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An early biomarker would transform our ability to screen and treat patients with cancer. The large amount of 
multi-scale molecular data in public repositories from various cancers provide unprecedented opportunities to 
find such a biomarker. However, despite identification of numerous molecular biomarkers using these public 
data, fewer than 1% have proven robust enough to translate into clinical practice1. One of the most important 
factors affecting the successful translation to clinical practice is lack of real-world patient population 
heterogeneity in the discovery process. Almost all biomarker studies analyze only a single cohort of patients 
with the same cancer using a single modality. Recent studies in other diseases have demonstrated the advantage 
of leveraging biological and technical heterogeneity across multiple independent cohorts to identify robust 
disease biomarkers. Here we analyzed 17149 samples from patients with one of 23 cancers that were profiled 
using either  DNA methylation, bulk and single-cell gene expression, or protein expression in tumor and serum. 
First, we analyzed DNA methylation profiles of 9855 samples across 23 cancers from The Cancer Genome Atlas 
(TCGA). We then examined the gene expression profile of the most significantly hypomethylated gene, KRT8, 
in 6781 samples from 57 independent microarray datasets from NCBI GEO. KRT8 was significantly over-
expressed across cancers except colon cancer (summary effect size=1.05; p < 0.0001). Further, single-cell RNAseq 
analysis of 7447 single cells from lung tumors showed that genes that significantly correlated with KRT8 (p < 
0.05) were involved in p53-related pathways. Immunohistochemistry in tumor biopsies from 294 patients with 
lung cancer showed that high protein expression of KRT8 is a prognostic marker of poor survival (HR = 1.73, p 
= 0.01). Finally, detectable KRT8 in serum as measured by ELISA distinguished patients with pancreatic cancer 
from healthy controls with an AUROC=0.94. In summary, our analysis demonstrates that KRT8 is (1) 
differentially expressed in several cancers across all molecular modalities and (2) may be useful as a biomarker 
to identify patients that should be further tested for cancer. 

Introduction 

Most of the public health burden of cancer results from our inability to detect tumors before they become 
untreatable2. For instance, non-small cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide, 
progresses from early to advanced stages over a year3. Early detection of NSCLC is shown to substantially 
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improve survival through surgical resection of the tumor4; however, after the cancer has metastasized, surgical 
intervention does not improve patient outcomes5. This critical need for early cancer biomarkers motivated the 
creation of consortiums like the TCGA6. Since the first TCGA data was released in 2006, there have been 
hundreds of putative molecular biomarkers proposed across all cancer types, with most focusing on gene 
expression biomarkers7,8.  However, most gene signature biomarkers were identified in only one cancer type or 
subtype, and very few ever proved to be viable for clinical use8,9. Many proposed signatures failed to translate 
into clinical practice because they could not be replicated in outside cohorts or performed poorly when clinical 
data was considered10.  

DNA methylation profiles have been shown to carry additional information to either genomic or expression 
data11,12. Yang et al. demonstrated that TCGA methylation data could identify clinically relevant subsets of 
patients with breast cancer that could not be classified by gene expression13. Others have documented the 
prognostic ability of other epigenetic signatures in colon, lung, and pancreatic cancer14-16.  

However, the bulk of putative methylation biomarkers are limited to a single disease and face the same clinical 
translation issues as gene expression biomarkers17. To increase the probability that a methylation biomarker is 
useful in clinical practice, it is critical to demonstrate a robust functional and translational relevance of the 
differentially methylated genes in multiple cohorts18. Additionally, the focus on single-cancer biomarkers has 
raised concerns about the potential to overlook common epigenetic drivers of cancer19. 

