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Abstract 

Background: Multiple COVID-19 outbreaks have occurred in homeless shelters across the US, 

highlighting an urgent need to identify the most effective infection control strategy to prevent 

future outbreaks.  

 

Objective: To estimate the probability of averting outbreaks in homeless shelters under different 

infection control strategies.  

 

Design: Microsimulation model of COVID-19 transmission in a representative homeless shelter 

over 30 days under different infection control strategies, including daily symptom-based 

screening, twice-weekly polymerase-chain-reaction (PCR) testing and universal mask wearing. 

 

Setting: A shelter of 250 residents and 50 staff. 

 

Patients: Residents and staff of homeless shelters in the US. Model calibrated to data from 

cross-sectional PCR surveys during COVID-19 outbreaks in five shelters in three US cities. 

 

Measurements: Probability of averting a COVID-19 outbreak (≥3 infections in 14 days). 

 

Results: Basic reproduction number (!!) estimates for the observed outbreaks ranged from 2.9 

to 6.2. The probability of averting an outbreak diminished with higher transmissibility (!!) 

within the simulated shelter and increasing transmission intensity in the local community. With 

moderate transmission intensity in the local community, the estimated probabilities of averting 
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an outbreak in a low-risk (!!=1.5), moderate-risk (!!=2.9), and high-risk (!!=6.2) shelter were: 

0.33, 0.11 and 0.03 for daily symptom-based screening; 0.52, 0.27, and 0.04 for twice-weekly 

PCR testing; 0.47, 0.20 and 0.06 for universal masking; and 0.68, 0.40 and 0.08 for these 

strategies combined.  

 

Limitations: !! values calibrated to reported outbreaks may be higher than for average shelter 

due to smaller outbreaks going unreported. 

 

Conclusion: In high-risk homeless shelter environments and locations with high community 

incidence of COVID-19 most infection control strategies are unlikely to prevent outbreaks. In 

lower-risk environments, combined interventions should be adopted to reduce outbreak risk.  

 

Primary Funding Source: University of California, San Francisco; UCSF Benioff 

Homelessness and Housing Initiative. 
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Introduction 

The COVID-19 pandemic caused by infection with severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) poses great risk to people experiencing homelessness. Across the 

United States (US), the estimated 568,000 people who experience homelessness nightly (1) are 

likely to suffer a disproportionate disease burden and need for hospitalization (2,3). People 

experiencing homelessness are on average older and have a high prevalence of comorbidities that 

are risk factors for severe COVID-19 (2). Multiple outbreaks in homeless shelters have occurred 

in several cities including San Francisco, Boston, Seattle and Atlanta with alarming attack rates 

of up to 67% (4–7). Homeless shelters have had to remain open in most cities despite high 

incidence of infection in the community, concern about the risk of further outbreaks, and 

uncertainty over the effectiveness of different infection control strategies. There is an immediate 

need to identify the best infection control strategy to reduce the risk of outbreaks and assess the 

safety of keeping shelters open where transmission in the community is high.  

 

The role of shelters and associated infection control practices in transmission of COVID-19 

among people experiencing homelessness is still poorly understood. Given current understanding 

that SARS-CoV-2 virus is transmitted predominantly through respiratory droplets (with some 

possible airborne and fomite transmission) (8), there is a need to consider policies to limit 

transmission within high-density congregate living environments. Different infection control 

strategies are currently recommended based on the level of transmission in the external 

community (9). These include routine symptom screening and polymerase chain reaction (PCR) 

testing, universal mask wearing, and relocation of individuals at high risk of severe disease to 

non-congregate settings (10). There is limited evidence on the effectiveness of strategies to 
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reduce transmission in congregate settings, and thus further research is urgently needed to guide 

city-level policy across the US.  

 

The goal of this study is to identify the most effective infection control strategy to slow the 

spread of COVID-19 among people experiencing homelessness who reside in shelters. We 

address this pressing question by estimating comparative health outcomes of key infection 

control strategies using a simulation model calibrated to data on recent homeless shelter 

outbreaks.  

