence in the dataset. 
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Suppl. Figure 13. Feature importances for Random Forest and k-Nearest Neighbors, trained on the 
CBC dataset. 
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Identification of the Uncertain Cases 
 

In the ground truthing process, we identified 165 uncertain cases for which we combined the results of the 
rRT-PCR test together with the radiologic gold standard. The uncertain cases were identified through two 
different methods: either patients who turned out to be positive within 72 hours after a first negative test and 
were admitted as inpatients despite this test result; or patients who, despite having had a negative test, had a 
hematochemical profile that was more similar to positive patients. For this purpose we used the k-means 
clustering algorithm (k = 2) based on a set of COVID-19 characteristic biomarkers (AST, lymphocytes, 
calcium, LDH, CRP, WBC, XDP, fibrinogen) 20,21. 

 

Implementation of the Internal-External Validation 
 

The internal-external validation was performed based on the IOG dataset, using a bootstrap-based procedure. 
The goal of this procedure was to evaluate the ability of the developed models to generalize to new settings 
when provided with a limited amount of new data. 

First, we generated 100 random, 50/50 train-test splits of the IOG dataset, then for each of these splits: first, 
the train set of the IOG dataset was oversampled using the SMOTE algorithm to obtain a sample of 1,624 
synthetic instances; second, the oversampled train set was combined with the COVID-specific (respectively, 
CBC) dataset to obtain a combined training set encompassing 3,248 instances; third, the best models (obtained 
as described in the Methods and Results sections) were re-trained over the combined training set and evaluated 
on the test set. The average results over the 100 generated splits were reported. 

 

Hematochemical Analysis 
 

The hematological analyses were performed on a Sysmex XE 2100 system (Sysmex, Japan) and the 
coagulation features were determined using the STAR Max analyzer (Stago Group, France); the biochemical 
parameters were measured on a Roche COBAS 6000 system (Roche Diagnostic, Basel, Switzerland) using 
Roche reagents, calibrators (Calibrator for automated systems [Cfas]/Cfas proteins), and control materials at 
two different levels (Precicontrol ClinChem Multi 1 and 2). All of the methods for the enzyme activity 
measurements were standardized to IFCC reference measurement procedures. The point of care (POC) 
measurements and the hemogas analysis were undertaken using Rapidpoint 500 (Siemens Healthcare). 
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