In this study, we performed a pan-cancer analysis of TCGA DNA methylation data from 9855 tissue samples 
across 23 cancers to inform subsequent gene expression, proteomic, and clinical outcome analyses. The 
methylation samples were divided into discovery (2019 samples across 10 cancers) and validation (7836 samples 
across 21 cancers). KRT8 was the most significant differentially methylated gene across cancers. We next 
examined the gene expression profile of KRT8 in 6781 samples from 57 independent microarray datasets in five 
solid tumor cancers (breast, colon, pancreatic, ovarian and lung) from NCBI GEO20, and found KRT8 to be 
universally overexpressed. Our analysis of intra-cellular gene-KRT8 expression correlations in 7447 single cells 
derived from lung tumor biopsies found KRT8 is correlated with genes involved in p53-related pathways. We 
validated these correlations in gene expression microarrays of 1276 tissue biopsies from patients with lung 
cancer. We examined the prognostic relevance of tumor KRT8 protein in 294 tissue microarrays (TMAs) from 
patients with lung cancer. We then calculated the prognostic value of tumor KRT8 gene expression in pancreatic 

	
Figure	1.	Analysis	overview.	(A)	DNA	methylation	data	from	TCGA	for	10	cancers	comprising	2019	samples	profiled	using	the	
Illumina	27	platform	were	used	 for	discovery.	(B)	Validation	data	comprised	of	15,124	samples	profiled	using	either	DNA	
methylation,	bulk	and	single	cell	gene	expression,	or	tumor	and	serum	protein.	
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cancer with data from Protein Atlas. Finally, we validated the potential of KRT8 as non-invasive biomarker with 
serum KRT8 in 32 pancreatic patients and 6 healthy controls from Stanford Hospital. An overview of this 
analysis is displayed in Figure 1. 

Methods 
Data Collection from Public Repositories – TCGA and GEO 
All methylation and transcriptome data used in our analyses are publicly available. We downloaded all available 
DNA methylation data the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) irrespective of 
cancer on May 19, 2018. We excluded data for cancers where less than two non-cancerous samples were profiled, 
which resulted in DNA methylation data for 9855 samples across 23 cancers. For DNA methylation profiling, 
samples from these 23 cancers were profiled using either the Infinium HM27 array (27,578 CpG site targeting 
probes) or Infinium HM450 array (485,577 CpG site targeting probes). All data was generated and processed by 
The Cancer Genome Atlas research network as described previously6,19. We used data profiled on the HM27 
array as our discovery cohort (10 cancers, 2019 samples) and data profiled on the HM450 array (21 cancers, 7836 
samples) as validation.  
For gene expression, we downloaded whole transcriptome data for 6,781 tumor biopsies across 57 independent 
datasets profiled using microarrays from the NCBI GEO. All datasets were required to measure gene expression 
in a minimum of two non-cancerous tissue samples. These tumor biopsies came from a patient with breast, lung, 
pancreatic, ovarian or colon cancer. 
 
Data Processing and Effect Size Estimation 
We ensured all downloaded gene expression data was log2-transformed. For each gene, we calculated change 
in expression in a tumor biopsy as Hedges’ g with adjustment for small sample size because it captures both the 
fold change and variance. We have previously used Hedges’ g to generate robust gene signatures with diagnostic 
and prognostic value21,22. We used the random-effects inverse variance meta-analysis using Dersimonian-Laird 
method to calculate a summary effect size (ES) across datasets for each gene23. We chose Dersimonian-Laird as 
our previous work has shown it to be a good compromise between more conservative meta-analysis methods 
(Sidik–Jonkman, Hedges–Olkin, empiric Bayes, restricted maximum likelihood) and lenient methods (Hunter–
Schmidt)23. If multiple probes mapped to a gene, the effect size for each gene was summarized via the fixed effect 
inverse-variance model. We corrected p-values for summary effect-sizes for multiple hypotheses testing using 
Benjamini-Hochberg false discovery rate (FDR) correction.24 We removed one cancer at a time and applied both 
meta-analysis methods at each iteration to avoid influence of a specific cancer with a large sample size on the 
results. 
 
Survival Analysis and Modeling  
We used a right-censored model to fit survival data with the survival package in the R statistical computing 
environment (Version 3.5.1). We fit univariate and multivariate Cox proportional hazards models onto survival 
data using the coxph function. We confirmed the proportional hazard assumption with the cox.zph function.  
 