 

Methods 

Data 

We calibrated a microsimulation model to aggregate data from PCR testing conducted between 

March 28, 2020 and April 10, 2020, during COVID-19 outbreaks in five shelters in three US 

cities: San Francisco (n=1), Boston (n=1) and Seattle (n=3) (4,6,7). We obtained de-identified 

individual-level data from the outbreak in the San Francisco shelter, which is fully described 

elsewhere (5), from the San Francisco Department of Public Health (see Supplement and 

Supplement Table 1 for details). As of April 10, 2020, a total of 89 individuals (84 residents, 5 

staff) of 175 tested (130 residents, 45 staff) in the shelter were PCR-positive. We used aggregate 

data from the outbreaks in the Boston and Seattle shelters, where identified COVID-19 cases 

triggered mass testing events (4,6,7). In the Boston shelter, 147 of 408 residents and 15 of 50 

staff were PCR-positive during testing conducted April 2–3, 2020. The numbers of residents and 

staff tested and positive in the three Seattle shelters (shelters A, B and C) at two testing events 

conducted March 30–April 1 and April 7–8, 2020 are given in Supplement Table 2.  
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Microsimulation 

We developed an individual-level stochastic susceptible-exposed-infectious-recovered (SEIR) 

model (11) to simulate transmission of SARS-CoV-2 in a congregate shelter population 

(Supplement Figure 1). The model defines individuals as susceptible, exposed, infected, or 

immune to SARS-CoV-2 (Supplement Table 3). We constructed the model to include important 

aspects of the natural history of COVID-19, including sub-clinical infection, pre-symptomatic 

transmission, and age-specific differences in risk of severe symptoms. In the model, susceptible 

individuals become infected with SARS-CoV-2 at a rate proportional to the prevalence of 

infectious individuals inside the shelter and their infectiousness (assuming homogeneous 

mixing), plus a static force of infection based on the background infection incidence in the 

community outside the shelter. Upon infection, individuals enter a latent infection stage in which 

they incubate the virus but are not infectious. They then progress to become infectious and 

contribute to ongoing transmission. An age-dependent fraction of infected individuals develop 

clinical symptoms with associated risk of hospitalization and death (Supplement Table 4), while 

the remainder have sub-clinical infection. Individuals who recover from infection are assumed to 

remain immune. For the San Francisco shelter, we used daily census data to inform the shelter 

population size, which decayed over time, and risk stratification (Supplement Figure 2). For the 

other shelters, we assumed a constant population size over time.  

 

We calibrated the model to aggregate numbers of individuals PCR-positive and negative for each 

shelter using approximate Bayesian computation techniques (see Supplement). We fitted the 

following parameters: (i) the basic reproduction number !! (the average number of secondary 
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infections generated by the average infectious individual in an entirely susceptible shelter 

population), (ii) the number of latently infected individuals who initially entered the shelter "!, 

and (iii) the number of days before the first case was identified that these individuals entered the 

shelter # (Table 1). The remaining parameters were sourced from literature on natural history 

and epidemiology of SARS-CoV-2 (Table 1 and Supplement Table 5). The model structure and 

calibration followed a pre-specified analysis plan (https://github.com/NathanLo3/Publication-

codes/blob/master/Pre-analysis plan- COVID homeless shelter FINAL.pdf). 

 

Infection control strategies 

We simulated six infection control strategies (Supplement Table 6), selected via informal 

consultation with public health experts. 1) Daily symptom-based screening: daily screening of all 

individuals in the shelter involving a temperature and symptom survey. Individuals who screened 

positive were PCR tested, with 80% compliance, and isolated for 1 day pending the test result; if 

negative, they returned to the population. We used published data on the sensitivity of symptom-

based screening with time since infection (12), which suggests that close to 100% of 

symptomatic cases (a subset of all true cases) would eventually be detected under repeated daily 

screening based on the definition of being symptomatic, even with low sensitivity of symptom 

screening on any one occasion (here assumed to be 40%). Despite reports of low specificity of 

symptom screening (13,14), a high specificity of 90% was assumed to prevent unrealistic levels 

of PCR testing and isolation of symptom-positive individuals awaiting test results. We assumed a 

minimum of 3 days between repeat PCR tests for the same individual. 2) Routine PCR testing: 

twice-weekly PCR testing of residents and staff based on prior literature analyzing reduction in 

transmission and cost-effectiveness under different testing frequencies (15–17). We assumed 
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75% sensitivity and 100% specificity of PCR testing based on published literature (18–21), a 

mean duration of detectable viral load (starting prior to development of symptoms) of 20 days 