Human Plasma Samples  
Our study includes 32 human EDTA blood plasma samples collected between January 2007 and October 2011 
from identically staged patients with advanced pancreatic ductal adenocarcinoma treated at Stanford University 
Medical Center under an institutional review board-approved protocol. All plasma samples were collected from 
untreated (de novo) patients with biopsy- proven pancreatic adenocarcinomas. Median age at blood collection 
was 68 years (range 37-84 years). All patients were treated with gemcitabine-based chemotherapy and the 
majority also received radiotherapy. As a control group, 6 additional plasma samples were collected from age- 
matched, healthy volunteers under an IRB-approved protocol. Immediately after acquisition, blood samples 
were centrifuged and aliquots of plasma stored at -80°C.  
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Enzyme-linked immunosorbent assay (ELISA) 
The serum biomarker concentration was measured with a commercially available human protein sandwich 
enzyme immunoassay kit with two mouse monoclonal antihuman antibodies (R&D Systems, Inc., Minneapolis, 
MN, USA). All serum samples from patients and standards were incubated in microplate wells coated with the 
first mouse monoclonal anti-human biomarker antibody. After washing, a second antihuman biomarker 
antibody labeled with peroxidase (HRP) was added for subsequent incubation. The reaction between HRP and 
substrate (hydrogen peroxide and tetramethylbenzidine) resulted in color development and the intensities were 
measured with a microplate reader at an absorbance of 450 nm. Concentrations of serum biomarkers were 
determined against a standard curve. 
 
Single cell data collection and processing 
We downloaded count matrices of 52,698 single cells from the tumor microenvironment of five lung cancer 
patient samples from Array Express (E-MTAB-6149)25. Of the total 52,698 cells, 7,447 originated from the tumor. 
We calculated the Pearson correlation between expression of KRT8 and all other measured genes within each 
tumor cell. For each KRT8-gene correlation, we required non-zero expression of both genes in a minimum of 25 
cells. We removed correlations with a p-value ³ 0.05.  
 
KRT8 Expression in Patients with Pancreatic Cancer from The Protein Atlas 
We downloaded prognostic information for 176 pancreatic cancer patients stratified by tumor KRT8 expression 
from The Protein Atlas26 (https://www.proteinatlas.org/ENSG00000170421-
KRT8/pathology/tissue/pancreatic+cancer). We stratified patients based on median KRT8 expression of the 
cohort. Patient samples originated from the TCGA data repository. All counts are reported as Fragments Per 
Kilobase of exon per Million reads (FPKM).  
 
TMA cohort, and immunohistochemistry 
Patient samples were retrieved from the surgical pathology archives at the Stanford Department of Pathology 
and linked to a clinical database using the Cancer Center Database and STRIDE Database tools from Stanford. 
Patients who had surgically treated disease and paraffin embedded samples from 1995 through June, 2010 were 
included. Surgical specimens that contained viable tumor from slides were reviewed by a board-certified 
pathologist (RBW) to build the Stanford Lung Cancer TMA as described previously. The area of highest tumor 
content was marked for coring blocks corresponding to the slides using 0.6 mm cores in duplicate arrays as 
previously described27. These cores were aligned by histology and stage and negative controls included a variety 
of benign and malignant tissues that included normal non-lung tissue, abnormal non-lung tissue, placental 
markers, and normal lung27. Normal lung consisted of a specimen adjacent, but distinct, from tumor over the 
years 1995 through 2010 to assess the variability of staining by year. OligoDT analysis was performed on the 
finished array to assess the architecture of selected cores and adequacy of tissue content prior to target 
immunohistochemistry (IHC) analysis. Serial 4 µm sections were cut from FFPE specimens and processed for 
IHC using the Ventana BenchMark XT automated immunostaining platform (Ventana Medical Systems/Roche, 
Tucson, AZ). Rabbit monoclonal anti-Cytokeratin 8 (phospho S431) antibody was obtained from Abcam 
(ab109452, Burlingame, CA). Mouse monocolonal Anti-Cytokeratin 8 antibody was also obtained from Abcam 
(ab9023, Burlingame, CA). The intensity of KRT8 immunostaining was graded from 1-4 as determined by an 
independent pathologist who was blinded to patient outcome. 

Results 

Integrated analysis of TCGA methylation data identifies KRT8 as hypomethylated across cancers 

We identified 23 cancers that had methylation data and at least two healthy controls per cancer from TCGA. We 
split the resulting 9855 samples into discovery cohorts (2019 samples from 10 cancers profiled using the Illumina 
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27 platform) and the validation cohorts (7836 samples from 21 cancers profiled using the Illumina 450 platform) 
for validation. In order to avoid the potential influence of a single cancer on the results due to unequal sample 
sizes or other unknown confounding factors among cohorts, we performed a ‘‘leave-one-cancer-out’’ analysis. 
We hypothesized that the resulting set of methylation sites, irrespective of the set of cancers analyzed, would 
constitute a robust methylation signature across cancers. We identified 1,801 differentially methylated genes 
(1,081 hyper- and 720 hypomethylated, FDR < 5%) across all cancers (Figure 1A and Supplementary Figure 1A). 
We did not remove differentially methylated sites with significant heterogeneity for two reasons. First, 
heterogeneity is expected due to known heterogeneity within and between cancers. Second, we have previously 
shown that when combining across multiple datasets, filtering by heterogeneity removes higher proportion of 
true positives than false positives23. In the validation cohorts, which used Illumina 450 platform, we found 1083 
out of 1,801 sites were differentially methylated across all cancers (FDR < 5%; Figure 1B and Supplementary 
Figure 1B). 

Our discovery analysis found several previously reported differentially methylated genes. The hypomethylated 
genes across all cancers in the discovery cohort included CLDN428 (discovery ES = -1.86, p = 8.0e-7; validation ES 
= -0.56, p = 1.55e-06) and SFN29 (discovery ES = -0.96, p = 2.01e-7; validation ES = -0.94, p = 9.4e-10) that have been 

	
Figure	2.	KRT8	is	hypomethylated	across	23	cancers.	Differential	DNA	methylation	of	KRT8	in	(A)	discovery	(10	cancers,	
2019	 samples,	 Illumina	 27	 platform)	 and	 (B)	 validation	 (21	 cancers,	 7836	 samples,	 Illumina	 450	 platform)	 tumor	 biopsy	
samples	compared	to	control	non-cancerous	tissue.	X	axes	represent	standardized	mean	difference	in	DNA	methylation	between	
cancer	and	control	samples,	computed	as	Hedges’	g,	in	log2	scale.	The	size	of	a	rectangle	is	inversely	proportional	to	the	SEM	in	
the	corresponding	cancer	cohort.	Whiskers	represent	the	95%	confidence	interval.	A	diamond	represents	a	summary	effect	size	
for	KRT8	across	cancers.	Width	of	a	diamond	represents	the	95%	confidence	interval	of	summary	effect	size.	SEM:	standard	
error	of	mean.	

	

Cancer

Breast invasive carcinoma
Colon adenocarcinoma
Kidney renal clear cell carcinoma
Kidney renal papillary cell carcinoma
Lung adenocarcinoma
Lung squamous cell carcinoma
Ovarian carcioma
Rectum adenocarcinoma
Stomach adenocarcinoma
Uterine corpus endometrial carcinoma
Summary

Platform

Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27
Illumina 27

Illumina 27

ES

ï����
ï����
����

ï����
ï����
ï����
ï����
ï���
ï����
ï����
ï����

Samples

���
���
���

22
���
���
���
��
���

72
����

ï� ï� ï� ï� 0
Effect Size

Discovery - Methylation

Validation - Methylation
Cancer

Bladder urothelial carcinoma
Breast invasive carcinoma
Cervical squamous cell carcinoma 
     and endocervical adenocarcinoma
Cholangiocarcinoma
Colon adenocarcinoma
Esophageal carcinoma
Head and Neck squamous cell carcinoma
Kidney renal clear cell carcinoma
Kidney renal papillary cell carcinoma
Liver hepatocellular carcinoma
Lung squamous cell carcinoma
Pancreatic adenocarcinoma
Pheochromocytoma and Paraganglioma
Prostate adenocarcinoma
Rectum adenocarcinoma
Sarcoma
Skin cutaneous melanoma
Stomach adenocarcinoma
Thymoma
Thyroid carcinoma
Uterine corpus endometrial carcinoma
Summary