(Supplement Figure 3) (22–27), and 80% compliance with testing. We assumed test results were 

returned in 1 day, after which time individuals who tested PCR-positive were removed from the 

shelter population. 3) Universal mask wearing: wearing of surgical masks by all persons within 

the shelter. We assumed that surgical mask wearing reduced the amount of infectious SARS-

CoV-2 material breathed into the air by infected individuals by 30% based on literature estimates 

from household studies assuming high compliance and recent experimental studies(28–33), and 

that 80% of individuals adhered to mask wearing. 4) Relocation of “high-risk” individuals: 

moving high-risk individuals (defined as those ≥60 years and/or with co-morbidities) to single 

hotel rooms, modelled by replacing such individuals with lower-risk individuals. 5) Routine PCR 

testing of staff only: twice-weekly testing of staff only, assuming 80% compliance. 6) 

Combination strategy: strategies 1–4 combined. Daily symptom screening (strategy 1) was 

included in all strategies.  

 

Prediction of impact of infection control strategies  

For each intervention strategy we simulated transmission within a shelter of 250 residents and 50 

staff (based on an average shelter size) over 30 days starting with one latently infected individual 

1000 times (to account for stochastic uncertainty). The time period was chosen to capture the 

trajectory of an outbreak and differential benefits of strategies. The primary outcome of the study 

was the probability of averting an outbreak (defined as 3 or more infections originating within 

the shelter in any 14-day period (34,35)) under each strategy, with secondary outcomes of the 

proportional reductions in the total numbers of COVID-19 infections and clinical cases, and total 
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numbers of hospitalizations, deaths and PCR tests used. Only individuals who tested positive 

were removed from the shelter population. The initial population was chosen to have the same 

composition in terms of proportions in different risk groups (by age and co-morbidity status) as 

the San Francisco shelter. We estimated the probability of averting an outbreak under each 

intervention strategy (compared with no interventions) for each calibrated !! value for a range of 

different background infection rates estimated from recent incidence of confirmed cases in 

Seattle, Boston and San Francisco (see Supplement for details). To account for potential upward 

bias in the estimated !! range due to fitting to data from shelters with high attack rates, we 

performed the same simulations for a shelter environment with a low !! of 1.5. The analyses 

were conducted in R version 4.0.0 (36) and the data and model code are available at 

https://github.com/LloydChapman/COVID_homeless_modelling. This study was considered 

exempt non-human subject research based on use of de-identified secondary data by the 

University of California, San Francisco Institutional Review Board. 

 

Sensitivity analysis 

We conducted a multi-way sensitivity analysis to assess the impact of uncertainty in key natural 

history and intervention parameters (relative infectiousness of subclinical infection and the early 

infectious stage, sensitivities and specificities of symptom screening and PCR tests, testing and 

masking compliances, and mask effectiveness) on the results (Table 1). We explored the impact 

of the frequency of universal PCR testing on the probability of averting an outbreak by varying 

the PCR testing frequency in strategy 2 from daily to monthly. 

 

Role of the funding source 
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This study was funded by the University of California, San Francisco (UCSF) and the UCSF 

Benioff Homelessness and Housing Initiative. The funders had no role in the study design, data 

collection and analysis, preparation of the manuscript, or the decision to submit the manuscript 

for publication. 

 

Results 

Model calibration  

The model reproduced the numbers of PCR-positive individuals in the cross-sectional surveys in 

the Seattle and Boston shelters (Supplement Figure 4) and the observed numbers of PCR-

positive individuals and symptomatic cases over time for the outbreak in the San Francisco 

shelter (Supplement Figures 4 and 5). The estimated !! values ranged from 2.9 (95% CI 1.1–6.7) 

for Seattle shelter B to 6.2 (95% CI 4.0–7.9) for the San Francisco shelter (Supplement Table 7), 

with corresponding estimated cumulative infection incidences at the end of the testing period of 

14% (95% CI 1–41%) and 83% (95% CI 72–92%) (Supplement Table 8). The median estimated 

number of infections initially introduced was 3 for all shelters (95% CI 1–5). The estimated date 

of introduction of infection ranged from 10 days (95% CI 7–14 days) before the first case was 

identified for Seattle shelter B to 21 days (95% CI 17–26 days) before for San Francisco.  