Platform

,OOXPLQD����
,OOXPLQD����
,OOXPLQD����

,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
,OOXPLQD����
Illumina 450

ES

ï����
ï����
ï����

ï����
ï����
ï����
ï����
ï����
ï����
ï����
ï����
ï����
���

ï����
ï����
ï����
����

ï����
ï���
ï����
ï����
ï����

Samples

���
���
���

��
���
202
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

7836

ï��� ï� ï��� 0 ���
Effect Size

A

B

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.01.20205450doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20205450
http://creativecommons.org/licenses/by-nc-nd/4.0/


previously shown to promote cancer cell proliferation (Ehrlich 2009), whereas the hypermethylated genes 
included known tumor suppressors such as SOX130 (discovery ES = 1.05, p = 3.4e-08;  validation ES = 1.08, p = 
4.4e-22), TWIST31 (discovery ES = 0.89, p = 1.5e-5; validation ES = 0.59, p = 4.3e-16), and GATA432 (discovery ES = 
0.92, p = 1.7e-6; validation ES = 0.38, p = 3.77e-12). KRT8 was the most statistically significant hypomethylated 
gene after multiple hypothesis correction (discovery ES = -1.71, p = 3.2e-7, FDR=9.15e-6; Figure 2A), but was 
unchanged in renal clear cell carcinoma. KRT8 was also hypomethylated in the validation cohorts across all 
cancers except pheochromatoma/paraganglioma and melanoma (validation ES=-0.69, p = 3.3e-15, FDR = 4.0e-14; 
Figure 2B) (Figure 2).  

 

 

 

	
Figure	3.	KRT8	gene	is	overexpressed	in	five	cancers.	The	x	axes	represent	standardized	mean	difference	in	gene	expression	
between	cancer	and	control	samples,	computed	as	Hedges’	g,	in	log2	scale.	The	size	of	a	rectangle	is	inversely	proportional	to	
the	SEM	in	the	cohort.	Whiskers	represent	the	95%	confidence	interval.	A	diamond	represents	a	summary	effect	size	for	KRT8	
across	cancers.	Green	diamond	represents	 summary	effect	 size	across	all	 cancers.	Width	of	a	diamond	represents	 the	95%	
confidence	interval	of	summary	effect	size.	SEM:	standard	error	of	mean.	
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Multi-cohort gene expression analysis demonstrates KRT8 is over-expressed in five cancers 

Hypomethylation and hypermethylation typically lead to over- and under-expression of the corresponding 
gene, respectively.33 Therefore, we hypothesized that hypo- or hyper-methylated genes across multiple cancers 
will be over- or under-expressed across multiple cancer compared to control samples. Arguably, we could use 
gene expression data for the same samples from TCGA. However, we decided to use gene expression data from 
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Figure	4.	 Intracellular	Pearson	correlations	of	six	genes	with	KRT8	
calculated	 from	 7447	 tumor	 cells	 in	 five	 lung	 cancer	 patients.	 (A)	
Contour	maps	of	correlation	for	the	6	most	correlated	genes.	Level	defines	
the	density	of	cells	found	in	each	contour	layer.	X	axis	is	the	expression	of	
the	respective	gene	in	log2	counts	per	million	(CPM)	within	each	cell.	Y	axis	
is	KRT8	expression	in	the	corresponding	cell.	(B)	Bulk	gene-KRT8	Pearson	
correlations	in	12	lung	cancer	datasets.	(C)	Differential	expression	of	the	6	
most	correlated	genes	with	KRT8	in	the	12	lung	cancer	cohorts	compared	
to	control	samples.	Effect	size	was	computed	as	Hedges’	g	in	log2	scale.		
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completely independent cohorts from a different source to increase stringency of our analysis. Therefore, to test 
this hypothesis, we downloaded 57 microarray gene expression datasets from the NCBI GEO20 comprising of 
6781 samples (4870 cases, 1911 controls) obtained from human tissue biopsies of five cancers: breast, colon, lung 
adenocarcinoma, ovarian, or pancreatic. These 57 datasets included broad biological and technical 
heterogeneity, such as treatment protocols, demographics, collection year, and microarray platforms to further 
increase the stringency of our analysis and identify robust signals that persist despite these potential sources of 
vznoise.  

Differential gene expression meta-analysis across all 6781 samples identified overexpression of known 
oncogenes such as ERBB2 (ES =0.51, p = 6.22e-13), KRAS (ES =0.43, p = 2.90e-9), CCND1 (ES = 0.25, p = 7.34e-3), 
and VEGFA (ES = 0.42, p = 2.19e-06). Housekeeping genes did not show a change in expression between control 
and cancer, such as B2M (ES = 0.12, p = .25), HBS1L (ES = -0.08, p = 0.15), or EMC7 (ES = 0.18, p = 0.09)34,35.  

Next, we calculated the Spearman correlation between the discovery methylation ES and gene expression ES in 
the 1,801 differentially methylated genes as -0.21 (p=1.27e-19), which in line with previous studies36 that 
examined intra-sample methylation-expression correlation (Supplementary Figure 2).  

Finally, we found that hypomethylation of KRT8 led to overexpression in multiple cancers compared to healthy 
samples (ES=1.05, p=2.8e-27, FDR=2.0e-24; Figure 3). KRT8 was over-expressed in pancreatic cancer (ES=0.69, 
p=4.02e-08), ovarian cancer (ES=1.61, p=1.93e-03), lung cancer (ES=1.55, p=1.95e-13), and breast cancer (ES=0.88, 
p=7.82e-10), but not in colon cancer (ES = 0.14, p = 0.38).  

KRT8 overexpression is associated with a chemotherapy-resistant phenotype in vitro 

Chemotherapy resistance is responsible for more than 80% of cancer-related mortality. We investigated whether 
increased KRT8 expression is associated with chemotherapy resistance. We downloaded 100 samples in seven 
datasets from NCBI GEO across six cancers that contained both chemotherapy-resistant and chemotherapy-
sensitive cell lines. KRT8 was consistently overexpressed across all chemo-resistant cancer cell lines (summary 
effect size=0.76, p=0.035; Supplementary Figure 3). This result demonstrates a consistent association between 
KRT8 expression and chemotherapy resistance in vitro.   

Single cell analysis of KRT8 expression  

Single cell gene expression data has allowed researchers to probe intra-cellular gene-gene correlations, which in 
turn suggest gene interactions or a common regulator. We analyzed intra-cellular correlations between every 
gene and KRT8 with single cell RNA sequencing data of 7447 cells from tumor biopsies of five lung cancer 
patients. To calculate intra-cell gene-gene correlations, we correlated the expression of each gene to KRT8 
expression in every cell. Several other keratin genes were positively correlated with KRT8. For example, KRT18 
and KRT7 had Pearson correlation of 0.59 and 0.55, respectively, with KRT8. Next, we preformed pathway 
analysis of the 100 most positively and negatively correlated genes with KRT8 using the Reactome Knowledge 
Database37. Thirty out of the 100 genes were not annotated in the Reactome Knowledge Database. We identified 
six significantly enriched pathways, each of which has been previously implicated in cancer progression (Figure 
4A). The top three significantly enriched pathways were comprised of six unique genes: GSTP1, PRDX5, GPX2, 
TXNRD1, SFN, COX6A1 (Supplementary Table 1). Each of these six genes had an intra-cellular correlation with 
KRT8 expression ³0.30 (Figure 4A). All genes except GSTP1 are annotated in Reactome as involved in p53 signal 
transduction (Supplementary Table 1). However, GSTP1 is known to be a direct transcriptional target of p5338, 
further supporting the association between KRT8 and genes involved in the p53 pathway. 

We next examined the correlation between the six genes and KRT8 in bulk lung adenocarcinoma gene expression 
data from microarrays of 1276 lung biopsy samples from 12 datasets. All genes were significantly correlated 
with KRT8 at sample level (Figure 4B). All genes except PRDX5 were overexpressed in lung adenocarcinoma 
compared to healthy patients (Figure 4C). The majority of these six genes were additionally overexpressed 
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across 5505 microarray samples from four cancers (breast, colon, ovarian, and pancreatic; Supplementary Table 
2). 