 

Impact of infection control strategies 

Table 2 shows the projected impact of the six infection control strategies considered for different 

transmission environments. Daily symptom screening performed poorly across different 

transmissibilities (probability of averting an outbreak = 0.03 for San Francisco !! = 6.2, and 

probability = 0.33 for !! = 1.5). Relocating individuals at high-risk of clinical symptoms 
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combined with symptom screening performed similarly to symptom screening alone (probability 

of averting an outbreak = 0.03–0.33 for !! = 6.2–1.5). Twice-weekly PCR testing of staff 

provided some additional benefit over daily symptom screening at lower transmissibilities 

(probability of averting an outbreak = 0.03–0.40 for !! = 6.2–1.5). Universal masking and 

twice-weekly PCR testing of all individuals yielded higher probabilities of averting an outbreak 

of 0.06–0.47 and 0.04–0.52 for !! = 6.2–1.5. The combination strategy involving daily 

symptom screening, twice-weekly PCR testing of all individuals, universal masking, and 

removal of high-risk individuals gave the highest probability of averting an outbreak (0.08–0.68 

for !! = 6.2–1.5), but still prevented a minority of outbreaks in all but the lowest-risk setting.  

 

The probability of averting an outbreak under each intervention strategy decreased with 

increasing transmission potential (!!) inside the shelter and with increasing infection incidence 

in the community outside the shelter (Figure 1). Even under the combination strategy, the 

probability of averting an outbreak in an average-transmission-potential shelter (!! = 2.9) 

decreased from 0.58 to 0.07 as the background infection rate increased from 0 to 439 cases per 1 

million person-days (the estimated background infection rate in San Francisco between June 27 

and July 10, 2020). 

 

The relative reduction in infection incidence under the different infection control strategies 

followed the same pattern as the probability of averting an outbreak (Supplement Table 10 and 

Figure 2).  
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PCR test requirements were approximately three times higher (at an average of 6.6 tests per 

person per month) under twice-weekly PCR testing of all individuals than when only testing 

individuals identified as symptomatic in daily symptom screening (2.0 tests/person/month), and 

approximately two times higher than when only testing staff twice-a-week (2.8 

tests/person/month) (Supplement Table 11). 

 

Sensitivity analysis 

The probability of averting an outbreak was most sensitive to uncertainty in mask effectiveness 

and relative infectiousness of the early infectious stage, followed by PCR sensitivity and 

masking and testing compliances (Supplement Figure 9). Decreasing the frequency of PCR 

testing from daily to monthly decreased the probability of averting an outbreak for !! = 1.5, 2.9 

and 3.9 from 0.70 to 0.35, 0.27 to 0.12, and 0.23 to 0.08 respectively, but had little impact on the 

already low probability of averting an outbreak for !! = 6.2 (Supplement Figure 10).  

 

Discussion  

Several outbreaks of COVID-19 with high attack rates have occurred in homeless shelters across 

the US, and there remains uncertainty over the best infection control strategies to reduce 

outbreak risk in shelters. In this study, we applied a simulation analysis to identify infection 

control strategies to prevent future outbreaks. We found that in high-risk shelters that are unable 

to maximize basic infection control practices that sufficiently reduce the transmissibility of 

SARS-CoV-2 (e.g. social distancing, reduced living density), no additional infection control 

strategy is likely to prevent outbreaks. In contrast, in lower-risk shelters with low background 
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community incidence, the implementation of strategies such as symptom screening, routine PCR 

testing, and masking would help reduce outbreak risk. 

 

We found a wide range of transmissibility of SARS-CoV-2 based on the observed outbreaks in 

homeless shelters, which greatly affects intervention impact. We estimated basic reproduction 

numbers (!!) of 2.9–6.2 from aggregate PCR test data from outbreaks in five shelters in Seattle, 

Boston and San Francisco. This range of !! values is at the high end of those reported in the 

literature (37–40), and likely reflects a high degree of heterogeneity in infectiousness between 

individuals (39,41–44) and a highly conducive environment for transmission within these 

shelters due to lack of existing infection control practices and high living density.  These !! 

values are also likely not entirely representative of general transmission potential in shelters as 

non-outbreaks and smaller outbreaks are undetected or less likely to be reported, and some 

shelters have reported only low numbers of infections (4,45). For these !! values and current 

background infection rates, we found that the infection control strategies considered are unlikely 

to prevent outbreaks (probability < 40%), even when combined. Nevertheless, they do reduce 

incidence of infection and clinical disease and slow the growth of the outbreak (Figure 2).  