Protein expression of KRT8 is associated with poor outcomes in patients with lung adenocarcinoma 

Given robust hypomethylation of KRT8 across 9,855 samples from 23 cancers, over-expression across 6,781 
biopsies from 5 cancers, strong association with chemo-resistance, and sustained correlation with p53-regulated 
genes both at single-cell and sample levels, we investigated whether KRT8 is also expressed at protein-level in 
tumor biopsies, and whether it is associated with survival in patients with either lung adenocarcinoma or lung 
squamous cell carcinoma. We stained tissue microarrays (TMAs) containing 294 lung tumors (228 lung 
adenocarcinoma, 66 lung squamous cell carcinoma) resected from patients at Stanford Hospital for KRT8 protein 
(Supplementary Table 3). An expert pathologist (MO) rated the maximum intensity of cancerous cell KRT8 
staining in each TMA (Figure 5A).  Out of the 294 samples, 5 (1.7 %) scored as 1+, 35 (11.9%) as 1-2+, 55 (18.7%) 
as 1-3+, 8 (2.72%) as 2+, 85 (28.9%) as 2-3+ and 106 (36.1%) as 3+. In a multivariable cox regression model, KRT8 
intensity was a significant predictor of mortality after adjusting for sex and age at diagnosis in lung 

	
Figure	5.	Protein	measurement	of	KRT8	in	cancer.	A.	IHC	of	lung	adenocarcinoma	TMAs	for	KRT8.	B.	Cox	proportional	
hazard	of	294	lung	cancer	samples	stratified	by	KRT8	concentration.	C.	Survival	of	176	patients	with	pancreatic	cancer	
stratified	by	KRT8	expression	relative	to	the	median	of	the	cohort.	D-E.	Violin	(D)	and	ROC	(E)	plots	of	serum	KRT8	as	
measured	by	ELISA	in	patients	with	pancreatic	cancer	and	healthy	controls.	Dashed	line	represents	the	ELISA	detection	
threshold.	Width	of	a	violin	plot	indicates	density	of	samples,	where	each	dot	represents	a	sample.			
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adenocarcinoma (Hazard Ratio = 1.49, 95% CI = 1.06 – 2.10, p=0.02), but not in squamous cell (Hazard Ratio = 
1.19, 95% CI = 0.57 – 2.52, p=0.65; Figure 5B). 

Higher RNA expression of KRT8 is associated with reduced survival in patients with pancreatic cancer 

Next, we investigated whether KRT8 tumor gene expression is a prognostic marker of survival. We downloaded 
KRT8 expression and corresponding survival data for 176 patients with stage I-IV pancreatic cancer from Human 
Protein Atlas (Supplementary Table 4). We classified patients as either “High KRT8” or “Low KRT8” if their 
KRT8 expression was above or below the median KRT8 expression of the cohort (363.5 FPKM), respectively. 
Patients in the “High KRT8” group had an increased risk of mortality (cox proportional hazard ratio = 1.73 p = 
0.01 Figure 5C).  

Serum KRT8 discriminates between healthy and pancreatic patients and correlates with survival time 

Finally, we explored the potential of KRT8 as a minimally invasive biomarker. We measured KRT8 
concentration in serum of 32 biopsy-confirmed patients with pancreatic ductal adenocarcinoma and six 
healthy controls by enzyme-linked immunosorbent assays (ELISA). Samples were collected from Stanford 
Hospital (Supplementary Table 5). The mean KRT8 concentration was significantly higher in the pancreatic 
cancer patients compared to that of healthy controls (p = 7.7e-4; Figure 5D).  Samples were considered KRT8+ 
if they had a measured KRT8 value about the detectability limit of the ELISA (0.06 RLU). KRT8+ status 
distinguished patients with pancreatic cancer from healthy controls with an area under the curve (AUC) of 
0.94 (Figure 5E) and an area under the precision recall curve (AUPRC) of 0.99 (Supplementary Figure 4).  