 

In a lower transmissibility setting, with !! = 1.5, e.g. where staff and clients are able to socially 

distance, the considered intervention strategies are more likely to prevent outbreaks (probability 

up to nearly 70% under combined interventions, for a moderate background infection rate 

equivalent to that in Boston in early July of 122/1,000,000/day).  
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A key remaining issue is identifying the characteristics that distinguish low-risk shelters that can 

be safely operated with implementation of infection control strategies. Data is limited, but 

available evidence suggests that social distancing and reductions in super-spreading are likely to 

be key factors (39,41,46–48). Strategies that may achieve these goals include reducing living 

density, spacing bedding, reducing communal activities, and adopting staffing models that limit 

social contacts.  

 

The background infection rate in the community greatly affects the probability of COVID-19 

outbreaks and intervention impact. For example, even with combined interventions, the 

probability of averting an outbreak in a shelter decreases significantly with increasing 

background infection rate (to less than 40% for !! > 1.5 for the estimated background rate for 

San Francisco for early July), due to the increase in the risk of introduction of infection into the 

shelter. Our findings therefore support considering alternative arrangements for housing people 

experiencing homelessness in locations in which community incidence is moderate to high – 

100–500 infections/1,000,000/day, equivalent to a confirmed incidence of 25–125 

cases/1,000,000/day (i.e. current San Francisco incidence) assuming four-fold underreporting 

(see Supplement) – unless infection control practices are maximized. In lower background 

incidence settings, our results suggest that a combination of daily symptom-based screening, 

twice-weekly PCR testing, universal masking and relocation of high-risk individuals to non-

congregate settings would reduce outbreak risk, and limit incidence of infection and severe 

disease if outbreaks do occur. 
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Each infection control strategy is limited in some aspect (22,49–53). Symptom-based screening 

has very low sensitivity to detect infections early in the clinical course (when people are most 

infectious), and poor specificity (12–14,54). The impact of routine PCR testing is limited by 

imperfect PCR sensitivity (~75%), especially early in the infection course (19), as well as need 

for frequent testing and missing onset of infectiousness between testing periods. Other analyses 

support our finding that testing less than once or twice weekly leaves a high risk of outbreaks 

(e.g. testing once every two weeks gives a 30% lower probability of averting an outbreak than 

twice-weekly testing, Supplement Figure 10) (15–17). However, once- or twice-weekly testing 

may be financially and logistically infeasible. Similarly, relocation of high-risk persons to 

independent housing is resource intensive. Frequent testing and universal masking also suffer 

issues with adherence, which constrains their effectiveness. 

 

This study has a number of limitations. Due to limited data availability, we only calibrated the 

model to a small number of shelter outbreaks, the !! estimates for which are likely to be higher 

than for the average shelter due to larger outbreaks being more likely to be reported. The cross-

sectional aggregate nature of the majority of the data also led to wide uncertainty intervals 

around the fitted parameters, without independent identifiability between them (Supplement 

Figure 11). Our estimate of the impact of masking is highly sensitive to the assumed 

effectiveness of masking, which has mixed evidence (28,29,31). Many uncertainties in the 

biology of SARS-CoV-2 transmission remain, particularly regarding differential infectiousness 

over time and by severity of illness, and the relationship of PCR positivity and infectiousness 

(22,55,56). Our assumption of equal infectiousness for different individuals means that our 

model is unlikely to fully reproduce super-spreading events (39,41). We made several 
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simplifying assumptions in modelling transmission within the shelter and from the surrounding 

community, namely: homogenous mixing within the shelter population, no entry of new people, 

a stable background infection rate over time and full immunity upon recovery from infection 

given the short duration of the simulation. We assumed homogeneous mixing due to a lack of 

contact data for the shelter outbreaks, which meant that we were not able to consider cohorting 

and contact tracing as interventions. 

 

This study defines conditions that would support safely operating homeless shelters with lower 

risk of COVID-19 outbreaks and estimates the impact of various interventions on outbreak risk. 