Discussion 

Only a fraction of molecular cancer biomarkers published in academic literature are reproducible in follow-up 
studies. The first step to identifying a robust biomarker is to ensure that the discovery phase has included a 
heterogeneous set of samples, platforms, and measurement technologies. Here, we identified KRT8 as such a 
biomarker by integrating DNA methylation profiling of 2019 samples across 10 cancers from the TCGA. We then 
validated that KRT8 is a robust biomarker on 7836 samples in 21 cancers measured with a different DNA 
methylation platform within the TCGA. We next analyzed the diagnostic and prognostic value of tumor KRT8 
gene and protein expression as well as serum KRT8 using ELISA in over 7000 samples spanning 10 years, 
multiple platforms, and data repositories. 

Pan-cancer methylation findings have been hindered by questions about batch effects and platform bias39. In this 
work, we used samples run on Illumina 27 platform as our discovery data and Illumina 450 as validation. KRT8 
was significantly hypomethlyated in both platforms, suggesting it is robust to platform bias. While TCGA has 
gene expression data, we chose to use microarray samples from the NCBI GEO to ensure that our findings would 
be robust to data type, batch effect, and platform.  

Single cell analysis has broadened our understanding of tumor heterogeneity, but it can be difficult to interpret 
the immediate translational value of a single time point scRNA-seq analysis. Here, we show that intra-cellular 
gene-gene correlations can suggest overlooked gene functions. Additionally, by replicating the correlations 
found at the single cell level in bulk tissue microarrays, we propose a strategy for validating expression patterns 
seen in the single cell level.   

Our study has several limitations. First, it does not include the entirety of all cancer data available in the public 
sphere, and thus presents an incomplete picture of KRT8 across all data. However, this study used 17149 samples 
across 23 cancers, which still includes significant amount of biological, clinical, and technical heterogeneity in 
the real world patient population. Further, we have previously shown that 4-5 independent datasets with a total 
of approximately 200-250 samples substantially increases the probability of validation in independent cohrots23. 
Second, we only required two control samples in the methylation discovery analysis, which could have led to 
false positive or patient-specific effects within a datasets. However, the integration of all the discovery cohorts 
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and independent validation using Illumina 450 methylation platform substantially mitigated the effect of a 
single cancer outlier. In addition, our rigorous downstream analysis of gene expression from 6781 samples in 57 
datasets from 5 cancers provide strong evidence of the robustness of our analyses. Third, we chose only the top 
gene and validated it here. It is possible that other genes may provide equal or greater prognostic value than 
KRT8. However, our aim is to demonstrate the value of the framework we propose here and thus we explored 
only the most promising gene, KRT8. Forth, we do not provide any indication of the mechanism underlying the 
prognostic value of KRT8. It may be as straightforward as increasing epithelial cancer cell numbers results in 
more KRT8 released into the bloodstream, or perhaps there is a more complex biological phenomenon at work. 
These questions can only be answered with follow-up hypothesis-driven research. 

Previous reports have identified role of KRT8 in the progression of lung and renal cancer.40,41 However, KRT8 
has never been shown to be overrepresented across cancers in a multi-omic analysis. One GEO dataset 
(GSE15932) contained expression from peripheral blood samples. In this dataset, KRT8 expression 
distinguished cancerous from healthy patients, suggesting that circulating KRT8 RNA may be a candidate for 
a diagnostic blood biomarker. Biomarkers not only have diagnostic and prognostic implications, but are also 
helpful for measurement of treatment responses, surveillance for tumor recurrence and guiding clinical 
decisions. For many cancers, there is not a single blood biomarker; others like pancreatic cancer have one or two 
unreliable screening biomarkers.  CA19-9 is used as a biomarker in pancreatic cancer, but due to its limitations 
and the low prevalence of pancreatic cancer is only used to monitor for reoccurrence.42 Here we show the 
potential use of serum KRT8 protein as a blood biomarker in pancreatic cancer. Given that we identified KRT8 
as overexpressed across cancers, it stands to reason that KRT8 may be useful as a peripheral biomarker in other 
cancers as well.  

Most importantly, this work demonstrates a strategy to translate large molecular analyses into specific, clinically 
relevant hypotheses. Omics sciences enable complex biological systems to be visualized in a holistic and 
integrative manner. Application of systems biology to interpret large multidimensional omics data across cancer 
types will enable the robust identification of biomarkers that share common pathophysiology, which can 
potentially be further explored for pan-cancer interventions 
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