Our findings demonstrate the need for combined interventions (symptom-based screening, PCR 

testing, and masking) and regular testing to protect persons experiencing homelessness from 

COVID-19, while highlighting the limitations of these interventions in preventing outbreaks.  
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Tables and Figures  
 
Table 1. Microsimulation input parameters based on observed outbreak data from 
homeless shelters in Seattle, Boston and San Francisco 

Parameter Base case value 
Range in sensitivity 
analysis* References 

Natural history     
Mean duration of latent infection 
period, days 3 - (22) 
Mean duration of early infectious 
stage (subclinical/clinical), days 2.3 - (22) 
Mean duration of late infectious 
stage (subclinical/clinical), days  8  - (22,23,55,57) 
Relative infectiousness of 
subclinical infection to clinical 
infection 1 0.5–1 (53,56,58) 
Relative infectiousness of early 
infectious stage to late infectious 
stage 2 1–3 (22,52) 
Probability of developing clinical 
symptoms 

Age-dependent (see 
Supplement Table 4) - (59) 

Background infection rate in 
community outside shelter, 
infections/1,000,000 person-days 

Shelter-specific (see 
Supplement) 0–439 (60–62) 

Basic reproduction number, !! Variable 1.5–6.2 Estimated 
    
Intervention    
Symptom screening    

Sensitivity 0.4 0.3–0.5 
Assumed based 
on (12) 

Specificity 0.9 0.8–0.9 Assumed 
Compliance of symptomatic 
individuals with PCR testing, % 80 50–100 Assumed 

PCR testing    
Sensitivity 0.75 0.6–0.9 (18–21) 
Specificity 1 0.95–1 (19,21) 
Frequency Twice weekly Daily–Monthly (15–17) 
Compliance, % 80 50–100 Assumed 

Masks    
Effectiveness (reduction in 
transmission) 30  10-50 (28–33) 
Compliance, % 80 50–100 Assumed 

* In the sensitivity analysis, each intervention strategy was simulated with all combinations of the minimum and 
maximum values of the ranges for the indicated parameters to generate the uncertainty intervals around the 
probability of averting an outbreak in Table 2. 
See Supplement Table 5 for complete list of all parameters used in model calibration and intervention simulations. 
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Table 2. Probability of averting an outbreak* over a 30-day period in a generalized homeless shelter† with simulated infection 
control strategies  
 Probability of averting an outbreak (UI)§ 

Infection control strategy‡  
!! = 1.5  
(low-risk) 

!! = 2.9  
(Seattle) 

!! = 3.9  
(Boston) 

!! = 6.2  
(San Francisco) 

1) Symptom screening  0.33 (0.22–0.61) 0.11 (0.07–0.35) 0.07 (0.03–0.24) 0.03 (0.01–0.13) 
2) Routine twice-weekly PCR testing 0.52 (0.38–0.81) 0.27 (0.14–0.56) 0.18 (0.08–0.42) 0.04 (0.02–0.26) 
3) Universal mask wearing 0.47 (0.24–0.88) 0.20 (0.08–0.64) 0.11 (0.04–0.52) 0.06 (0.01–0.32) 
4) Relocation of high-risk individuals 0.33 (0.22–0.63) 0.10 (0.07–0.35) 0.06 (0.04–0.24) 0.03 (0.01–0.13) 
5) Routine twice-weekly PCR testing of staff only 0.40 (0.29–0.69) 0.16 (0.08–0.36) 0.10 (0.04–0.26) 0.03 (0.01–0.13) 
6) Combination strategy 0.68 (0.44–0.95) 0.40 (0.16–0.83) 0.28 (0.09–0.73) 0.08 (0.03–0.53) 

UI = uncertainty interval; !! = basic reproduction number. 
* Outbreak defined as ≥3 infections originating within the shelter in any 14-day period.  
† Generalized homeless shelter defined as 250 residents and 50 staff with a background infection rate estimated from current data (approximately 120 infections 
per 1 million person-days).  
‡ All strategies included daily symptom screening.  
§ UI generated from parameter sensitivity analysis (see text and Table 1). 
See Supplement Table 9 and Figure 1 for results for other background infection rates, and Supplement Table 10 for reductions in infections and symptomatic 
cases. See Supplement Figures 6–8 for the outbreak size distributions for the different !! values. 
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Figure 1. Impact of incidence of infection in the community outside the shelter on the 
probability of averting an outbreak under different intervention strategies for different !! 
values. SF = San Francisco. 
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Figure 2. Predicted number of COVID-19 infections over a 30-day period in a generalized 
homeless shelter under different infection control strategies for different !! values. Solid 
lines show mean daily numbers of new infections and shaded areas show minimum and 
maximum daily numbers over 1000 simulations. SF = San Francisco. 
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